STABLE QUASIMAPS
BUMSIG KIM

ABSTRACT. The moduli spaces of stable quasimaps unify various
moduli appearing in the study of Gromov-Witten Theory. This
note is a survey article on the moduli of stable quasimaps, based
on papers [CK1, CKM, K] as well as author’s talk at Kinosaki
Algebraic Geometry Symposium 2010.

1. INTRODUCTION

A morphism from a variety X to a projective space P" is described
by a linear system on X, which can also be regarded as a C*-bundle P
with a section u of P x¢x A"T! without base points. When X is a curve,
one may compactify the morphism space Mor(X,P") by creating new
rational components whenever base points try to appear. This method
eventually provides Kontsevich’s stable map compactification. There is
another compactification, Quot scheme of rank 1 subsheaves of O§”+1.
The latter’s boundary elements allow base points instead of attaching
new rational components to X. It turns out that the same idea can be
applied to any GIT quotient W/ G when there are no strictly semistable
points ([CK1, CKM]).

The above point of view leads us to:

(1) the notion of a quasimap (P, u), i.e., a pair of a principal G-
bundle P on a prestable curve and a section u of P xg W with
at worst finitely many base points.

(2) New compactifications of moduli of maps from curves to a GIT
quotient W//G of an affine scheme W. These include interme-
diate moduli spaces with moduli of stable maps and moduli of
stable quasimaps as the asymptotic ones on the parameter space
of stabilities (see [MM1, MM2, To| for P* and Grassmannians;
the investigation of the general case will appear elsewhere). The
new spaces are easier to deal with than the stable map spaces
in certain cases.
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(3) The virtual smoothness of the Artin stack of the quasimap pairs
when W is LCI and W//G is smooth.

(4) A new class of examples with symmetric obstruction theory if
W/ G is a Nakajima quiver variety (see [D, K]).

(5) The wall-crossing interpretation of Givental’s approach to clas-
sical Mirror Conjecture (see [CK2]).

2. THREE QUOTIENTS

Let W be an affine variety over C with a linear action by a complex
reductive Lie group G. Typical examples of G are products of general
linear groups GL,(C). In this situation one sometimes wants to define
a quotient space. There are three approaches.

2.1. Affine quotients. Since W is affine, it can be considered as Spec
of the ring C[IW] of regular functions on W. Hence, it is natural to
define the quotient by Spec of the ring C[W] of G-invariant regular
functions on W.

In many cases, this is not interesting. For instance, if the homothety
action is included in the G-action, the closure of every G-orbit contains
the origin. Therefore every G-invariant function must be constant on
W. Thus, Spec C[W]“ = SpecC.

2.2. GIT quotients. In the previous example, to obtain an interesting
space as a quotient, we need to remove the origin. To do so geometri-
cally, we should also prevent other orbits from approaching the origin
or some point. For it, we will regard W as Proj of the graded ring
C[W x A'] where the grading comes from degrees with respect to the
extra Al. Given a character y of G (i.e., a one-dimensional representa-
tion x of G), we define a G-action on W x Ai_l, where Al for character
a denotes the one-dimensional representation space of G associated to
a. Now it is natural to take Proj of the graded ring C[W x A]Y of
G-invariant functions. This quotient is denoted by W/, G.
To describe the quotient space geometrically, let’s recall the following
definition. We call a point p:
e x-stable if there is no one-parameter subgroup C* of G such
that C* - (p, 1) is closed in W x Al
o y-unstable if there is a one-parameter subgroup C* of G such
that the closure of C* - (p, 1) meets W x {0}.
e Y-semistable if it is not y-unstable.

It is a theorem that W/, G is the categorical quotient of the semistable
locus W#**. For a general choice of x, there is no strictly semistable



point. In such a case, the GIT quotient is known to be also a geomet-
ric quotient so that W)/,G = W*/G. (Note that if there is a nontrivial
character of G, then G is not semisimple.)

2.3. Stack quotients. There is a stack quotient [I¥//G] which is as a
set (over Spec C) the set W/G of G-orbits, but which keeps the data of
isotropy subgroups. The quotient is defined as a category of groupoids
over the category Sch of schemes over C, whose objects over a scheme
S are pairs (P, u) of principal bundles and G-equivariant morphism u

from P to W. The morphism u can be considered also as a section of
P Xa wW.

2.4. Relationships. Assume from now on that there are no strictly
x-semistable points and G acts on the stable locus freely. The latter
condition is only technical (see [C]).
With this assumption the three quotients are related by the diagram
W/G| <=W/,G Spec C[W]¢ .

open projective

(Note that W//,—oG coincides with the affine quotient Spec C[W]%, but
we will not use this notation. For y = 0, every semistable point is not
stable.)

2.5. Examples. There are many examples.

Ezxample 2.5.1. Let Y be a projective variety in P" and let C'(Y") denote
the affine cone of Y in A"*!. Then Y is the GIT quotient C'(Y) /4e:C*,
where the character is defined by the determinant map. Typical exam-
ples for this case will be smooth complete intersections Y.

Example 2.5.2. Complete intersections in toric varieties or Grassman-
nians.

Ezxample 2.5.3. Quiver varieties. In particular, quiver varieties of Naka-
jima type will be recalled in section 4.

3. QUASIMAPS

A morphism from X to the GIT quotient W*/G amounts to a pair
(P,u) where P is a principal G-bundle on X and u is a G-equivariant
map from P to W whose image is contained in W*. By Luna’s slice
theorem, W* is a principal G-bundle on W?*/G in étale topology. The
direction = therefore follows. The other direction holds since P — X
is a categorical quotient. Here we will exchange left and right actions

via the inverse map G — G, g+ g~ *.



3.1. Stable quasimaps. If we allow that u hits the unstable locus,
the pair (P, u) is not any more a well-defined map to the GIT quotient,
but it is a map [u] to the stack quotient by the very definition of the
stack quotient.

Definition 3.1.1. The pair (P,u) is called a quasimap of genus g if:

e X is a projective smooth or nodal curve of genus g, with n
ordered smooth markings.
o The base locus u=' (P xg W"") consists of finite points.

The quasimap is called a stable quasimap if:

e wy ® (P x¢g Ai)e is ample for all positive rational number €.
e The base points (if any) are smooth and non-marked points.

3.2. Degrees. Note that there is a notion of degree for a map f from
curve X to W//G by the homomorphism

deg(f) : Pic(W/),G) — Z
M — deg(f*M) "

Similarly we define the degree of (P, u) as a homomorphism from the
character group of G to Z by sending o +— deg(P xg Al). Let 3 be a
group homomorphism from the character group of G to Z.

Theorem 3.2.1. ([CKM]) The moduli stack Q,,(W /G, ) of stable
quasimaps of n-pointed, genus g, degree 3 to W/, G is a finite-type DM
stack proper over the affine quotient Spec C[W]Y. Furthermore if the
affine scheme W?* is smooth and W 1is a locally complete intersection
scheme, then the moduli stack comes with a natural perfect obstruction
theory.

The map from the moduli stack to the affine quotient is naturally
given since P — X is categorical at the diagram

P w

Ny

X ---> SpecC[W]¢

and X is a projective scheme over C.

3.3. Perfect obstruction theory. It is not difficult to see that the de-
formations of curves X and principal bundles P on X is unobstructed.
Fix X and P and deform only section u of P x5 W. Note that the de-
formation space def(u) is H’(X,u*T,) where T, is the relative tangent
complex of p : P xg W — X. We may therefore define an obstruc-
tion space ob(u) to be H'(X, u*T,). The relative virtual dimension is



dim def(u) — dim ob(u), which is a locally constant. Roughly speaking,
this implies that the moduli space is virtually smooth.

3.4. Historical remarks. These are limited remarks.

3.4.1. For a projective smooth toric variety, the spaces of stable quasimaps
with the fixed domain curve P! also become projective smooth toric va-
rieties. The spaces are used to prove the Mirror Theorem for Fano/CY
complete intersections by Givental ([G]).

3.4.2. Let W/),G = Hom(C",C")/4etGL,(C) = Grass(r,n). In this
case, a stable quasimap amounts to a rank n — r quotient of A" ® Ox
on a prestable curve with certain conditions: for example when there
is no marking, the conditions are no torsion at nodes and no rational
tail. The latter is called a stable quotient and introduced by Marian,
Oprea, and Pandharipande [MOP] in 2009.

For a fixed smooth curve X, the moduli spaces of stable quotients
are nothing but Quot schemes of rank n — r quotients of A" ® Ox.
Quot schemes have been used and studied in Gromov-Witten theory
(for instance, see [Ber, OT)).

3.4.3. For a smooth projective toric variety AY /(C*)", the theorem is
proven in [CK1]. The paper [CK1] shows the idea that all the above
constructions can be unified and generalized to any GIT quotient W/ G.

3.5. Quasimap invariants. Using the perfect obstruction theory on
the moduli space of stable quasimaps, we define the virtual fundamen-
tal class of the moduli space. Hence, we can define intersection num-
bers by integrals of tautological cohomology classes against the virtual
fundamental class.

We conjecture that these invariants and Gromov-Witten invariants
for WJIG carry the same amount of information ([CK1, CKM, CK2])
A precise formulation of the conjecture is unknown except for the fol-
lowing two cases.

(1) When W//G has the property that for every curve C' in W/ G,
C-Kw)e < —2, we expect that both invariants exactly coincide.

(2) The genus zero quasimap invariants should lie on the Lagrangian
cone generated by the genus zero gravitational Gromov-Witten
invariants (and vice-versa).

3.6. Some evidence.

3.6.1. For fized X = P! and any toric complete intersection W/ G, (2)
is the Mirror Theorem in [G]. For Grassmannian case, (1) is a theorem
in [MOP].



3.6.2. In [CK2] we prove (2) for any Fano/CY toric complete intersec-
tion in a toric variety and (1) for any Fano toric variety.

4. STABLE QUASIMAPS TO HOLOMORPHIC SYMPLECTIC
QUOTIENTS

Let V be a smooth affine variety with a holomorphic symplectic form
w (i.e. w e I'(V,7y) is a nondegenerate (2,0)-form). In this setup one
can define a quotient which is also holomorphic symplectic.

4.1. Holomorphic symplectic quotients. Suppose that the G-action
V' is hamiltonian which means that: the G-action preserves w and
there is a G-equivariant morphism p : V' — g* such that (du(§),g) =
w(§,da(g)) for & € Ty where a : G — AutV is induced from the ac-
tion. Here g denotes the Lie algebra of G. The morphism g is called a
complex moment map.

Define the holomorphic symplectic quotient by p=*(\)/,G where A
is a G-invariant regular value of ;. The quotient is denoted by V//» ,G.

4.2. Symmetry. Let F denote the complex
00y BT % g 00y

|u*1(>\)'

Note that F = F¥ and F is a monad such that Kerdu/ITmda in (171 ()))*
is isomorphic to the pullback of the tangent sheaf of holomorphic sym-
plectic quotient. One may also consider F (more precisely, its mixed
construction) as a generalized Euler sequence for the tangent sheaf of

V)/G.

4.3. Symmetric obstruction theory. Fix a smooth projective curve
X. Define M3 to be the stack of degree 3 stable quasimaps to the
holomorphic symplectic quotient p~*(\) /G from X. This moduli space
has a symmetric obstruction theory if X is an elliptic curve, i.e., the
deformation space H(X, P xF) is functorially isomorphic to the dual
of the obstruction space H!' (X, P x¢F). This follows from Serre duality
and F 2 FV.

Using twisting, this symmetry can be made hold for arbitrary smooth
curve X when the quotient is a Nakajima quiver variety.

4.4. Nakajima’s quiver varieties. A quiver () is an oriented graph,
i.e., data (Qo, @1, h,t) where Qg is the set of vertices, @1 is the set of
arrows, h is the head map, and ¢ is the tail map (h,t: Q1 — Q). Let
Q be the quiver obtained from @ by adding the opposite arrow a for
each arrow a in Q) (so |Q;| = 2|Q1|). Set a = a.



Fix a distinguished vertex 0 € Qo and a dimension vector v € N0,
Let V be the direct sum of Hom(A%s, A¥«) for all @ € Q,. V has a
decomposition V, @ V_ based on the arrows in Q1 and Q, \ Q; so that it
is a symplectic vector space with the canonical symplectic form. Also
V' comes with a natural action of G = I, i20G Ly, (C). It is easy to
see that this action is hamiltonian with a moment map

> (=D)llgg 0 ¢s
a€Q:ha=i i€Q0,i#0

Choose 0 € Z2M% and 0 : G — C* by g +— []det gfi. Now we can
define V/J/, oG. Let A = 0.

Note that a quasimap data is equivalent to (E;, ¢,) where E; is a
vector bundle P xg A% and ¢, : E;, — FEp, is a homomorphism ob-
tained from u, satisfying the moment map relation and the condition
that ‘base points’ are finite. This therefore motivates the following.

4.5. Twisted quiver sheaves. Fix a smooth projective curve X, a
line bundle M, on X for every a € (J,, and an isomorphism M, & M; —
K for every a € Q.

Definition 4.5.1. (E;, ¢,) is called a framed-twisted quiver sheaf on
X with the moment map relation if
(1) E; is a coherent sheaf on X.
(2) ¢g : My @ Eyy — Epg is an Ox-homomorphism.
(3) Zi;ﬁﬂ Zta:i(_l)‘algba o (Ida, ® ¢a) = 0 in @i;ﬁo End(K;(l ®
E;, E;).
(4) Eq = OF" for some integer r.

Often, we will call it simply twisted quiver sheaf, even just quiver

sheaf.

4.6. Stability Conditions. Let A be the abelian category of twisted
quiver sheaves with respect to the fixed data above. Let Z : K(A) — C
be a homomorphism defined by

(Ei, ¢a) — Y 1kE; + V=1()  deg E; + 7rkE).
i#0 i#0

Let 7 > 0. Note that Z(K(A) \ {0}) is contained in the union of the
half plane where the real part is positive with the positive y-axis. This
is a Bridgeland stability function with Harder - Narasimhan property.

A nonzero twisted quiver sheaf (F;, ¢,) is called 7-(semi)stable if
ArgZ(E") < (<)ArgZ(E) for every nonzero proper subobject E’ of E
in A.



Proposition 4.6.1. Fizx a dimension vector v with vg = 1 and a degree
vector d. Then there is a positive number 1y such that for every T >

and for every (F;, ¢,) twisted quiver sheaf with (v,d), TFAE
(1) 7-semistability.
(2) T-stability.
(3) Stability as a twisted quasimap to V|G with = (1,...,1).

Hence, given (v,d) there are finite many walls 7;, i = 1,..., N such
that there are no strictly 7-semistable objects unless 7 = 7;.

Theorem 4.6.2. The moduli stack fm(Tud) of T-stable quiver sheaves of
rank and degree (v,d) is a finite type algebraic space equipped with a
symmetric obstruction theory. The stack is proper over Spec u~1(0)¢
if T is large enough.

4.7. Remarks. When @ is the ADHM quiver, the above proposition
and theorem were proven in [D] which is one of the main sources of
inspiration for the general case.

So far, there are two classes of examples equipped with symmetric
obstruction theory: moduli of stable objects in the abelian category of
coherent sheaves of a CY 3-fold and representations of a quiver with
relations from a superpotential on @ (see [Th, PT, S, JS, KS]J).

One can study wall-crossings of topological Euler characteristics of
M7, o) weighted by Behrend’s constructible functions ([Beh]) using Joyce-
Song formula ([JS]) or Kontsevich - Soibelman formula ([KS]). Once
again for the ADHM case, it is done in [D, CDP1, CDP2]; and its
generalization is a work in progress with H. Lee.

For the use of Joyce - Song theory, one needs to prove:

o X\(E,F):=ext"(E,F)—ext!(E,F)+ext'(F, E) —ext’(F, E) is
numerical in certain cases.

) 9)?@ 4 18 analytic-locally a critical locus of a holomorphic func-
tion on a smooth analytic domain.

It would be interesting to relate A with a CY 3-category.
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