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Introduction
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S compact complex surface, b1(S) = dimR H1(S ,R) = 1 :
class VII

S minimal : class VII0

b2(S) = dimR H2(S ,R) = 0 and S admits at least one compact
curve : S is a Hopf surface (Kodaira).

b2(S) = 0 and S admits no compact curve : S ' (C×H)/Γ is an
Inoue surface (Inoue, Bogomolov, Li-Yau-Zheng, Teleman).

S minimal compact complex surface, b1(S) = 1 and b2 > 0 : class
VII+0 . Then a(S) = 0, dimC H1(S ,O) = 1 and κ(S) = −∞.

A complete classification is not yet achieved for class VII+0 .
Groundbreaking results were obtained in the 70’s and 80’s by Ma.
Kato, Enoki, Nakamura and Dloussky.
All presently known surfaces of class VII+0 contain global spherical
shells (GSS) (Kato surfaces)

We give quickly the main idea of the construction.
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Construction of Hopf surfaces :

Let B be the unit ball in C2 and f : B̄→ B with f (0) = 0 and
biholomorphic on its image.

Identifying the points on S3 with the points on f (S3) by f , one
obtains a compact complex surface, a (primary) Hopf surface.

The map f can be biholomorphically conjugated to a map of the
normal form

ϕ(z1, z2) = (α1z1 + λzm
2 , α2z2),

with m ∈ N, 0 < |α1| ≤ |α2| < 1, (α2
m − α1)λ = 0.

Of course, these normal forms are essential in the study of Hopf
surfaces : Deformations and moduli spaces these surfaces have
been studied by Dabrowski and Wehler using them.

In 1977, Masahide Kato generalised this construction.
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Construction of Kato surfaces

p0
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p1

Π1

p2

pn

Πn−1

σ

q1

Π(q1)

σ◦Π(q1) =: q2

Π := Π0 ◦ · · · ◦Πn−1, associated germ ϕ : (C2, 0) −→ (C2, 0)
z 7−→ Π ◦ σ(z)

(Dloussky germ)
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S

p

S̃ (universal covering of S)

We obtain the associated surface S = S(Π, σ) = S(ϕ).
The fundamental group π1(S) ' Z.
All rational curves C have C 2 ≤ −2.
The second Betti number b2(S) = n where n is the number of
blowing ups performed in the above construction.
Note : The germ ϕ = Π ◦ σ determines completely the
surface. Therefore normal forms for it are very important.
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A finer subdivision Kato surfaces may be done by looking at the
configuration (divisor) D of rational curves on S .

1) Enoki surfaces including as a special case parabolic Inoue
surfaces (E is an elliptic curve (only in the Inoue case). D is a
cycle of rational curves with D2 = 0). All blow-ups are ”generic”.

E
−2

−2

−2 −2

D

Normal form of the associated germ :

ϕ(z1, z2) = (λnz1zn
2 +

n∑
i=1

aiλ
iz i

2, λz2)

0 < |λ| < 1, ai ∈ C. (Inoue iff all ai = 0.) Here n = b2(S).
S \ D is an holomorphic C-bundle (line bundle iff Inoue) over an
elliptic curve E . The fundamental group π1(S \D) ' Z2 is abelian.

The universal covering S̃ \ D ' C2.
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2) Inoue-Hirzebruch surfaces and half-Inoue surfaces (D1, D2 and
D are exceptional cycles of rational curves, in particular D2

1 < 0,
D2

2 < 0 and D2 < 0.) All blowups are ”non-generic”.

D1 D2
D

Normal form of the associated germ

ϕ(z1, z2) = (za
1zb

2 , z
c
1 zd

2 ),

where A :=

(
a b
c d

)
∈ GL(2,Z) and |tr(A2)| > 2. The

fundamental group π1(S \ (D1 ∪ D2)) ' Z n Z2 is solvable.

The universal covering ˜S \ (D1 ∪ D2) (or S̃ \ D) ' H× C.
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3) Intermediate surfaces (D is an exceptional cycle of rational
curves with at least one non-empty tree attached, in particular
D2 < 0.) There are ”generic” and ”non-generic” blowups.

D

The fundamental group π1(S \ D) ' Z n Z[ 1
k ], with k ≥ 2, is

solvable. Here k := 1 +
√
|det M(S)| ∈ Z, k ≥ 2, M(S) being the

intersection matrix of the b2(S) rational curves.

The universal covering S̃ \ D ' H× C.
The normal form of the germ for intermediate surfaces will be
discussed in detail in this talk.



Intro. Fund.Group Contr.Germs Decomp. of Germs Dloussky Sequence Moduli Spaces

Before doing so, we recall some recent results on class VII+0
surfaces.

Every class VII+0 surface S admitting a non-trivial holomorphic
vector field contains a GSS. (Dloussky-O-Toma)
In particular, this finishes the classification of compact complex
surfaces with a strictly positive-dimensional automorphism group.

Every class VII+0 surface S admitting (at least) b2(S) rational
curves contains a GSS, (Ma. Kato’s conjecture),
(Dloussky-O-Toma)

Every class VII+0 surface S with b2(S) = 1 contains a GSS.
(Teleman)

Every class VII+0 surface S with b2(S) = 2 contains a cycle of
rational curves. (Teleman)
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We study logarithmic moduli spaces, i.e. parameter spaces of
intermediate surfaces such that the maximal reduced divisor of
rational curves D is preserved. Logarithmic moduli spaces of Enoki
surfaces were described by Dloussky-Kohler, whereas
Inoue-Hirzebruch surfaces are logarithmically rigid (Nakamura).

We shall examine the fundamental group of the complement
of the maximal reduced divisor D, normal forms of the
associated germs, the Dloussky sequence and the dual graph
of the rational curves.

Finally results on moduli spaces will be presented.
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INTERMEDIATE SURFACES :
The index and the fundamental group

of S \ D
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Surface S admitting a GSS.
One has

Pic0(S) = (H1(S ,O∗))0 ' H1(S ,C∗) ' C∗ ' Hom(π1(S),C∗).

For each λ ∈ C∗ there is a unique associated flat line bundle
denoted by Lλ.

For an intermediate surface S there exists an integer m ≥ 1, a flat
line bundle L and an effective divisor Dm such that
(KS ⊗ L)⊗m = OS(−Dm). (Nakamura, Dloussky)

Smallest possible m = m(S) = INDEX of the surface S

For each intermediate surface S of index m there is a unique
intermediate surface S ′ and a proper map S ′ → S which is
generically finite of degree m such that S ′ is of index 1. Moreover
S ′ \ D ′ → S \ D is a cyclic unramified covering of degree m.
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The fundamental group of S \ D
Surfaces of index 1

The universal cover S̃ \ D of S \ D is isomorphic to C×Hl , where
Hl := {w ∈ C | <e(w) < 0} is the left half plane. Let (z ,w) be
coordinates on C×Hl . Then

π1(S \ D) ' Z n Z[1/k].

Generated by :{
gγ(z ,w) = (z ,w + 2πi)
g(z ,w) = (λz + a0 + Q(e−w ), kw),

where Q = Q(ζ) :=
∑σ

m=l bmζ
m is a polynomial such that bσ = 1,

k - σ, l := [σ/k] + 1, gcd{k,m | bm 6= 0} = 1 and (λ− 1)a0 = 0.

One has g ◦ gγ ◦ g−1 = gk
γ .
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The fundamental group of S \ D
Surfaces of higher index
All surfaces of higher index are holomorphic quotients of surfaces
of index 1 by finite cyclic groups induced by maps of the form

(z ,w) 7→
(

e
σ2πi

q z ,w − 2πi

q

)
.

The universal cover S̃ \ D of S \ D is again isomorphic to C×Hl .
The fundamental group of S \D is still isomorphic to Z n Z[1/k].
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INTERMEDIATE SURFACES :
Contracting germs of holomorphic

mappings
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In his thesis in 2000, Favre constructed normal forms for
contracting germs of holomorphic mappings (C2, 0)→ (C2, 0), in
particular for those germs which give rise to surfaces with global
spherical shells.

His result which follows is essential for our considerations.

Remark that in 1994, Hubbard and Oberste-Vorth, in their study of
Hénon automorphisms of C2, already encountered certain of these
normal forms.
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Theorem

To every intermediate surface is associated a polynomial germ in
the following normal form :

(CG ) ϕ(z , ζ) := (λζsz + P(ζ) + cζ
sk

k−1 , ζk),

where k, s ∈ Z, k > 1 as before, s > 0, λ ∈ C∗,
P(ζ) := cjζ

j + cj+1ζ
j+1...+ csζ

s is a complex polynomial,
0 < j < k, j ≤ s, cj = 1, c sk

k−1
:= c ∈ C with c = 0 whenever

sk
k−1 /∈ Z or λ 6= 1 and gcd{k,m | cm 6= 0} = 1.
Moreover, two polynomial germs in normal form (CG) ϕ and

ϕ̃ := (λ̃ζ s̃z + P̃(ζ) + c̃ζ
s̃ k̃

k̃−1 , ζ k̃)

are conjugated if and only if there exists ε ∈ C with εk−1 = 1 and

k̃ = k, s̃ = s, λ̃ = εsλ, P̃(ζ) = ε−jP(εζ), c̃ = ε
sk

k−1
−jc, with

conjugating map (z , ζ) 7→ (εjz , εζ)).
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Remark

Intermediate surfaces of index one correspond precisely to germs ϕ
in normal form (CG) such that (k − 1)|s. Under this necessary

condition there is a holomorphic vector field (= ζ
s

k−1 ∂
∂z ) on the

surface iff λ = 1.

Remark

The index m(S) of an intermediate surface associated to a
polynomial germ in normal form (CG) is

m(S) =
k − 1

gcd(k − 1, s)
.
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Motivating questions :

1) Determine the parameters in the normal form which are
essential for the configuration of the rational curves on S .

2) Given an intermediate surface S by a polynomial germ in normal
form :

(CG ) ϕ(z , ζ) := (λζsz + P(ζ) + cζ
sk

k−1 , ζk),

produce an algorithm to calculate b2(S).

3) Construct moduli spaces of intermediate surfaces with a fixed
dual graph of the rational curves.
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Type of a polynomial germ in normal form (CG).

Definition

For fixed k and s and for a polynomial germ

ϕ(z , ζ) := (λζsz + P(ζ) + cζ
sk

k−1 , ζk) in normal form (CG) with
P(ζ) := ζ j + cj+1ζ

j+1 + ...+ csζ
s we define inductively the

following finite sequences of integers j =: m1 < .... < mt ≤ s and
k > i1 > j2... > it = 1 by :

i) m1 := j , i1 := gcd(k,m1) ;

ii) mα := min {m > mα−1 | cm 6= 0, gcd(iα−1,m) < iα−1} , iα :=
gcd(k,m1, ...,mα) = gcd(iα−1,mα) ;

iii) 1 = it := gcd(k,m1, ...,mt−1,mt) < gcd(k,m1, ...,mt−1).

We call (m1, ...,mt) the type of ϕ and t the length of the type. If
t = 1 we say that ϕ is of simple type. This is the case, if and only
if k and j are relatively prime, gcd(k, j) = 1.
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One also sets

ε(k,m1, ...,mt , s) :=

⌊
m2 −m1

i1

⌋
+ ...+

⌊
mt −mt−1

it−1

⌋
+ s −mt .

This is the number of coefficients of P whose vanishing or
non-vanishing does not affect the type. All other coefficients < mt

necessarilly vanish except m1, ...,mt which are non-zero.

The type is preserved by the conjugations appearing in the previous
theorem.
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For fixed k, s and fixed type (m1, ...,mt) we consider the following
parameter spaces for the coefficients (λ, cj+1, ..., cs , c) appearing in
(CG) :

• when (k − 1) does not divide s

Uk,s,m1,...,mt = C∗ × (C∗)t−1 × Cε(k,m1,...,mt ,s),

• in case (k − 1) | s

Uλ6=1,c=0
k,s,m1,...,mt

= C \ {0, 1} × (C∗)t−1 × Cε(k,m1,...,mt ,s),

Uλ=1
k,s,m1,...,mt

= (C∗)t−1 × Cε(k,m1,...,mt ,s) × C.

In the second case we have considered separately the parameter
spaces for surfaces without and with holomorphic vector fields.
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INTERMEDIATE SURFACES :
Decomposition of germs
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Proposition (simplified version)

Let ϕ(z , ζ) := (λζsz + P(ζ) + cζ
sk

k−1 , ζk) be a germ in normal
form and whose type has length t. Then ϕ admits a canonical
decomposition ϕ = ϕ1 ◦ ... ◦ ϕt into t polynomial germs in normal
form and of simple type.

Remark

If the germ is of simple type, then there is exactly one tree in the
configuration of rational curves of the associated intermediate
surface.
In general, the number of trees in this configuration is given by the
length t of the type of the germ.
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INTERMEDIATE SURFACES :
The blow-up process and the

Dloussky sequence
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A simple Dloussky sequence is associated to an intermed. surface
with exactely one tree in the rational curve configuration and is of
the form

[DlS] = [

singular subsequence︷ ︸︸ ︷
a1 + 2, 2, .., 2︸ ︷︷ ︸

a1−1

, ...,

singular subsequence︷ ︸︸ ︷
aq+1 + 2, 2, .., 2︸ ︷︷ ︸

aq+1−1

,

regular subs.︷ ︸︸ ︷
2, .., 2︸ ︷︷ ︸

m

],

with q ≥ 0, ai ≥ 1 for 1 ≤ i ≤ q + 1 and m ≥ 1. The entries of the
sequence represent the rational curves in the order of creation by
the blow-up process, the integer giving the negative of the
self-intersection number.
A general Dloussky sequence is of the form [DlS1, ....,DlSt ], where
[DlSj ], j = 1, ..., t are simple Dloussky sequences. One has t trees.
Construction of the dual graph :The entries of the sequence
represent the knots of the graph. An entry with value α + 2 is
connected with the entry following α+ 1 places after it at the right
hand (with the entries in cyclic order !).
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Conversely, the dual graph of the rational curve configuration of a
surface of intermediate type determines a sequence which is unique
up to a cyclic permutation of its simple subsequences.

Example 1 : The simple sequence [3, 4, 2, 2] produces the graph

(−2)

(−4) (−3)

xxxxxxxx

FFFFFFFF

(−2)
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In the same way the non-simple sequence
[DlS1,DlS2] = [ 3, 2︸︷︷︸

DlS1

, 4, 2, 2, 2︸ ︷︷ ︸
DlS2

] produces the graph

(−4) (−2)

(−2) (−2) (−2)

xxxxxxxx

FFFFFFFF

(−3)
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Let now ϕ(z , ζ) := (λζsz + P(ζ) + cζ
sk

k−1 , ζk) where
P(ζ) := cjζ

j + cj+1ζ
j+1...+ csζ

s be a germ in normal form and
suppose that gcd(j , k) = 1, that is, ϕ is of simple type.
We use the two standard blow up coordinate charts
η : (u, v)→ (uv , v) and η′ : (u′, v ′)→ (v ′, u′v ′) to ”resolve” the
germ in the form Π ◦ σ. (The new curve is given always by v = 0
respectively by v ′ = 0.)
Description of the algorithm
A singular subsequence of length a starts with η′, continues with
(a− 1) times η and is stopped by either η′ which starts a new
singular subsequence or by a map of the form
(u, v)→ ((u + x)v , v), x 6= 0 which starts a regular subsequence in
the end of a simple sequence.
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Simple example

σ(z , ζ) =

(
−2z − ζz2

(1 + ζz)3
, ζ(1 + ζz)

)
η7→
(
−2zζ − ζ2z2

(1 + ζz)2
, ζ(1 + ζz)

)
=

=

(
1

(1 + ζz)2
− 1, ζ(1 + ζz)

)
(u,v) 7→((u+1)v ,v)7−→

(
ζ

(1 + ζz)
, ζ(1 + ζz)

)
η′7→ (ζ2z + ζ, ζ2) = ϕ(z , ζ). Dloussky sequence [3, 2, 2].

In fact, this germ ϕ is the normal form of the germ given by the
birational Henon morphism

[x : y : t] 7→ [x2 − 2yt : xt : t2]

at the superattractive fix point [1 : 0 : 0] ∈ P2(C).
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In general, this ”resolution” induces the division algorithm for k and
j :

k = α1j + β1

j = α2β1 + β2

β1 = α3β2 + β3

...

βq−2 = αqβq−1 + 1

βq−1 = αq+1 · 1 + 0

with the convention k = β−1, j = β0.
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This algorithm shows that the sequence of the associated surface is
simple and given by

[DlS] = [α1 + 2, 2, .., 2︸ ︷︷ ︸
α1−1

, ..., αq + 2, 2, .., 2︸ ︷︷ ︸
αq−1

, αq+1 + 1, 2, .., 2︸ ︷︷ ︸
αq+1−2

, 2, .., 2︸ ︷︷ ︸
s−j+1

] =

= [sα1 , ..., sαq , sαq+1−1, rs−j+1].

Furthermore this algorithm gives the second Betti number of the
surface as

b2 = (

q+1∑
i=1

αi − 1) + (s − j + 1) = (

q+1∑
i=1

αi ) + (s − j)

which is the length of [DlS].
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For the general case let ϕ = ϕ1 ◦ ϕ2 ◦ ... ◦ ϕt be the decomposition
of a germ ϕ into germs of simple type and DlS resp. DlSi the
associated Dloussky sequences of ϕ resp. ϕi , i = 1, ..., t. A
calculation shows that

[DlS] = [DlS1, ....,DlSt ],

i.e. the operations of composition of germs and concatenations of
Dloussky sequences are compatible and that there is an algorithm
to calculate the second Betti number for a given germ ϕ.
The following three objects associated to an intermediate
surface are algorithmically computatble from each other
one : the dual graph of the rational curves, the Dloussky
sequence, the type of the contracting germ in normal form.
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INTERMEDIATE SURFACES :
Moduli Spaces
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We have seen before that for fixed k, s and fixed type (m1, ...,mt)
we get parameter spaces for germs in normal form (CG)

Uk,s,m1,...,mt = C∗ × (C∗)t−1 × Cε(k,m1,...,mt ,s),

when (k − 1) - s and

Uλ 6=1,c=0
k,s,m1,...,mt

= C \ {0, 1} × (C∗)t−1 × Cε(k,m1,...,mt ,s),

Uλ=1
k,s,m1,...,mt

= (C∗)t−1 × Cε(k,m1,...,mt ,s) × C,

when (k − 1) | s. In the case (k − 1) | s the spaces Uλ 6=1,c=0
k,s,m1,...,mt

and Uλ=1
k,s,m1,...,mt

appear as subspaces of

Uk,s,m1,...,mt = C∗ × (C∗)t−1 × Cε(k,m1,...,mt ,s) × C,

which parameterizes germs (z , ζ) 7→ (λζsz + P(ζ) + cζ
sk

k−1 , ζk) in
normal form.
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By the preceding section all these germs have the same logarithmic
type, i.e. the same dual graph of rational curves.
On the other hand, every intermediate surface with such a
configuration of curves corresponds to a germ of this type.

Now, one may perform the blow-ups and the glueing
simultaneously over the parameter space Uk,s,m1,...,mt thus
obtaining a holomorphic family Sk,s,m1,...,mt → Uk,s,m1,...,mt of
intermediate surfaces over Uk,s,m1,...,mt .
Then Sk,s,m1,...,mt is a complex manifold of dimension
dim Uk,s,m1,...,mt + 2 = t + ε(k,m1, ...,mt , s) + δ + 2, where δ = 1
if (k − 1) | s and δ = 0 otherwise.
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Consider now an intermediate surface S with maximal effective
reduced divisor D. We would like to consider families of logarithmic
deformations (Kawamata, 1978).
A family of logarithmic deformations for the pair (S ,D) is a 6-tuple
(S,D, π,V , v , ψ), where D is a divisor on S, π : S → V is a
proper smooth morphism of complex spaces, which is locally a
projection as well as its restriction to D, v ∈ V and
ψ : S → π−1(v) is an isomorphism restricting to an isomorphism
S \ D → π−1(v) \ D.

Let TS(− log D) be the logarithmic tangent sheaf of (S ,D) (sheaf
of vector fields tangent to D). Versal logarithmic deformations of
intermediate surfaces (S ,D) exist, since D has only simple normal
crossings and their tangent space is H1(S ,TS(− log D)).
(Kawamata) The space H2(S ,TS(− log D)) = 0 (Nakamura).
Therefore the basis of the versal logarithmic deformation of a pair
(S ,D) is smooth. On the other side
H0(S ,TS(− log D)) = H0(S ,TS) and this space is at most one
dimensional.
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Theorem

With the above notations we have :

• If (k − 1) does not divide s the family

Sk,s,m1,...,mt → Uk,s,m1,...,mt

is logarithmically versal around every point of Uk,s,m1,...,mt .

• If (k − 1) | s, the restriction of the family

Sk,s,m1,...,mt → Uk,s,m1,...,mt

to Uλ 6=1,c=0
k,s,m1,...,mt

is logarithmically versal around every point of

Uλ 6=1,c=0
k,s,m1,...,mt

.

• If (k − 1) | s, the family Sk,s,m1,...,mt → Uk,s,m1,...,mt is
logarithmically versal around every point of Uλ=1

k,s,m1,...,mt
.
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Proof :

Take (S ,D) a pair as above and ϕ(z , ζ) := (λζsz + P(ζ), ζk) an
associated germ in normal form (CG). We see ϕ as a point in
Uk,s,m1,...,mt . Let (S ′,D′, π,V , v , ψ) be the logarithmically versal
deformation of the pair (S ,D). Since there are no holomorphic
vector fields, this deformation is modular around each point, (∗).

Then the family Sk,s,m1,...,mt → Uk,s,m1,...,mt is obtained from
S ′ → V by base change by means of a map
F : (Uk,s,m1,...,mt , ϕ)→ (V , v). Now F has finite fibres. Thus
dim Uk,s,m1,...,mt ≤ dim V . Because of (∗), one gets
dim Uk,s,m1,...,mt = dim V .
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Next we show that F is injective near ϕ hence locally
biholomorphic. Assume the contrary.

Then there exists a root of unity ε of order q with 1 6= q | (k − 1)
and a sequence (ϕn)n∈N, ϕn(z , ζ) := (λnζ

sz + Pn(ζ), ζk),
converging to ϕ in Uk,s,m1,...,mt such that for
ϕ̃n(z , ζ) := (εsλnζ

sz + ε−m1Pn(εζ), ζk) one has ϕ̃n → ϕ and
F (ϕ̃n) = F (ϕn) for all n ∈ N. Let r = −m1 − dm1

q eq and

χ(z , ζ) = (ε−r z , εζ). Then ϕ̃n = χ−1 ◦ ϕn ◦ χ for all n ∈ N. Thus
χ induces an automorphism a non-trivial automorphism of the
surface S = Sϕ. On the other side χ induces for each n ∈ N the
isomorphisms Sϕn

∼= S ′F (ϕn)
∼= Sϕ̃n . This gives a contradiction.

The second assertion of the theorem has a completely analogous
proof.
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We recall now that there is a natural action of Z/(k − 1)Z on
Uk,s,j=m1,...,mt given by the conjugation with the map
(z , ζ) 7→ (εjz , εζ), which permutes conjugated germs : through a
generator of Z/(k − 1)Z a germ

ϕ(z , ζ) := (λζsz + P(ζ) + cζ
sk

k−1 , ζk)

is mapped to

ϕ(z , ζ) := (εsλζsz + ε−m1P(εζ) + ε
sk

k−1
−m1cζ

sk
k−1 , ζk),

where ε is a primitive (k − 1)-th root of the unity.



Intro. Fund.Group Contr.Germs Decomp. of Germs Dloussky Sequence Moduli Spaces

Theorem

Fix k, s and a type (m1, ...,mt) for polynomial germs in normal
form (CG). Set j = m1 as before.

• When j < max(s, k − 1) the natural action of Z/(k − 1) on

Uk,s,m1,...,mt ,U
λ 6=1,c=0
k,s,m1,...,mt

and Uλ=1
k,s,m1,...,mt

is effective.

• In the remaining case, i.e. when j = k − 1 = s, the natural
action of Z/(k − 1) is effective on Uλ=1

k,s,m1,...,mt
= C and trivial

on Uλ 6=1,c=0
k,s,m1,...,mt

= C \ {0, 1}.
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Theorem

Fix k, s and a type (m1, ...,mt) for polynomial germs in normal
form (CG). Set j = m1 as before.

The quotient spaces Uk,s,m1,...,mt/(Z/(k − 1)) when (k − 1) - s, and

Uλ 6=1,c=0
k,s,m1,...,mt

/(Z/(k − 1)), Uλ=1
k,s,m1,...,mt

/(Z/(k − 1)), when
(k − 1) | s, are coarse logarithmic moduli spaces for intermediate
surfaces of the given logarithmic type without, respectively with,
non-trivial holomorphic vector fields.

These spaces are fine moduli spaces if and only if either the
corresponding action of Z/(k − 1) is trivial or this action is free.
The natural action of Z/(k − 1) on either of the spaces

Uk,s,m1,...,mt ,U
λ 6=1,c=0
k,s,m1,...,mt

and Uλ=1
k,s,m1,...,mt

is free if and only if gcd(k − 1, s,m2 − j , ...,mt − j) = 1.
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