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1. Introduction

Compact orientable surfaces such that each component has a non-empy boundary, embedded in

3-space in the form of ribbons, are called surface ribbons. This is an overview of recent work with

Emanuele Zappala on algebraic structures related to surface ribbon diagrams, for defining their

invariants. Details can be found in [11–15].

Surface ribbons are represented by diagrams of thin ribbons in the plane with ribbon crossings

as in Figure 1 (A) and fattened trivalent vertices as in (C) as building blocks. For simplicity we

also represent surface ribbons by trivalent graphs as in (B) and (D) in the figure. Labels on strings

are used later.
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Figure 1. Building blocks

In [10], it was shown that the isotopy class of a compact orientable surface with boundary

embedded in 3-space is determined diagrammatically by the moves given in Figure 2. Moves RII,

RIII and CL are the framed Reidemeister moves for framed links. Moves IY, YI and IH appear

also in the study of handlebody knots in 3-space, see for instance [9].
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Figure 2. Moves

2. Fundamental heap

In this section we provide an overview of results in [6].
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2.1. Definitions. We recall the definition and basic properties of heaps. Given a set X with a

ternary operation [−], the set of equalities

[[x1, x2, x3], x4, x5] = [x1, [x4, x3, x2], x5] = [x1, x2, [x3, x4, x5]]

is called para-associativity. The equations [x, x, y] = y and [x, y, y] = x are called the degeneracy

conditions. A heap is a non-empty set with a ternary operation satisfying the para-associativity

and the degeneracy conditions [6].

A typical example of a heap is a group G where the ternary operation is given by [x, y, z] = xy−1z,

which we call a group heap. Conversely, given a heap X with a fixed element e, one defines a binary

operation on X by x ∗ y = [x, e, y] which makes (X, ∗) into a group with e as the identity, and the

inverse of x is [e, x, e] for any x ∈ X. Moreover, the associated group heap coincides with the initial

heap structure.

Let X be a set with a ternary operation (x, y, z) 7→ T (x, y, z). The condition T ((x, y, z), u, v) =

T (T (x, u, v), T (y, u, v)T (z, u, v)) for all x, y, z, u, v ∈ X, is called ternary self-distributivity, TSD for

short. It is known and easily checked that the heap operation (x, y, z) 7→ [x, y, z] = T (x, y, z) is

ternary self-distributive. In this paper we focus on the TSD structures of group heaps.

Definition 2.1 ([14]). The fundamental heap h(S) of a surface ribbon S is defined as follows. Let

D be a diagram of S with double arcs of ribbons with building blocks as in Figure 1 (A) at crossings

and (C) at trivalent vertices. We define h(D) by a presentation using D. Let A be the set of arcs.

Two arcs of a ribbon segment (doubled arcs) are listed as separate (distinct) elements of A. Each

arc is assigned a generator. In Figure 1, generators are represented by letters (labels) x, y, u, v, z, w.

Letters assigned to arcs are identified with (the names of) the arcs themselves, and regarded as

elements of A. Then the set of generators of h(D) is A.

For each crossing as depicted in Figure 1 (A), the relations are given by {z = xu−1v, w = yu−1v}.
Specifically, when the arc x goes under the arcs (u, v), in this order, to the arc z, then the relation

is defined as z = xu−1v, and similar from y to w. The set of union of the two relations over all

crossings is denoted by T and constitutes the set of relations of h(D). For each trivalent vertex as

in Figure 1 (C), each connected arc receives the same letter, and no relation is imposed.

The fundamental heap h(D) is the group heap of the group whose presentation is given by a

set of generators corresponding to double arcs, and the set of relations assigned to all crossings:

〈A | T 〉. In the next lemma, it is proved that h(D) does not depend on the choice of D and,

therefore that it is well defined for S, and it is denoted by h(S). For a connected disk B2, it is

defined as h(B2) = Z.

Lemma 2.2. The fundamental heap h(S) is well defined, that is, the isomorphism class of the

group heap h(D) is independent on the choice of D.

2.2. Properties. In [14], the following properties were shown.

• For a surface ribbon with connected components S = S1 ∪ · · · ∪ Sν , it holds that h(S) ∼=
Fν ∗ ĥ(S) for some group ĥ(S) where Fν denotes the free group of rank µ.

• There exists an epimorphism Γ : ĥ(S1\S2) −→ ĥ(S1) ∗ ĥ(S2), where S1\S2 denotes the

boundary connected sum.

• Any finitely presented group G is realized as a free product factor of h(S) for some surface

ribbon S (h(S) ∼= Fk ∗G).

• There exists an epimorphism λ : π1(S
3 \ S)→ ĥ(S).

• For any surface ribbon S, there exists another surface ribbon S′ such that S′ is obtained

from S by a sequence of stabilizations (1-handle additions) and h(S′) is a free group.
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• For any S with b(S) > 1 and any χ′ ≤ χ(S), there exists S′ such that h(S′) ∼= h(S) and

χ(S′) = χ′.

2.3. Colorings and cocycle invariant. Colorings of diagrams by group heaps are defined simi-

larly to racks and quandles. Ternary self-distributive homology was defined, and 2-ocycles can be

used for defining cocycle invariants by a state-sum formula similar to [3].

2.4. Questions/problems. The following questions arise.

• Find a geometric interpretation of the fundamental heap, similar to the fundamental group.

• Find a more explicit relation to the fundamental group.

• Can a similar invariant defined for non-orientable surfaces?

• Find the maximal Euler characteristic of surfaces with fundamental heap being a given

group.

• Find a relation of the cocycle invariant to group (heap) extensions.

3. Braided Frobenius algebras

This section is a summary of [12]. For an algebra V , an invertible homomorphism β : V ⊗ V →
V × V satisfying the Yang-Baxter (YB) equation (β ⊗ 1)(1 ⊗ β)(β ⊗ 1) = (1 ⊗ β)(β ⊗ 1)(1 ⊗ β)

is called the YB operator. A braided Frobenius algebra was defined in [12] as a Frobenius algebra

with a Yang-Baxter (YB) operator that satisfy compatibility condition diagramatized in Figure 2

YI and IY moves, as follows.

Definition 3.1. A braided Frobenius algebra is a Frobenius algebra X = (V, µ, η,∆, ε) (multiplica-

tion, unit, comultiplication, counit) over unital ring k, endowed with a YB operator β : V ⊗ V →
V ⊗ V , such that the Frobenius operations commute with β as follows:

(µ⊗ 1)(1⊗ β)(β ⊗ 1) = β ⊗ (1⊗ µ), (1⊗ µ)(β ⊗ 1)(1⊗ β) = β ⊗ (µ⊗ 1),

(∆⊗ 1)β = (β ⊗ 1)(β ⊗ 1)(1⊗∆), (1⊗∆)β = (β ⊗ 1)(β ⊗ 1)(∆⊗ 1),

(1⊗ η)β = η ⊗ 1, β(η ⊗ 1) = 1⊗ η,
(1⊗ ε)β = ε⊗ 1, (ε⊗ 1)β = 1⊗ ε.

The first two conditions are related tp the YI and IY moves in Figure 2. Since they satisfy

graph moves, braided Frobenius algebras are expected to be useful in constructing surface ribbon

invariants, and constructions of concrete examples are desirable. In [12], braided Frobenius algebras

are constructed from cocommutative Hopf algebras as follows.

Recall from the preceding section that a heap is a ternary operation exemplified by a group with

the operation (x, y, z) 7→ xy−1z, that is ternary self-distributive. Hopf algebras can be endowed

with the algebra version of the heap operation. Using this, in [12], we construct braided Frobenius

algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf

algebras we show that the heap operation induces a Yang-Baxter operator on the tensor product,

which satisfies the required compatibility conditions. Diagrammatic methods are employed for

proving commutativity conditions.

3.1. Quantum heaps. For a Hopf algebra H, define T : H⊗3 → H by T (x ⊗ y ⊗ z) = µ(µ(x ⊗
S(y))⊗z) on simple tensors, where µ denotes multiplication and S denotes the antipode. This is an

analogue of group heap operation T (x, y, z) = xy−1z and is called a quantum heap. A diagrammatic

representation is depicted in Figure 3. In the right hand side of the figure, a trivalent vertex

represent multiplication of a Hopf algebra, and a circle represents an antipode.
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Figure 3. Quantum heap

3.2. Defining R-matrix. Using quatum heap operation, solutions (R-matrices) to the Yang-

Baxter equation was constructed, and the construction is depicted in Figure 4. In the figure,

the comultiplication is denoted for simple tensors by Sweedler’s notation ∆(y) = y(1) ⊗ y(2).
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Figure 4. Crossings using quantum heap

In [12], the following was proved, which shows that quantum heaps produce Yang-Baxter oper-

ators.

Lemma 3.2 ([12]). Let (X,µ, η,∆, ε, S) be a cocommutative Hopf algebra. Then the map β :

X⊗2 → X⊗2 defined on simple tensors as

x⊗ y ⊗ z ⊗ w 7→ z(1) ⊗ w(1) ⊗ xS(z(2))w(2) ⊗ yS(z(3))w(3)

is a Yang-Baxter operator.

The multiplication of a Frobenius algebra was defined on V = X ×X using left integrals, and

shown to provide braided Frobenius algebra together with the YB operator constructed above.

Specifically, let (X,µ, η,∆, ε, S) be a finitely generated projective Hopf algebra over a (unital) ring

k. Then it is known that X has an integral and a cointegral. Let us indicate them by λ and γ,

respectively. We define a cup on X by ∪ := λµ(1 ⊗ S) and ∩ := ∆γ, as depicted in Figure 5.

Integrals are represented by triangles in the figure. A product µ⊗2 : X⊗2 ⊗X⊗2 → X⊗2 is defined

by means of ∪ as µ⊗2 := 1 ⊗ ∪ ⊗ 1. The coproduct ∆⊗2 : X⊗2 → X⊗2 ⊗X⊗2 is obtained from ∩
by the definition ∆⊗2 := 1 ⊗ ∩ ⊗ 1. Then the YB operator together with this (co)multiplication

provides a braided Frobenius algebra.

:=:=

Figure 5. Cups and caps
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Theorem 3.3 ([12]). Let (X,µ, η,∆, ε, S) be a commutative and cocommutative Hopf algebra. Then

V = X ⊗X has a braided Frobenius algebra structure.

Defining and studying invariants using these algebraic structures for framed links and surface

ribbons are desirable.

4. Yang-Baxter Hochschild cohomology

Braided algebras are associative algebras endowed with a Yang-Baxter operator that satisfies

certain compatibility conditions involving the multiplication. Along with Hochschild cohomology

of algebras, there is also a notion of Yang-Baxter cohomology, which is associated to any Yang-

Baxter operator. In [15], a cohomology theory for braided algebras in dimensions 2 and 3 that

unifies Hochschild and Yang-Baxter cohomology theories was defined and studied. This section is

an overview of this paper. It was shown that its second cohomology group classifies infinitesimal

deformations of braided algebras. Infinite families of examples of braided algebras were provided,

including Hopf algebras, tensorized multiple conjugation quandles, and braided Frobenius alge-

bras. Moreover, the obstructions to quadratic deformations were derived, and shown that these

obstructions lie in the third cohomology group. Relations to Hopf algebra cohomology were also

discussed.

4.1. Deformation 2-cocycles and graph moves. Let (V, µ) be an associative algebra with

coefficient unital ring k. The cochain groups of Hochschild cohomology are defined by C0
H(V, V ) = 0

and CnH(V, V ) = Hom(V ⊗n, V ) for n ≥ 1. For f ∈ C1
H(V, V ) and ψ ∈ C2

H(V, V ), differentials are

defined by

δ1H(f) = µ(f ⊗ 1) + µ(1⊗ f)− fµ,
δ2H(ψ) = µ(ψ ⊗ 1) + ψ(µ⊗ 1)− µ(1⊗ ψ)− ψ(1⊗ µ).

Diagrammatic representations of these maps are depicted in Figure 6. These diagrammatics for

deformation were used before [2].

Figure 6. Hochschild differentials

The 2-cocycle condition is related to the deformation as follows. Let Ṽ = (V ⊗k k[[~]])/(~2) ∼=
V ⊕ ~V and ψ ∈ Z2

H(V, V ). Set µ̃ = µ + ~ψ, then (Ṽ , µ̃) is an algebra if and only if δ2H(ψ) = 0.

This can be seen by computing the associativity as follows.

µ̃(µ̃⊗ 1) = (µ+ ~ψ)((µ+ ~ψ)⊗ 1)

= µ(µ⊗ 1) + ~[µ(ψ ⊗ 1) + ψ(µ⊗ 1)],

µ̃(1⊗ µ̃) = (µ+ ~ψ)(1⊗ (µ+ ~ψ)

= µ(1⊗ µ) + ~[µ(1⊗ ψ) + ψ(1⊗ µ)] = 0

Then we see that 2-cocycle condition below gives associativity of µ̃:

δ2H(ψ) = µ(ψ ⊗ 1) + ψ(µ⊗ 1)− µ(1⊗ ψ)− ψ(1⊗ µ) = 0.
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4.2. Deformation of Yang-Baxter operators and differentials. Let (V,R) be a k-module

with the YB operator R : V ⊗2 → V ⊗2. The cochain groups are defined by C0
YB(V, V ) = 0 and

CnYB(V, V ) = Hom(V ⊗n, V ⊗n) for n > 0. We define the differentials for f ∈ C1
YB(V, V ) and

φ ∈ C2
YB(V, V ) by

δ1YB(f) = R(f ⊗ 1) +R(1⊗ f)− (f ⊗ 1)R− (1⊗ f)R,

δ2YB(φ) = (R⊗ 1)(1⊗R)(φ⊗ 1) + (R⊗ 1)(1⊗ φ)(R⊗ 1) + (φ⊗ 1)(1⊗R)(R⊗ 1)

−(1⊗R)(R⊗ 1)(1⊗ φ)− (1⊗R)(φ⊗ 1)(1⊗R)− (1⊗ φ)(R⊗ 1)(1⊗R).

The differentials are depicted in Figures 7. The cochains f and φ are represented by circles on an

edge and a crossing, respectively. These are closely relates to Eisermann’s YBE cohomology [5].

Figure 7. Yang-Baxter differentials

Let V be a braided algebra with coefficient unital ring k. We define the cochain groups for a

braided algebra V with coefficients in itself up to degree 3 as follows. We set C0
YBH(V, V ) = 0, and

Cn,kYBH(V, V ) = Hom(V ⊗n, V ⊗k) for n, k > 0. We also use different subscripts

Cn,kYI (V, V ) = Hom(V ⊗n, V ⊗k) = Cn,kIY (V, V )

to distinguish different isomorphic direct summands. Define

C1
YBH(V, V ) = C1,1

YBH(V, V ) = Hom(V, V ),

C2
YBH(V, V ) = C2,2

YBH(V, V )⊕ C2,1
YBH(V, V ), and

C3
YBH(V, V ) = C3,3

YBH(V, V )⊕ C3,2
YI (V, V )⊕ C3,2

IY (V, V )⊕ C3,1
YBH(V, V ).

We define differentials as follows. We set δ1YBH to be the direct sum δ1YB ⊕ δ1H. The second

differential δ2YBH is defined to be the direct sum of four terms δ2YB ⊕ δ2YI ⊕ δ2IY ⊕ δ2H where δ2YB

and δ2H map in the first (C3,3
YBH(V, V ) = Hom(V ⊗3, V ⊗3)) and last (C3,1

YBH(V, V ) = Hom(V ⊗3, V ))

copies of C3
YBH(V, V ), respectively, while δ2YI and δ2IY map to the middle two factors C3,2

YI (V, V ) and

C3,2
IY (V, V ), respectively. Each differential is defined as follows.

δ2YI(φ⊕ ψ) = (1⊗ ψ)(R⊗ 1)(1⊗R) + (1⊗ µ)(φ⊗ 1)(1⊗R)

+(1⊗ µ)(R⊗ 1)(1⊗ φ)−R(ψ ⊗ 1)− φ(µ⊗ 1).

δ2IY(φ⊕ ψ) = (ψ ⊗ 1)(1⊗R)(R⊗ 1) + (µ⊗ 1)(1⊗ φ)(R⊗ 1)

+(µ⊗ 1)(1⊗R)(φ⊗ 1)−R(1⊗ ψ)− φ(1⊗ µ).

The differential δ2IY(φ ⊕ ψ) is represented diagrammatically in Figure 8, where 2-cochains φ ∈
C2,2
YBH(V, V ) and ψ ∈ C3,1

YBH(V, V ) are represented by 4-valent (resp. 3-valent) vertices with circles.

The YI and IY components of the cochain complex above are included to enforce the coherence

axioms between deformed algebra structure, and deformed YB operator.

The following results were obtained in [15].

• Let (V, µ,R) be a braided algebra. Then the Yang-Baxter Hochschild second cohomology

group classifies the infinitesimal deformations of (V, µ,R).

• Nontriviality of second YBH cohomology is proved using Hopf algebras.
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Figure 8. Yang-Baxter Hochschild 2-differential

• The second YBH cohomology group with multiplication µ, YB operator R injects to that

of braided algebras with braided multiplication µR and YB operator R.

• The cohomology group in dimension 3 was defined, and it was shown that ifH3
YBH(V, V ) = 0,

then any infinitesimal deformation can be extended to a quadratic deformation.
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