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In this report we consider the dynamics of polynomial skew products
on C2. We introduce the weighted Green function of a polynomial skew
product f , a generalization of the Green function of f . Moreover, we
consider the dynamics of the extension of f to a holomorphic map on
the weighted projective space.

1. Introduction

We consider the dynamics of a polynomial skew product on C2 of the
form f(z, w) = (p(z), q(z, w)), where p(z) and q(z, w) are polynomials
such that p(z) = zd + O(zd−1) and q(z, w) = wd + Oz(w

d−1). We
assume that d ≥ 2. Main topics in this report are an investigation into
the existence of the Green function of f , which measures the rate of
convergence of points to infinity, and an introduction of a generalized
Green function of f which suits to the dynamics of f . Moreover, we
extend f to a holomorphic map on the weighted projective space, and
exhibit a relation between the dynamics of the extension of f and the
generalized Green function of f .

There is a nice class of polynomial skew products, which is called
the class of regular polynomial skew products. Many researches have
studied the dynamics of regular polynomial skew products (e.g. [1]
and [2]). We say that a polynomial map is regular if it extends to
a holomorphic map on the projective space P2, or equivalently, if it
extends to a non-degenerate homogeneous map on C3. The polynomial
skew product f above is regular if and only if the algebraic degree of
f is d. Let f be a regular polynomial skew product of degree d and fn

the n-th iterate of f . It is known that the Green function Gf of f ,

Gf (z, w) = lim
n→∞

1

dn
log+ |fn(z, w)|,

where log+ = max{log, 0} and |(z, w)| = max{|z|, |w|}, is well behaved
on C2, that is, it is well-defined, continuous and plurisubharmonic on
C2. Moreover, it coincides with the pluricomplex Green function of Kf

with pole at infinity, where Kf = {{fn(z, w)}n≥1 bounded}.
1
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Our results indicate that similar things hold for polynomial skew
products without the assumption of regularity. In addition, our re-
sults are fruitful even for regular polynomial skew products. Let f be
a polynomial skew product. We give a region where Gf or, more pre-
cisely, the vertical Green function of f is well behaved, and examples of
polynomial skew products whose Green functions are not well behaved
on C2 in Section 2. Our main idea to deal with the dynamics of f is
putting some weight determined by f to the first or second coordinate.
Using the weight above, we introduce a generalization of Gf which is
well behaved on C2 and coincides with Gf on some region in Section
3. We call this generalized Green function of f the weighted Green
function of f . Again, by using the same weight above, it follows that
f extends to a holomorphic map on the weighted projective space. We
show that the Fatou and Julia sets of the extension of f are determined
by the weighted Green function of f in Section 4.

2. Dynamics of polynomial skew products

Let f(z, w) = (p(z), q(z, w)) be a polynomial skew product such that
p(z) = zd + O(zd−1) and q(z, w) = wd + Oz(w

d−1). We assume that
d ≥ 2, and consider the existence of the following function:

Gf (z, w) = lim
n→∞

1

dn
log+ |fn(z, w)|.

In general, the algebraic degree of f may be grater than d. However,
the dynamical degree of f , limn→∞ n

√
deg(fn), is equal to d. Here deg f

denotes the algebraic degree of f .
To consider the existence of Gf , let us recall the dynamics of poly-

nomial skew products. Roughly speaking, the dynamics of polynomial
skew products consists of the dynamics on the base space and the
dynamics on the vertical lines. The first component p defines the dy-
namics on the base space C. Define Kp = {z : {pn(z)}n≥1 bounded}.
Note that f preserves the set of vertical lines in C2. In this sense, we
often use the notation qz(w) instead of q(z, w). The restriction of fn

to a line {z} × C can be viewed as the composition of n polynomials
on C, qpn−1(z) ◦ · · · ◦ qp(z) ◦ qz.

A useful tool in the study of the dynamics of p on the base space is
the Green function Gp of p, defined by

Gp(z) = lim
n→∞

1

dn
log+ |pn(z)|.

It is known that Gp is well behaved on C, that is, it is well-defined,
continuous and subharmonic on C. More precisely, Gp is harmonic
and positive on C−Kp and zero on Kp, and Gp(z) = log |z| + o(1) as



3

z tends to infinity. By definition, Gp(p(z)) = dGp(z). Note that Gp

coincides with the Green function of Kp with a pole at infinity, which
is determined only by the compact set Kp. In a similar fashion, we
consider the vertical Green function Gz(w) of f ,

Gz(w) = lim
n→∞

1

dn
log+ |Qn

z (w)|,
where Qn

z (w) = qpn−1(z) ◦ · · · ◦ qp(z) ◦ qz(w). Since Gp is well behaved on
C, the existence of Gz(w) implies that of Gf .

Now we give the definition of the weight of f and a region where
Gz(w) is well behaved. We define the most important number k in this
report as

min

{
l ∈ R

∣∣∣ ld ≥ nj + lmj for any integers nj and mj s.t.
cjz

njwmj is a term in q(z, w) for some cj 6= 0

}

if degz q > 0 and as 1 if degz q = 0. Since q has only finitely many
terms, one can take the minimum. Indeed, k is equal to

max

{
nj

d−mj

∣∣∣ cjz
njwmj is a term in q(z, w),

with cj 6= 0, which is not wd

}
.

Thus k is a rational number. Note that f is regular if and only if k ≤ 1.
The explanation of the weight k is as follows. If f is regular, then wd

is a term of highest degree in q. Generally, if we define the weight of
a monomial znwm as n + km, then wd is a term of highest weight in
q. It follows that k ≤ degz q and k < deg q from the definition of k.
Moreover, if k ≥ 1, then dn ≤ deg(fn) ≤ kdn for any integer n.

Let WR = {|w| > R|z|k, |w| > Rk+1} and Af =
⋃∞

n=0 f−n(WR) for
large R > 0. Then f preserves WR and Gz(w) is well behaved on Af .

Theorem 2.1. The vertical Green function Gz(w) is well-defined, con-
tinuous and pluriharmonic on Af . Moreover, Gz(w) tends to kGp(z)
as (z, w) in Af tends to ∂Af .

Hence Gf is also well behaved on Af . A proof of the first statement
in this theorem is similar to the proof of Lemma 2.3 in [3].

Remark 2.2. Even if f is regular, the theorem above is fruitful. Be-
cause Gf is well behaved on C2, it is well known that Gz(w) is well
behaved on {Gf (z, w) > Gp(z)}. On the other hand, it follows that
Gz(w) is well behaved on {Gf (z, w) > kGp(z)} from Theorem 2.1.
More precisely, Gz(w) is pluriharmonic on the region above. If k < 1,
then our region is bigger than the well known region.

Now we know the existence of Gz(w) and Gf on Af . However, these
functions may not exist on C2 − Af . Indeed, we give polynomial skew
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products whose Green functions are not well behaved on C2, which are
semiconjugate to polynomial products. One may be able to calculate
the Green functions of such polynomial skew products using an analogy
of the Green functions of polynomials.

Example 2.3. Let f(z, w) = (z2, w2 + cz4). Then f is semicon-
jugate to a polynomial product (z2, w2 + c) by π(z, w) = (z, z2w).

Hence Qn
z (w) = z2n+1

qn
c (z−2w), where qc(w) = w2 + c. Let G̃c(w) =

limn→∞ 2−n log |qn
c (w)|. If 0 is a periodic point of period l > 1, then G̃c

does not converge on {0, qc(0), · · · , ql−1
c (0)}. Hence Gz(w) and Gf are

not well-defined on the curves {w = qj
c(0)z2, |z| > 1}l−1

j=0.

Example 2.4. Let f(z, w) = (z2, w2 + z2w). Then f is semicon-
jugate to a polynomial product (z2, w2 + w) by π(z, w) = (z, z2w).

Hence Qn
z (w) = z2n+1

qn(z−2w), where q(w) = w2 + w. Let G̃q(w) =
limn→∞ 2−n log |qn(w)|. Note that 0 is a parabolic fixed point of q, and
G̃ is not continuous at 0. Hence Gz(w) and Gf are not continuous on
the curve {w = 0, |z| > 1}.

3. Weighted Green functions

For polynomial skew product f(z, w) = (p(z), q(z, w)) as before, we
consider the following function:

Gk
f (z, w) =

{
Gz(w) on Af ,

kGp(z) on C2 − Af .

It follows that this function is well behaved on C2 from Theorem 2.1.
The explanation of the function above is as follows. In the case when
f is regular, it is known that Gf is well behaved on C2. However,
Gz(w) may not exist on C2 − Af . Roughly speaking, Gf (z, w) is the
maximum of Gp(z) and Gz(w). Thus, Gp hides the region where Gz(w)
may not be well behaved. We do a similar thing for f which may not
be regular: hide the region where Gz(w) may not be well behaved with
kGp(z). Note that

Gk
f (z, w) = lim

n→∞
1

dn
log+ |fn(z, w)|k,

where |(z, w)|k = max{|z|k, |w|}. Hence the function Gk
f is a generaliza-

tion of the Green function of f , and we call this function the weighted
Green function of f .
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Corollary 3.1. The weighted Green function Gk
f is well-defined, con-

tinuous and plurisubharmonic on C2. More precisely, Gk
f is plurihar-

monic and positive on Af and on C2−Kf ∪ Af , and zero on Kf . The
convergence to Gk

f is uniform on C2, and Gk
f (f(z, w)) = dGk

f (z, w).

The dynamics of f near infinity is as follows. Let h be the weighted
homogeneous part of q that contains wd, that is, h is the polynomial
consisting of all terms of highest weight kd in q. First, let us consider
the case when k is an integer. Put w = czk, then h(z, czk) = h(1, c)zkd.
For any fixed c, q(z, czk) is a polynomial in z. By letting h(c) = h(1, c),
it follows that h(c)zkd is the homogeneous part of q(z, czk) of degree
kd. Note that hn(c)zkdn

is the homogeneous part of Qn
z (czk) of degree

kdn. We expect that the dynamics of Qn
z (czk) should be controlled by

that of hn(c)zkdn
as z tends to infinity. If k is not an integer, then zk

is not a well-defined function. However, we get the following estimate.

Proposition 3.2. Gk
f (z, w) = log |(z, w)|k + ρh(z

−kw) + o(1) as (z, w)

tends to infinity, where ρh(c) = Gh(c)− log+ |c|.
If k is not an integer, then the polynomial h and the Green function

Gh of h have some symmetries with respect to the denominator of k.
Hence ρh(z

−kw) is well-defined.

4. Dynamics on weighted projective spaces

Let f be the polynomial skew product as before. As we saw in Section
3, if we put w = czk for a fixed number c, then Qn

z (czk) ∼ hn(c)zkdn

as z tends to infinity. We want to compactify C2 so that each curve
{(z, czk) : z ∈ C} converges to one point as z tends to infinity. The
required space is the weighted projective space P(r, s, 1), where r and
s are the denominator and numerator of k respectively. The weighted
projective space P(r, s, 1) is a quotient space of C3 − {0},

P(r, s, 1) = C3 − {0} / ∼,

where (z, w, t) ∼ (λrz, λsw, λt) for any λ in C − {0}. We insist that

f(z, w) = (p(z), q(z, w)) extends to a holomorphic map f̃ on P(r, s, 1),

f̃ [z : w : t] =
[
p
( z

tr

)
tdr : q

( z

tr
,
w

ts

)
tds : td

]
,

or equivalently, it extends to a non-degenerate weighted homogeneous
map F on C3,

F (z, w, t) =
(
p
( z

tr

)
tdr, q

( z

tr
,
w

ts

)
tds, td

)
.

Proposition 4.1. The extension f̃ is holomorphic on P(r, s, 1).
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We define the Fatou set of f̃ as the maximal open set of P(r, s, 1)

where the iterates {f̃n} is a normal family. The Julia set of f̃ is defined

by the complement of the Fatou set of f̃ . We insist that the weighted
Green function of f determines the Fatou and Julia sets of f̃ . Recall
that Af = {Gk

f > kGp} and Kf = {Gk
f = 0}. Define Bf = C2 − (Kf ∪

Af ). Note that Bf = {Gk
f = kGp > 0}. Let K̃f = intKf , Ãf = intAf

and B̃f = intBf , where the closures are taken in P(r, s, 1).

Theorem 4.2. The Fatou set of f̃ coincides with the union of K̃f , Ãf

and B̃f . In other words, The Julia set of f̃ coincides with the closure
of the set where Gk

f is not pluriharmonic.

The dynamics of f̃ on its Fatou set is as follows. The dynamics of
f̃ on K̃f is induced by the dynamics of f on Kf . Since the fixed point

p = [0 : 1 : 0] is superattracting, Ãf is the attracting basin of p. Since

the line at infinity is attracting, any point in B̃f is attracted to the

line at infinity by iterates of f̃ . Finally, the dynamics on the line at
infinity, which is induced by the weighted homogeneous part h of q,
should determine the dynamics on B̃f .
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