THE GEOMETRY OF THE SPACE OF BRODY CURVES AND MEAN DIMENSION

MASAKI TSUKAMOTO*

Let $z = x + \sqrt{-1}y \in \mathbb{C}$ be the standard coordinate of the complex plane \mathbb{C} . Let $f : \mathbb{C} \to \mathbb{C}P^N$ be a holomorphic map. We define a norm $|df|(z) \ge 0$ at each point $z \in \mathbb{C}$ by setting

$$|df|^{2}(z) := \frac{1}{4\pi} \Delta \log(|f_{0}|^{2} + |f_{1}|^{2} + \dots + |f_{N}|^{2}), \quad \left(\Delta = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right),$$

where $f = [f_0 : f_1 : \cdots : f_N]$ (each f_i is a holomorphic function). We call f a Brody curve if it satisfies $|df|(z) \leq 1$ for all $z \in \mathbb{C}$. Let $\mathcal{M}(\mathbb{C}P^N)$ be the space of all Brody curves in $\mathbb{C}P^N$. We consider the compact open topology on $\mathcal{M}(\mathbb{C}P^N)$. Then $\mathcal{M}(\mathbb{C}P^N)$ becomes a compact metrizable infinite dimensional space. It admits the following natural \mathbb{C} -action:

$$\mathcal{M}(\mathbb{C}P^N) \times \mathbb{C} \to \mathcal{M}(\mathbb{C}P^N), \quad (f(z), a) \mapsto f(z+a).$$

Then we can consider its mean dimension $\dim(\mathcal{M}(\mathbb{C}P^N):\mathbb{C})$. Mean dimension is a notion defined by Gromov [2]. Intuitively,

$$\dim(\mathcal{M}(\mathbb{C}P^N):\mathbb{C}) = \frac{\dim\mathcal{M}(\mathbb{C}P^N)}{\operatorname{vol}(\mathbb{C})}$$

For a Brody curve $f : \mathbb{C} \to \mathbb{C}P^N$, we define the Shimizu-Ahlfors characteristic function T(r, f) by setting

$$T(r,f) := \int_1^r \frac{dt}{t} \int_{|z| \le t} |df|^2 dx dy \quad (r \ge 1).$$

Since $|df| \leq 1$, we have $T(r, f) \leq \pi r^2/2$. We set

$$e(f) := \limsup_{r \to \infty} \frac{2}{\pi r^2} T(r, f) \in [0, 1].$$

We define $e(\mathbb{C}P^N)$ as the supremum of e(f) over $f \in \mathcal{M}(\mathbb{C}P^N)$. We have $0 \le e(\mathbb{C}P^N) \le 1$ by the definition. Actually we can prove ([5, 7])

$$0 < e(\mathbb{C}P^N) < 1.$$

We call $f \in \mathcal{M}(\mathbb{C}P^N)$ an elliptic Brody curve if there exists a lattice $\Lambda \subset \mathbb{C}$ such that $f(z + \lambda) = f(z)$ for all $\lambda \in \Lambda$. Let $e(\mathbb{C}P^N)_{ell}$ be the supremum of e(f) over all elliptic Brody curves f in $\mathbb{C}P^N$. We have $0 < e(\mathbb{C}P^N)_{ell} \leq e(\mathbb{C}P^N) < 1$ and we can prove ([6, 7])

$$\lim_{N \to \infty} e(\mathbb{C}P^N)_{ell} = \lim_{N \to \infty} e(\mathbb{C}P^N) = 1.$$

Date: June 12, 2009.

^{*}Supported by Grant-in-Aid for Young Scientists (B) (21740048).

MASAKI TSUKAMOTO

The main result of this talk is the following theorem ([6]).

Theorem 1.

$$2(N+1)e(\mathbb{C}P^N)_{ell} \le \dim(\mathcal{M}(\mathbb{C}P^N):\mathbb{C}) \le 4Ne(\mathbb{C}P^N).$$

When N = 1, this becomes

$$4e(\mathbb{C}P^1)_{ell} \le \dim(\mathcal{M}(\mathbb{C}P^1):\mathbb{C}) \le 4e(\mathbb{C}P^1).$$

From this we propose the following conjecture.

Conjecture 2.

$$e(\mathbb{C}P^1)_{ell} = e(\mathbb{C}P^1).$$

If this is true, then we get

$$\dim(\mathcal{M}(\mathbb{C}P^1):\mathbb{C}) = 4e(\mathbb{C}P^1).$$

References

- [1] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978) 213-219
- M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999) 323-415
- [3] E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999) 227-262
- [4] E. Lindenstrauss, B. Weiss, Mean topological dimension, Israel J. Math. 115 (2000) 1-24
- [5] M. Tsukamoto, Moduli space of Brody curves, energy and mean dimension, Nagoya Math. J. 192 (2008) 27-58
- [6] M. Tsukamoto, Deformation of Brody curves and mean dimension, arXiv:0706.2981, to appear in Ergod. Th. & Dynam. Sys.
- [7] M. Tsukamoto, A packing problem for holomorphic curves, arXiv: math.CV/0605353, to appear in Nagoya Math. J.

Masaki Tsukamoto Department of Mathematics, Faculty of Science Kyoto University Kyoto 606-8502 Japan *E-mail address*: tukamoto@math.kyoto-u.ac.jp