A Unicity Theorem and Erdös' Problem for Polarized Semi-Abelian Varieties

J. Noguchi (with P. Corvaja)

University of Tokyo Hayama Symposium

20 July 2009

$\S1$ Introduction

The following is a kind of the unicity problem in arithmetic recurrence: Erdös' Problem (1988). Let x, y be positive integers. Is it true that

$$\{p; prime, p | (x^n - 1)\} = \{p; prime, p | (y^n - 1)\}, \forall n \in \mathbb{N}$$
$$\iff x = y \quad ?$$

The answer is Yes:

Theorem 1.1

(Corrales-Rodorigáñez and R. Schoof, JNT 1997)

• $\{p; prime, p | (x^n - 1)\} \subset \{p; prime, p | (y^n - 1)\}, \forall n \in \mathbb{N}$

$$\implies y = x^h \quad (\exists h \in \mathbf{N}).$$

The elliptic version holds, too.

In complex analysis, Yamanoi proved in Forum Math. 2004 the following striking unicity theorem:

Theorem 1.2

Let

 A_i , i = 1, 2, be abelian varieties; $D_i \subset A_i$ be irreducible divisors such that

$$St(D_i) = \{a \in A_i; a + D_i = D_i\} = \{0\};\$$

 $f_i : \mathbf{C} \to A_i$ be (algebraically) nondegenerate entire holomorphic curves. Assume that $f_1^{-1}D_1 = f_2^{-1}D_2$ as sets. Then \exists isomorphism $\phi : A_1 \to A_2$ such that

$$f_2 = \phi \circ f_1, \quad D_1 = \phi^* D_2.$$

- The new point is that we can determine not only *f*, but the moduli point of a polarized abelian vareity (*A*, *D*) through the distribution of *f*⁻¹*D* by a nondegenerate *f* : C → A.
- **②** The assumptions for D_i to be irreducible and the triviality of $St(D_i)$ are not restrictive. There is a way of reduction.
- Sor simplicity we assume them here.

§2 Main Results

We want to uniformize the results in the previous section. Therefore we have to deal with semi-abelian varieties. Let A_i , i = 1, 2 be semi-abelian varieties:

$$0 \rightarrow (\mathbf{C}^*)^{t_i} \rightarrow A_i \rightarrow A_{0i} \rightarrow 0.$$

Let D_i be an irreducible divisor on A_i such that

$$\operatorname{St}(D_i)=\{0\}$$

for simplicity.

Main Theorem

Main Theorem 2.1

Let $f_i : \mathbf{C} \to A_i$ (i = 1, 2) be non-degenerate holomorphic curves. Assume that

(2.2)
$$\underbrace{ \begin{array}{l} \operatorname{Supp} f_1^* D_1 \\ (2.3) \end{array}}_{\text{i.e., } C^{-1} N_1(r, f_1^* D_1) \simeq \underbrace{ \operatorname{Supp} f_2^* D_2 \\ N_1(r, f_2^* D_2) \end{array}}_{N_1(r, f_2^* D_2) ||;} (germs \ at \ \infty),$$

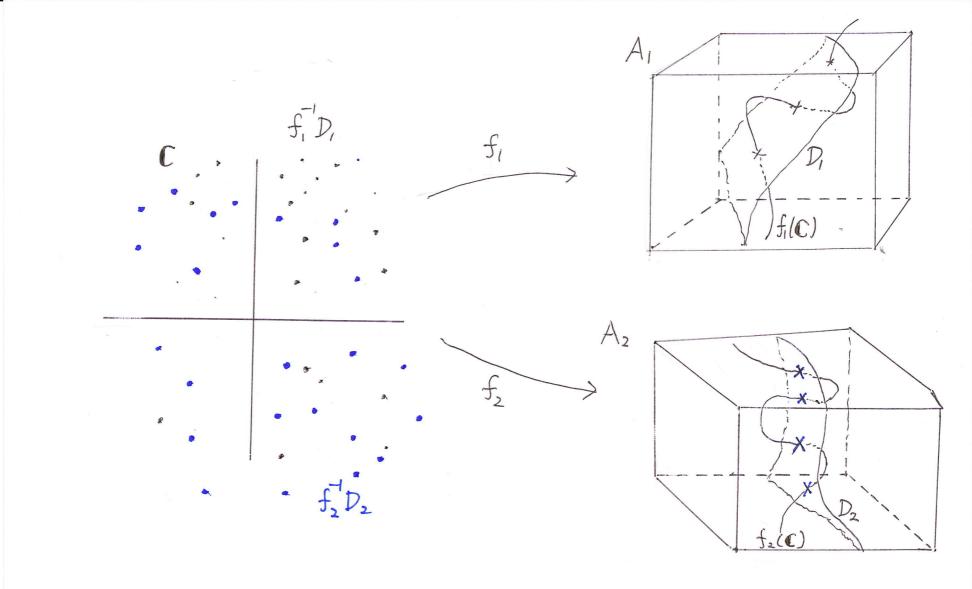
Then there is a finite étale morphism $\phi: A_1 \rightarrow A_2$ such that

$$\phi \circ f_1 = f_2, \quad D_1 \subset \phi^* D_2.$$

If equality holds in (2.2), then ϕ is an isomorphism and $D_1 = \phi^* D_2$.

N.B. Assumption (2.3) is necessary by example.

NOGUCHI (UT)



The following corollary follows immediately from the Main Theorem 2.1. Corollary 2.4

• Let $f : \mathbf{C} \to \mathbf{C}^*$ and $g : \mathbf{C} \to E$ with an elliptic curve E be holomorphic and non-constant. Then

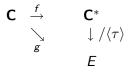
$$\underline{f^{-1}\{1\}}_{\infty} \neq \underline{g^{-1}\{0\}}_{\infty}.$$

2 If dim $A_1 \neq$ dim A_2 in the Main Theorem 2.1, then

$$\underline{f_1^{-1}D_1}_{\infty} \neq \underline{f_2^{-1}D_2}_{\infty}.$$

N.B.

● The first statement means that the difference of the value distribution property caused by the quotient C* → C*/⟨τ⟩ = E cannot be recovered by the choice of f and g, even though they are allowed to be *arbitrarily transcendental*.



② The second statement implies that the distribution of f_i⁻¹D_i about ∞ contains the topological informations of dim A_i and the compact or non-compactness of A_i; It is interesting to observe that this works even for one parameter

subgroups with Zariski dense image.

Due to the well-known correspondence between Number Theory and Nevanlinna Theory, it is tempting to give a number-theoretic analogue of Theorem 2.1 as Pál Erdös Problem–Corrales-Rodorigáñez&Schoof Theorem.

A related problem asks to classify the cases where $x^n - 1$ divides $y^n - 1$ for infinitely many positive integers *n*.

We would like to deal with the case of a semi-abelian variety with a given divisor, i.e., a polarized semi-abelian variety.

We can prove an analogue of the Main Theorem 2.1 in the linear toric case, but not in the general case of semi-abelian varieties, that is left to be a *Conjecture*.

§3 Arithmetic Recurrence

Here is our result in the arithmetic case.

Theorem 3.1

Let

 \mathcal{O}_{S} be a ring of S-integers in a number field k;

 $\mathbf{G}_1, \, \mathbf{G}_2$ be linear tori;

 $g_i \in \mathbf{G}_i(\mathcal{O}_S)$ be elements generating Zariski-dense subgroups. D_i be reduced divisors defined over k, with defining ideals $\mathcal{I}(D_i)$, such that each irreducible component has a finite stabilizer and $\operatorname{St}(D_2) = \{0\}$. Suppose that for infinitely many $n \in \mathbf{N}$,

 $(3.2) (g_1^n)^* \mathcal{I}(D_1) \supset (g_2^n)^* \mathcal{I}(D_2).$

Then \exists étale morphism $\phi : \mathbf{G}_1 \to \mathbf{G}_2$, defined over k, and $\exists h \in \mathbf{N}$ such that $\phi(g_1^h) = g_2^h$ and $D_1 \subset \phi^*(D_2)$.

N.B.

- Theorem 3.1 is deduced from the main results of Corvaja-Zannier, Invent. Math. 2002.
- **2** By an example we cannot take h = 1 in general.
- Sy an example, the condition on the stabilzers of D₁ and D₂ cannot be omitted.
- Note that inequality (inclusion) (3.2) of ideals is assumed only for an infinite sequence of *n*, not necessarily for all large *n*. On the contrary, we need the inequality of ideals, not only of their *supports*, i.e. of the primes containing the corresponding ideals.
- One might ask for a similar conclusion assuming only the inequality of supports. There is some answer for it, but it is of a weaker form.

Proof of the Main Theorem

The next two theorems are crucial in the proof.

Theorem 4.1

(Log Bloch-Ochiai, Nog. 1977 Hiroshima Math.J./81 Nagoya Math.J.) Let $f : \mathbb{C} \to A$ be a holomoprhic curve into a semi-abelian variety A. Then $\overline{f(\mathbb{C})}^{\text{Zar}}$ is a translate of a subgroup.

Theorem 4.2

(NWY-II (N.-Winkelmann-Yamanoi) 2008 Forum Math.)
Let f : C → A be nondegenerate;
Z ⊂ A be an algebraic cycle on A.
If codim Z = 1, ∃A ⊃ Z s.t. T_f(r, L(Z)) = N₁(r, f*Z) + o(T_f(r))||.
If codim Z ≥ 2, T_{f,Z}(r) = N(r, f*Z) + O(log rT_f(r)) = o(T_f(r))||.

Proof.

With the given f_i (i = 1, 2) in the Main Theorem we set $g = (f_1, f_2) : \mathbb{C} \to A_1 \times A_2$; $A_0 = \overline{g(\mathbb{C})}^{\text{Zar}}$ (semi-abelian variety by Log Bloch-Ochiai); $p_i : A_0 \to A_i$ be the projections; $E_i = p_i^* D_i$. We apply NWY-II, Theorem 4.2 for g and E_i .

We deduce that

- $\bullet \ E_1 \subset E_2,$
- ② $St(E_1) \subset St(E_2)$, and are finite,
- p_i are isogenies,

Characterize a polarized algebraic variety (V, D)in terms of $f^{-1}D$ or f^*D by a nondegenerate holomorphic curve $f : \mathbf{C} \to V$.

[1] Corrales-Rodorigáñez, C. and Schoof, R., The support problem and its elliptic analogue, J. Number Theory **64** (1997), 276-290.

[2] Corvaja, P. and Zannier, U., Finiteness of integral values for the ratio of two linear recurrences, Invent. Math. **149** (2002), 431-451.

[3] Noguchi, J., Holomorphic curves in algebraic varieties, Hiroshima Math. J. **7** (1977), 833-853.

[4] —, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J. **83** (1981), 213-233.

[5] —, J., Winkelmann, J. and Yamanoi, K., The second main theorem for holomorphic curves into semi-Abelian varieties II, Forum Math.**20** (2008), 469-503.

[6] Yamanoi, K., Holomorphic curves in abelian varieties and intersection with higher codimensional subvarieties, Forum Math. **16** (2004), 749-788.