Asymptotic behaviors of metrics on the moduli space of curves

Kunio Obitsu Kagoshima University

Joint work with W.-K. To \& L. Weng
and
Joint work with S. A. Wolpert
$T_{g, n}$: the Teichmüller space of curves of genus g with n marked points $(2 g-2+n>0)$
$C_{g, n}$: the Teichmüller curve over $T_{g, n}$ with projection $\pi: C_{g, n} \rightarrow T_{g, n}$ and n sections $\mathbf{P}_{1}, \ldots, \mathbf{P}_{n}$ corresponding to n marked points
$\Omega_{C_{g, n}}^{1}\left(\right.$ resp. $\left.\Omega_{T_{g, n}}^{1}\right)$: the sheaf of holomorphic 1-forms on $C_{g, n}$ (resp. $T_{g, n}$)
$\omega_{C_{g, n} / T_{g, n}}:=\Omega_{C_{g, n}}^{1} / \pi^{*} \Omega_{T_{g, n}}^{1}$
the sheaf of relative differential forms on $C_{g, n}$

For $l \in \mathbf{N}$,
$\lambda_{l}:=\bigwedge R^{0} \pi_{*} \omega_{C_{g, n} / T_{g, n}}^{\otimes l}\left((l-1) \mathbf{P}_{1}+\cdots+(l-1) \mathbf{P}_{n}\right)$
the determinant line bundle on $T_{g, n}$

For a point $s \in T_{g, n}$,
$S:=\pi^{-1}(s)$ a compact smooth curve
$S^{0}:=S-\left\{\mathbf{P}_{1}(s), \ldots, \mathbf{P}_{n}(s)\right\}$
$P_{p}:=\mathbf{P}_{p}(s)(p=1, \ldots, n)$
$R^{0} \pi_{*} \omega_{C g, n / T_{g, n}}^{\otimes l}\left((l-1) \mathbf{P}_{1}+\cdots+(l-1) \mathbf{P}_{n}\right)_{s}$
$=\Gamma\left(S, K_{S}^{\otimes l} \otimes \mathcal{O}_{S}\left(P_{1}+\cdots+P_{n}\right)^{\otimes(l-1)}\right)$
$=\{$ meromorphic l differentials on S with possibly poles of order at most $l-1$ only at the marked points $\}$

Pick a basis of local holomorphic sections $\phi_{1}, \ldots, \phi_{d(l)}$ for $R^{0} \pi_{*} \omega_{C_{g, n} / T_{g, n}}^{\otimes l}\left((l-1) \mathbf{P}_{1}+\cdots+(l-1) \mathbf{P}_{n}\right)$, where

$$
\begin{gathered}
d(l)=\left\{\begin{array}{cc}
g & (l=1) \\
(2 l-1)(g-1)+(l-1) n & (l>1)
\end{array}\right. \\
\left\langle\phi_{i}, \phi_{j}\right\rangle:=\iint_{S^{0}} \phi_{i} \overline{\phi_{j}} \rho_{S^{0}}^{-(l-1)} \quad(i, j=1, \ldots d(l))
\end{gathered}
$$

the Petersson product, where $\rho_{S^{0}}$ is the hyperbolic area element on S^{0}.

$$
Z_{S^{0}}(s):=\prod_{\{\gamma\}} \prod_{m=1}^{\infty}\left(1-e^{-(s+m) L(\gamma)}\right)
$$

the Selberg Zeta function for $S^{0}, \operatorname{Re}(s)>1$, where γ runs over all oriented primitive closed geodesics on S^{0}, and $L(\gamma)$ denotes the hyperbolic length of γ. It extends meromorphically to the whole plane in s.
$\left\|\phi_{1} \wedge \cdots \wedge \phi_{d(l)}\right\|_{L^{2}}:=\left|\operatorname{det}\left(\left\langle\phi_{i}, \phi_{j}\right\rangle\right)\right|^{1 / 2}$
$\left\|\phi_{1} \wedge \cdots \wedge \phi_{d(l)}\right\|_{Q}:=\left\|\phi_{1} \wedge \cdots \wedge \phi_{d(l)}\right\|_{L^{2}} Z_{S^{0}}(l)^{-1 / 2}$
$\left(l \geq 2\right.$. For $l=1$, employ $Z_{S^{0}}^{\prime}(1)$ in place of $Z_{S^{0}}(1)=0$.)

Here, $Z_{S^{0}}(l)$ denotes the special value of $Z_{S^{0}}(\cdot)$ on S^{0} at l integer.
$\lambda_{l} \rightarrow T_{g, n}$ is a Hermitian holomorphic line bundle equipped with the Quillen metric $\|\cdot\|_{Q}$.

Theorem 1 (Belavin-Knizhnik (1986)+Wolpert(1986)).

$$
c_{1}\left(\lambda_{l},\|\cdot\|_{Q}\right)=\frac{6 l^{2}-6 l+1}{12 \pi^{2}} \omega_{W P} \quad(n=0)
$$

Theorem 2 (Takhtajan-Zograf (1988, 1991)).

$$
c_{1}\left(\lambda_{l},\|\cdot\|_{Q}\right)=\frac{6 l^{2}-6 l+1}{12 \pi^{2}} \omega_{W P}-\frac{1}{9} \omega_{T Z} \quad(n>0)
$$

Here, $\omega_{W P}, \omega_{T Z}$ are the Kähler forms of the Weil-Petersson, the Takhtajan-Zograf metrics respectively.
$\operatorname{Mod}_{g, n}$: the mapping class group of curves of genus g with n marked points
> $\mathcal{M}_{g, n}=T_{g, n} / \operatorname{Mod}_{g, n}:$ the moduli space of curves of genus g with n marked points

λ_{l} and all metrics we defined are compatible with the action of $\operatorname{Mod}_{g, n}$, then they all naturally descend to $\mathcal{M}_{g, n}$ as orbifold line sheaves and orbifold metrics respectively.

Theorem 3 (Weng (2001)).

We have an isometric decomposition of the determinant line bundle with appropriate hermitian metrics $(2 g-2+n>$ $0, n>0)$.

$$
\begin{gathered}
\lambda_{l}^{\otimes 12} \simeq \Delta_{W P}^{\otimes 6 l^{2}-6 l+1} \otimes \Delta_{T Z}^{-1} \\
c_{1}\left(\Delta_{W P}\right)=\frac{\omega_{W P}}{\pi^{2}}, \quad c_{1}\left(\Delta_{T Z}\right)=\frac{4}{3} \omega_{T Z} .
\end{gathered}
$$

Theorem 4 (Wolpert (1986), Takhtajan-Zograf (1991)). For $g>2$,

$$
\begin{gathered}
H^{2}\left(\mathcal{M}_{g}, \mathbf{Z}\right) \simeq \mathbf{Z} \simeq\left\langle\frac{\left[\omega_{W P}\right]}{\pi^{2}}\right\rangle \\
H^{2}\left(\mathcal{M}_{g, 1}, \mathbf{Z}\right) \simeq \mathbf{Z}^{2} \simeq\left\langle\frac{\left[\omega_{W P}\right]}{\pi^{2}}, \frac{4}{3}\left[\omega_{T Z}\right]\right\rangle
\end{gathered}
$$

Here, $\mathcal{M}_{g}=\mathcal{M}_{g, 0}$.
Theorem 5 (Weng (2001), Wolpert (2007)).
For $2 g-2+n>0, n>0$,

$$
c_{1}\left(\Delta_{p}\right)=\frac{4}{3}\left[\omega_{p}\right] .
$$

Here, Δ_{p} denotes the line bundle associated with the p-th marked point over $T_{g, n} . \omega_{p}$ denotes the Kähler form of the Takhtajan-Zograf metric associated with the p-th marked point.

Theorem 6 (Weng (2001), Wolpert (2007) + Harer).
For $g>2, n>0$,
$H^{2}\left(\mathcal{M}_{g, n}, \mathbf{Z}\right) \simeq \mathbf{Z}^{n+1} \simeq\left\langle\frac{\left[\omega_{W P}\right]}{\pi^{2}}, \frac{4}{3}\left[\omega_{1}\right], \frac{4}{3}\left[\omega_{2}\right] \ldots, \frac{4}{3}\left[\omega_{n}\right]\right\rangle$.
$\overline{\mathcal{M}}_{g, n}:$ the Deligne -Mumford compactification of $\mathcal{M}_{g, n}$

Theorem 7 (Saper (1993)).
For $g>1, n=0$,

$$
H_{(2)}^{*}\left(\mathcal{M}_{g}, \omega_{W P}\right) \simeq H^{*}\left(\overline{\mathcal{M}}_{g}, \mathbf{R}\right)
$$

Here, the left hand side is the L^{2}-cohomology with respect to the W-P metric.

Consider the asymptotic behavior of the W-P metric and the T-Z metric near the boundary of $\mathcal{M}_{g, n}$.
$D=\overline{\mathcal{M}}_{g, n} \backslash \mathcal{M}_{g, n}$: the compactification divisor
$R_{0} \in D$: a stable curve of genus g with n marked points and k nodes
(we regard the marked points as deleted from the surface.)
Each node $q_{i}(i=1,2, \ldots, k)$ has a neighborhood
$N_{i}=\left\{\left(z_{i}, w_{i}\right) \in \mathbf{C}^{2}| | z_{i}\left|,\left|w_{i}\right|<1, z_{i} w_{i}=0\right\}\right.$.
W_{p} : a neighborhood of the marked point $P_{p}(p=1 \ldots, n)$
τ_{μ} : a basis of Beltrami differentials with compact support in

$$
R_{0} / \bigcup_{i=1}^{k} N_{i} \bigcup \bigcup_{p=1}^{n} W_{p}(\mu=k+1, k+2, \ldots, 3 g-3+n)
$$

$f_{s}: R_{0} \rightarrow R_{s}$ is a homeomorphism with Beltrami differential $\tau(s)=\sum_{\mu=k+1}^{3 g-3+n} s_{\mu} \tau_{\mu}\left(s_{\mu} \in \mathbf{C}\right)$, satisfying $\bar{\partial} f_{s}=\tau(s) \partial f_{s}$.

By a natural identification via $f_{s}, z_{i}, w_{i}, N_{i}, W_{p}$ can be regarded as those for R_{s}.
$R_{t, s}$: the smooth surface gotten from R_{s} after cutting and pasting N_{i} to make $N_{i, t}=\left\{\left(z_{i}, w_{i}\right)\left|z_{i} w_{i}=t_{i},\left|t_{i}\right|<1\right\}\right.$

Then, D is locally described as $\left\{t_{1}=\cdots=t_{k}=0\right\}$.

By the deformation theory of Kodaira-Spencer and the Hodge theory, for $\left[R_{t, s}\right] \in T_{g, n}$,

$$
T_{\left[R_{t, s}\right]} T_{g, n} \simeq H B\left(R_{t, s}\right)
$$

where $H B\left(R_{t, s}\right)$ is the space of harmonic Beltrami differentials on $R_{t, s}$.

By the Serre duality,

$$
T_{\left[R_{t, s}\right]}^{*} T_{g, n} \simeq Q\left(R_{t, s}\right)
$$

where $Q\left(R_{t, s}\right)$ is the space of holomorphic quadratic differentials on $R_{t, s}$ with finite the Petersson-norm, which is dual to $H B\left(R_{t, s}\right)$.

The inner product of the Weil-Petersson metric at $T_{\left[R_{t, s}\right]} T_{g, n}$ is defined as $\left(\rho_{t, s}\right.$ denotes the hyperbolic area element of $R_{t, s}$.)

$$
\langle\alpha, \beta\rangle_{W P}(t, s):=\iint_{R_{t, s}} \alpha \bar{\beta} \rho_{t, s} \quad\left(\alpha, \beta \in T_{\left[R_{t, s}\right]} T_{g, n}\right)
$$

α_{i} (resp. β_{μ}): Beltrami differentials on $R_{t, s}$ representing $\partial / \partial t_{i}\left(\right.$ resp. $\left.\partial / \partial s_{\mu}\right)$

$$
\begin{aligned}
& g_{i \bar{j}}(t, s)=\left\langle\alpha_{i}, \alpha_{j}\right\rangle_{W P}(t, s), \\
& g_{i \bar{\mu}}(t, s)=\left\langle\alpha_{i}, \beta_{\mu}\right\rangle_{W P}(t, s), \\
& g_{\mu \bar{\nu}}(t, s)=\left\langle\beta_{\mu}, \beta_{\nu}\right\rangle_{W P}(t, s),
\end{aligned}
$$

$$
(i, j=1,2, \ldots, k, \mu, \nu=k+1, \ldots, 3 g-3+n)
$$

the Riemannian tensors for the W-P metric.

The inner products of the Takhtajan-Zograf metrics are defined as

$$
\langle\alpha, \beta\rangle_{p}(t, s):=\iint_{R_{t, s}} \alpha \bar{\beta} E_{p}(\cdot, 2) \rho_{t, s} \quad\left(\alpha, \beta \in T_{\left[R_{t, s]}\right.} T_{g, n}\right)
$$

$(p=1, \ldots, n)$. Here, $E_{p}(\cdot, 2)$ is the Eisenstein series associated with the p-th marked point with index 2 .

$$
\langle\alpha, \beta\rangle_{T Z}(t, s):=\sum_{p=1}^{n}\langle\alpha, \beta\rangle_{p}(t, s)
$$

$$
h_{i \bar{j}}(t, s)=\left\langle\alpha_{i}, \alpha_{j}\right\rangle_{T Z}(t, s),
$$

$$
h_{i \bar{\mu}}(t, s)=\left\langle\alpha_{i}, \beta_{\mu}\right\rangle_{T Z}(t, s),
$$

$$
h_{\mu \bar{\nu}}(t, s)=\left\langle\beta_{\mu}, \beta_{\nu}\right\rangle_{T Z}(t, s),
$$

$(i, j=1,2, \ldots, k, \quad \mu, \nu=k+1, \ldots, 3 g-3+n)$
the Riemannian tensors for the T-Z metric.

The Eisenstein series associated with the p-th marked point with index 2 is defined as

$$
E_{p}(z, 2):=\sum_{A \in \Gamma_{p} \backslash \Gamma}\left\{\operatorname{Im}\left(\sigma_{p}^{-1} A(z)\right)\right\}^{2}, \text { for } z \in \mathbf{H}
$$

where \mathbf{H} is the upper-half plane, Γ is a uniformizing Fuchsian group and Γ_{p} is the parabolic subgroup associated with the p-th marked point, and $\sigma_{p} \in \operatorname{PSL}(2, \mathbf{R})$ is a normalizer.
$E_{p}(z, 2)$ is a positive subharmonic function on $R_{t, s}$, and assumes the infinity at the p-th marked point and vanishes at the other marked points.

The following theorem is a pioneering result for the asymptotic behavior of the W-P metric near the boundary of the moduli space.
Theorem 8 (Masur (1976)).
As $t_{i}, s_{\mu} \rightarrow 0$,

$$
\begin{aligned}
& \text { i) } g_{i \bar{i}}(t, s) \approx \frac{1}{\left|t_{i}\right|^{2}\left(-\log \left|t_{i}\right|\right)^{3}} \\
& \quad \text { for } i \leq k, \\
& \text { ii) } g_{i \bar{j}}(t, s)=O\left(\frac{1}{\left|t_{i}\right|\left|t_{j}\right|\left(\log \left|t_{i}\right|\right)^{3}\left(\log \left|t_{j}\right|\right)^{3}}\right) \\
& \quad \text { for } i, j \leq k, i \neq j, \\
& \text { iii) } g_{i \bar{\mu}(t, s)=O\left(\frac{1}{\left|t_{i}\right|\left(-\log \left|t_{i}\right|\right)^{3}}\right)} \quad \text { for } i \leq k, \mu \geq k+1 \\
& \text { iv) } \quad \lim ^{(t, s) \rightarrow(0,0)} g_{\mu \bar{\nu}}(t, s)=g_{\mu \bar{\nu}}(0,0) \\
& \text { for } \mu, \nu \geq k+1 \text {. }
\end{aligned}
$$

Recently, we updated Masur's result by improving Wolpert's formula for the asymptotic of the hyperbolic metric for degenerating Riemann surfaces.
Theorem 9 (O. and Wolpert (2008)).
Asti $\rightarrow 0$,
iv) ${ }^{\prime}$

$$
g_{\mu \bar{\nu}}(t, s)=g_{\mu \bar{\nu}}(0, s)
$$

$$
+\frac{4 \pi^{4}}{3} \sum_{i=1}^{k}\left(\log \left|t_{i}\right|\right)^{-2}\left\langle\beta_{\mu},\left(E_{i, 1}(\cdot, 2)+E_{i, 2}(\cdot, 2)\right) \beta_{\nu}\right\rangle_{W P}(0, s)
$$

$$
+O\left(\sum_{i=1}^{k}\left(\log \left|t_{i}\right|\right)^{-3}\right) \quad \text { for } \mu, \nu \geq k+1
$$

Here, $E_{i, 1}(\cdot, 2), E_{i, 2}(\cdot, 2)$ denote a pair of the Eisenstein series with index 2, associated with the i-th node of the limit surface.

That is, the T-Z metrics have appeared from degeneration of the W-P metric!

Proof of Theorem 9

Step 1. Consider the pluming family of hyperbolic metrics

$$
\begin{gathered}
0<c<1, \quad \Delta=\{t \in \mathbf{C}| | t \mid<c\} \\
\Pi:=\left\{(z, w, t) \in \mathbf{C}^{3}|z w=t,|z|,|w|,|t|<c\}\right. \\
\Phi: \Pi \longrightarrow \Delta, \Phi(z, w, t)=t
\end{gathered}
$$

Define a metric $d s_{t}$ on each fiber $\Phi^{-1}(t)$

$$
d s_{t}^{2}= \begin{cases}\left(\frac{\pi}{\log |t|} \csc \left(\frac{\pi \log |z|}{\log |t|}\right)\left|\frac{d z}{z}\right|\right)^{2}, & t \neq 0 \\ \left(\frac{|d z|}{|z| \log |z|}\right)^{2}, & t=0\end{cases}
$$

The annulus $\Phi^{-1}(t)$ embeds holomorphically into the neighborhood U of a pinching geodesic on the smooth surface R_{t}.

Step 2. The intrinsic hyperbolic metric $d s_{h y p}^{2}$ on R_{t} and $d s_{t}^{2}$ are naturally interpolated around the neighborhood U to make the grafting metric $d s_{g r a f t}^{2}$ on R_{t}.
By analyzing the solution to Kazdan-Warner's curvature equation on S_{t}, we can show that as $t \longrightarrow 0$,
$d s_{h y p}^{2}=d s_{\text {graft }}^{2}\left(1+\frac{4 \pi^{4}}{3}(\log |t|)^{-2}\left(E^{1}+E^{2}\right)+O\left((\log |t|)^{-3}\right)\right)$.
E^{1}, E^{2} are the Eisenstein series the singular parts of which are cut-off. That is, a pinching geodesic yields a pair of Eisenstein series associated with a pair of cusps through degenaration. The above expansion formula gives the updated asymptotic formula of W-P metric through degenaration.

On the other hand, we have a result for asymptotics of the T-Z metric near the boundary of the moduli space.

Theorem 10 (O.-To-Weng (2008)).
As $t_{i}, s_{\mu} \rightarrow 0$, we have the following estimates.
i) For any $\varepsilon>0$, there exists a constant $C_{1, \varepsilon}$ such that $h_{i \bar{i}}(t, s) \leq \frac{C_{1, \varepsilon}}{\left|t_{i}\right|^{2}\left(-\log \left|t_{i}\right|\right)^{4-\varepsilon}} \quad$ for $i \leq k$.
For any $\varepsilon>0$, there exists a constant $C_{2, \varepsilon}$ such that $h_{i \bar{i}}(t, s) \geq \frac{C_{2, \epsilon}}{\left|t_{i}\right|^{2}\left(-\log \left|t_{i}\right|\right)^{4+\varepsilon}} \quad$ for $i \leq k$ and the node q_{i} adjacent to punctures.
ii) $h_{i \bar{j}}(t, s)=O\left(\frac{1}{\left|t_{i}\right|\left|t_{j}\right|\left(\log \left|t_{i}\right|\right)^{3}\left(\log \left|t_{j}\right|\right)^{3}}\right)$
for $i, j \leq k, i \neq j$.
iii) $h_{i \bar{\mu}}(t, s)=O\left(\frac{1}{\left|t_{i}\right|\left(-\log \left|t_{i}\right|\right)^{3}}\right)$ for $i \leq k, \mu \geq k+1$.
iv) $\lim _{(t, s) \rightarrow(0,0)} h_{\mu \bar{\nu}}(t, s)=h_{\mu \bar{\nu}}(0,0) \quad$ for $\mu, \nu \geq k+1$.

Here, a node q is called to be adjacent to punctures if the component of $R_{0}-\{$ all nodes $\}$ containing q also contains at least one of the marked points.

Proof of Theorem 10

Use the settings and the plumbing family in the proof of Thm 9.

We introduce the test function for Eisenstein series on each fiber $\Phi^{-1}(t)$,

$$
E_{t}^{*}(z)= \begin{cases}-\frac{\pi}{\log |t|} \csc \left(\frac{\pi \log |z|}{\log |t|}\right), & t \neq 0 \\ -\frac{1}{\log |z|}, & t=0\end{cases}
$$

The maximal principle for subharmonic function and etc. permits us to show that, around the neighborhood of the pinching geodesic, $E_{t}^{*}(z)$ approximates 'very nicely' the Eisenstein series $E_{t}(z)$ on the punctured smooth surface R_{t}.

We can use $E_{t}^{*}(z)$ on the the neighborhood of the pinching geodesic to evaluate the T-Z metric tensors $h_{i j}(t, s)$'s.

Open problems

1. Determine $H_{(2)}^{*}\left(\mathcal{M}_{g, n}, \omega_{T Z}\right)$ for general (g, n). For that, we need more informations on precise asymptotics of degenerating Eisenstein series.
(cf. O., RIMS Kôkyûroku Bessatsu (2009), to appear)
2. Is the curvature of the Takhtajan-Zograf metric negative?
3. If the answer to the question 2. is YES, study $-\operatorname{Ric} \omega_{T Z}$.

- Recently, C.T. McMullen, and K. Liu, X. Sun \& S.-T. Yau find good geometry of the moduli of curves using -Ric $\omega_{W P}$. (Ann. of Math. 151 (2000), Publ. RIMS, Kyoto 42 (2008))

4. Does the Takhtajan-Zograf Kähler form have a global representation formula?

- The Weil-Petersson Kähler form has a global representation formula in terms of the Fenchel-Nielsen coordinates.
(S.A. Wolpert, Amer. J. Math 107 (1985))

References

[1] Harer, J.: The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239.
[2] Masur, H.: Extension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976), 623-635.
[3] Obitsu, K., To, W.-K. and Weng, L.: The asymptotic behavior of the Takhtajan-Zograf metric, Commun. Math. Phys. 284 (2008), 227-261.
[4] Obitsu, K. and Wolpert, S.A.: Grafting hyperbolic metrics and Eisenstein series, Math. Ann. 341 (2008), 685-706.
[5] Takhtajan, L. A. and Zograf, P. G.: A local index theorem for families of $\bar{\partial}$-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces, Commun. Math. Phys. 137 (1991), 399-426.
[6] Weng, L.: Ω-admissible theory, II. Deligne pairings over moduli spaces of punctured Riemann surfaces, Math. Ann. 320 (2001), 239-283.
[7] Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), 119-145.
[8] Wolpert, S.A.: The hyperbolic metric and the geometry of the universal curve, J. Diff. Geom. 31 (1990), 417-472.
[9] Wolpert, S.A.: Cusps and the family hyperbolic metric, Duke Math. J. 138 (2007), 423-443.

