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1. Introduction

Twistor theory, originated by R. Penrose [16], has been studied for more than thirty years,
and brought a large amount of harvests in many fields: differential geometry, complex geometry,
mathematical physics and so on.

Penrose-type twistor theory study a moduli space M of rational curves C in a complex man-
ifold Z, then M often carries a natural structure which is the general solution of an interesting
differential-geometric problem. Recently, in contrast, C. LeBrun and L. J. Mason investigated
a new paradigm of twistor theory. In this new theory, we study a moduli space of holomorphic
curves-with-boundary C in Z with boundaries lying on a totally real submanifold P ⊂ Z. This
framework is well adapted to many problems in global differential geometry where the general
solutions are of very low regularity.

At present, several cases of LeBrun-Mason twistor correspondences are known [8, 9, 10, 11, 14].
As a consequence of one of them, we find that there exist infinite-dimensionally many self-dual
indefinite conformal structures on S2 × S2 satisfying a certain strong global condition called
Zollfrei condition. On the other hand, K. P. Tod [17] and H. Kamada [6] independently obtained
infinitely many examples of self-dual indefinite metrics on S2 × S2 via similar method as the
Riemannian example obtained by LeBrun [7]. The natural question here is to determine whether
the self-dual metrics obtained by Tod or Kamada are Zollfrei or not, and this turns out to be
‘Yes’ (Theorem 7.1).

In the investigation of the above problem, the author obtained, using the Radon transform,
a general solution of the wave equation and the monopole equation over the de Sitter 3-space S3

1

which is a Lorentzian manifold equipped with an Einstein metric. In future, as demonstrated
in this article, LeBrun-Mason theory might take a good role for solving more complicated hy-
perbolic PDEs over pseudo-Riemannian manifolds, and for exploiting a new field of differential
geometry.

2. LeBrun-Mason correspondence

The first result obtained by LeBrun and Mason is the following.

Theorem 2.1 (LeBrun-Mason [9]). There is a one-to-one correspondence between
• Zoll projective structures [∇] on S2, and
• totally real embeddings ι : RP2 ↪→ CP2,

in a neighborhood of the standard objects.

A projective structure is an equivalence class of connections on the tangent bundle by which
the notion of (un-parametrized) geodesic is well defined, and a projective structure is called Zoll
iff all the maximal geodesics are closed. Notice that the Zoll condition is a global condition.

The correspondence in Theorem 2.1 is characterized in the following way. Suppose an em-
bedding ι is given. Then we find a moduli space M of holomorphic disks with boundaries
lying on the totally real submanifold ι(RP2) ⊂ CP2. If ι is sufficiently near to the standard
embedding, M turns out to be diffeomorphic to S2. This moduli space M is naturally equipped
with a family of closed curves each of which corresponds to the set of disks with boundaries
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passing through a fixed point p ∈ ι(RP2). Then the projective structure on M is defined so that
this family coincides to the family of geodesics.

The second result is as follows.

Theorem 2.2 (LeBrun-Mason[10]). There is a one-to-one correspondence between
• self-dual conformal structures [g] of signature (+ + −−) on S2 × S2, and
• totally real embeddings RP3 ↪→ CP3,

in a neighborhood of the standard objects.

The correspondence is characterized similarly as the case of Theorem 2.1. LeBrun and Mason
also proved the following theorem concerning to a global condition.

Theorem 2.3 (LeBrun-Mason[10]). Any self-dual metric g of signature (+ + −−) on S2 × S2

sufficiently near the standard metric is Zollfrei, i.e. all the maximal null geodesics of g are
closed.

By Theorem 2.3, the self-dual metrics appearing in the statement of Theorem 2.2 turn out to
be Zollfrei. This Zollfreiness is a key to prove the required correspondence.

Next results in the LeBrun-Mason theory are about the correspondence for Einstein-Weyl
manifolds. An Einstein-Weyl manifold is a manifold equipped with a conformal structure [g]
and a compatible torsion-free connection ∇ such that the trace-free symmetric part of the Ricci
tensor of ∇ vanish. It is known that the equations appearing in the 3-dimensional Einstein-Weyl
condition is totally integrable (see [1, 4, 14]). LeBrun-Mason type result for the Einstein-Weyl
manifolds is first obtained by the author as follows.

Theorem 2.4 (N.[14]). For any totally real embedding ι : CP1 ↪→ CP1 × CP1 sufficiently near
id × id, we obtain an Einstein-Weyl manifold (R × S2, [g],∇) of signature (− + +) as a moduli
space of holomorphic disks with boundaries on ι(CP1). Moreover ([g],∇) is space-like Zoll.

Here an Einstein-Weyl structure ([g],∇) is called space-like Zoll iff all the space-like (w.r.t.
[g]) geodesics (w.r.t. [∇]) are closed. Soon after the above result, LeBrun and Mason established
the following very strong theorem.

Theorem 2.5 (LeBrun-Mason[11]). There is a natural one-to-one correspondence between
• smooth, space-time-oriented, conformally compact, globally hyperbolic, Lorentzian Einstein-

Weyl 3-manifolds (M, [g],∇); and
• orientation-reversing diffeomorphisms ψ : CP1 → CP1.

The explanation for the conditions appearing in the above statement is omitted. We remark
that the diffeomorphism ψ defines a totally real embedding id×ψ : CP1 → CP1 ×CP1, and the
correspondence is obtained by considering the family of holomorphic disks with boundaries on



the image of this embedding. The most significant progress in Theorem 2.5 is that the complete
one-to-one correspondence is established, in contrast in Theorem 2.1 or 2.2, the correspondence
is established only for small neighborhoods of the standard objects. The conditions for Einstein-
Weyl manifolds appearing in Theorem 2.5 are expected to be equivalent to the space-like Zoll
condition, which is an interesting open problem.

3. Tod-Kamada ansatz

To construct self-dual metrics is an important problem in, for example, differential geometry,
and many mathematicians are interested in this problem. One of the most striking results
is obtained by C. LeBrun: he explicitly constructed circle-invariant positive-definite self-dual
metrics on the connected sum of CP1([7]), which is called LeBrun’s hyperbolic ansatz. In the
indefinite case, K. P. Tod constructed infinitely many examples of self-dual metrics of signature
(+ + −−) on S2 × S2 via an analogous technique with LeBrun ansatz ([17]).

On the other hand, H. Kamada investigated compact scalar-flat indefinite Kählar-surfaces
with S1-symmetry [6]. (We note that a Kählar-surface is self-dual iff scalar-flat.) Kamada proved
that such structure is allowed only on CP1 × CP1, and introduced a method to construct such
metrics. Kamada’s method is essentially similar to Tod’s construction but Kamada introduced
a stronger result (e.g. Proposition 3.2). He also constructed many examples which contains all
the examples given by Tod.

Now we recall Kamada’s construction. Let (S3
1 , gS3

1
) be the de Sitter 3-space defined by

S3
1 = {(x0, x1, x2, x3) ∈ R4 | −x2

0 + x2
1 + x2

2 + x2
3 = 1},

gS3
1

= (−dx2
0 + dx2

1 + dx2
2 + dx2

3)|S3
1
.

We remark that gS3
1

is Lorentzian, i.e. of signature (− + +), and is Einstein. We identify S3
1

with R × S2 via the bijection R × S2 → S3
1 given by

(3.1) (t, v) 7−→ (x0, x1, x2, x3) = (sinh t, cosh t (v1, v2, v3)).

Proposition 3.1 (Kamada[6]). Let V be a smooth positive function on S3
1 such that ∗dV/2π is

a closed two-form on S3
1 determining an integral class in H2(S3

1 ; R). Let M → S3
1 denote an

S1-bundle over S3
1 with connection one-form Θ whose curvature is given by

(3.2) dΘ = ∗dV.

Then gV,Θ := −V −1Θ ⊗ Θ + V gS3
1

is a self-dual indefinite metric on M.

Proposition 3.2 (Kamada[6]). Let (V, Θ) be a solution of (3.2) such that V > 0 and ∗dV
is an exact two-form. Then the metric ḡ := (cosh t)−2gV,Θ on M extends smoothly to the
compactification M ∼= S2 × S2 iff there exist smooth functions F± on S3

1
∼= R × S2 such that

(3.3) V (t, v) = 1 + e2tF−(e2t, v) and V (t, v) = 1 + e−2tF+(e−2t, v),

as t → −∞ and as t → +∞ respectively.

If ∗dV is exact, Θ is written as Θ = ds + A where A is a one-form on S3
1 and s ∈ S1 is the

fiber coordinate on M → S3
1 . Then the equation (3.2) is written as

(3.4) dA = ∗dV

which we call the monopole equation. Kamada introduced infinitely many examples of self-
dual indefinite metrics on S2 × S2 by constructing solutions (V,A) of the monopole equation
(3.4). Now the following natural question arises.

Question 3.3. Are the metrics constructed above Zollfrei? If they are Zollfrei, can we establish
the LeBrun-Mason twistor correspondence for them?

The answer is ‘Yes’. See Theorem 7.1.



4. Wave equation

The monopole equation (3.2) requires the following equation for V :

(4.1) ¤V := ∗d ∗ dV = 0,

which we call the wave equation. If we use the coordinate (t, v) on S3
1 as in (3.1), the wave

equation (4.1) is written as

(4.2)
(
− ∂2

∂t2
− 2 tanh t

∂

∂t
+ (cosh t)−2∆S2

)
V = 0,

where ∆S2 is the Laplace operator along the S2-direction of S3
1 ≅ R×S2. Notice that the wave

equation (4.2) is a hyperbolic partial differential equation.
The key for Question 3.3 is to solve the wave equation (4.1), and this is possible by using an

‘extended Radon transform’. To introduce this transform, we define

Ω(t,v) := {u ∈ S2 | u · v > tanh t}

for each (t, v) ∈ S3
1 . Notice that Ω(t,v) is an open subset on S2 bounded by a small circle. and

that by the correspondence (t, v) ↔ ∂Ω(t,v) the de Sitter space S3
1 is identified with the set of

oriented small circles on S2. Now, for any smooth function h on S2, we define functions Rh and
Qh on S3

1 by

Rh(t, v) =
1
2π

∫
∂Ω(t,v)

h dS1, Qh(t, v) =
1
2π

∫
Ω(t,v)

h dS2,

where dS1 is a natural measure on the small circle ∂Ω(t,v) of the total length 2π, and dS2 is the
standard volume form on S2. Notice that R and Q defines a linear transform C∞(S2) → C∞(S3

1).
We remark that the transform C∞(S2) → C∞(S2) given by h(v) 7→ Rh(0, v) is called the
(spherical) Radon transform or the Funk transform, and is studied deeply (see the textbook
[3]).

Let us denote the antipodal map on S2 by A. A function h ∈ C∞(S2) is called even [resp.
odd] iff h ◦ A = h [resp. h ◦ A = −h]. Similarly for the natural involution σ : S3

1 → S3
1 : (t, v) 7→

(−t,−v), a function f ∈ C∞(S3
1) is called even [resp. odd] iff f ◦ σ = f [resp. f ◦ σ = −f ]. We

also define

C∞
∗ (S2) :=

{
h ∈ S2

∣∣∣∣ ∫
S2

hdS2 = 0
}

, C∞
∗ (S3

1) :=
{

f ∈ S3
1

∣∣∣∣ ∫
S2

f(0, ·)dS2 = 0
}

.

The following Proposition is not so difficult to check.

Proposition 4.1. For any function h ∈ C∞
∗ (S2),

(1) f := Rh ∈ C∞(S3
1) is even and satisfies the following equation:

Lf :=
(
− ∂2

∂t2
+ (cosh t)−2∆S2

)
f = 0,

(2) V := Qh ∈ C∞(S3
1) is odd and satisfies the wave equation ¤V = 0.

What is more important is the converse. Making use of the uniqueness theorem for initial
value problem of hyperbolic partial differential equations (see [2]) and so on, we can prove the
following.

Theorem 4.2. (1) Let V ∈ C∞
∗ (S3

1) be a solution of the wave equation ¤V = 0. Suppose
limt→±∞ V (t, v) = 0 for every v ∈ S2. Then V is odd, and there exists a unique function
h ∈ C∞

∗ (S2) satisfying V = Qh.
(2) Let f ∈ C∞(S3

1) be a solution of the equation Lf = 0. Suppose h±(v) = limt→±∞ f(t, v)
exist and define smooth functions on S2. Then f is even and f = Rh+ holds. Moreover,
if f ∈ C∞

∗ (S3
1) then h+ ∈ C∞

∗ (S2).



5. Monopole equation

In this section, we study about the monopole equation dA = ∗dV . To adapt Proposition 3.2,
we notice to the solutions (V,A) such that V = 1+ Ṽ and limt→±∞ Ṽ (t, v) ≡ 0. Since Ṽ satisfies
the wave equation ¤Ṽ = 0, Ṽ is an odd function on S3

1 by Theorem 4.2.
On the other hand, recall that Θ = ds+A is a connection 1-form on the S1-bundle M → S3

1 .
If we change the trivialization of M by multiplying eiφ with a real function φ, then Θ is changed
into Θ + dφ. In this way, we obtain the transform (V,A) 7→ (V,A + dφ) for the monopole
solutions. We call this transform the gauge transform.

Let ∗̌ and ď be the fiberwise Hodge’s operator and fiberwise exterior derivative on S2-bundle
S3

1 = R × S2 → R.

Proposition 5.1. Let (V,A) be a solution of the monopole equation dA = ∗dV , Suppose that
limt→±∞ V (t, v) = 1. Then, by changing (V,A) by a gauge transform, we can find a smooth
function f on S3

1 satisfying
(1) f solves the equation Lf = 0,
(2) V = 1 + ∂tf , and A = −∗̌ ď f .

Conversely, for any smooth function f on S3
1 satisfying Lf = 0 and limt→±∞ f(t, v) = h±(v) ∈

C∞(S2), if we define (V,A) as in (2) above, then (V,A) solves the monopole equation.

We call f the monopole potential. Notice that we obtain f = Rh+ by Theorem 4.2. Now
we obtain the following.

Theorem 5.2. There is a natural one-to-one correspondence between the following objects:
1. [generating function]

smooth functions h ∈ C∞
∗ (S2),

2. [monopole potential]
smooth functions f ∈ C∞

∗ (S3
1) satisfying Lf = 0 and lim

t→±∞
f(t, v) = h±(v) ∈ C∞(S2),

3. [equivalence class of monopoles]
gauge equivalence classes of monopoles [(V,A)] such that lim

t→±∞
V (t, v) = 1.

The correspondence is given by

f = Rh, h = lim
t→∞

f, and (V,A) =
(
1 + ∂tf,−∗̌ ď f

)
.

For the condition (3.3), the following hold.

Proposition 5.3. Let h ∈ C∞
∗ (S2) be a generating function, and (V,A) = (1+∂tRh,−∗̌ ď Rh) be

the induced monopole solution. Then the condition (3.3) in Proposition 3.2 is always satisfied.
Thus any monopole (V,A) induced from a generating function defines an self-dual metric on
S2 × S2.

6. Standard model of the twistor correspondence

We now study the twistor space corresponding to the standard indefinite metric on S2 × S2

with S1-action. In fact, this situation is the one which is induced from the trivial monopole
solution (V, Θ) = (1, 0).

Let g0 be the product metric g0 = −p∗1h + p∗2h on S2 ×S2 where pi : S2 ×S2 → S2 is the i-th
projection and h is the standard round metric on S2. Let us define an S1-action on S2 × S2 by

θ · (v1, v2) = (ρ(θ)v1, v2) θ ∈ S1

where ρ(θ) ∈ SO(3) is a rotation of angle θ around a fixed axis. Let p± ∈ S2 be the ‘north
pole’ and the ‘south pole’ of the rotation, then the fixed point set of this S1-action is a disjoint



union of the two spheres S2
± = {p±} × S2. Putting M := (S2 × S2) \ (S2

+ ⊔ S2
−), we obtain the

S1-bundle M → S3
1 .

It is known that the twistor space corresponding to (S2 × S2, [g0]) in the sense of Theorem
2.2 is the pair (CP3, RP3). Here RP3 is the standard real submanifold which can be written as

(6.1) RP3 = {[z0 : z1 : z2 : z3] ∈ CP3 | z0 = z̄3, z1 = z̄2}.
The S1-action defined above induces a U(1)-action on RP3 as

(6.2) µ · [z0 : z1 : z2 : z3] = [µz0 : µz1 : z2 : z3] µ ∈ U(1).

This U(1)-action extends to a holomorphic C∗-action on CP3, and the fixed point set of the
C∗-action is the disjoint union of the two rational curves given by

L+ = {[z0 : z1 : z2 : z3] ∈ CP3 | z0 = z1 = 0},
L− = {[z0 : z1 : z2 : z3] ∈ CP3 | z2 = z3 = 0}.

Let us put Z := CP3 \ (L+ ⊔ L−). Then the C∗-action is free on Z, and we obtain the quotient
map

π : Z −→ CP1 × CP1 : [z0 : z1 : z2 : z3] 7−→ (η1, η2) =
(

z1

z0
,
z3

z2

)
Notice that the real submanifold RP3 is mapped by π to

(6.3) CP1 = {(η1, η2) ∈ CP1 × CP1 | η1 = η̄−1
2 }.

In this way we obtain the pair (CP1 × CP1, CP1) which is in fact the twistor space in the sense
of Theorem 2.4 or 2.5 corresponding to S3

1 equipped with the natural Einstein-Weyl structure.

M

S1

²²

⊂ S2 × S2

S3
1

(Z, RP3)

π (C∗,U(1))
²²

⊂ (CP3, RP3)

(CP1 × CP1, CP1)

space-time twistor space

7. The twistor space

Here we explain the LeBrun-Mason twistor space for the self-dual metric on S2 × S2 con-
structed in Proposition 5.3. Let h be a real-valued smooth function on S2 ∼= CP1. Then we
define

Ph := {[z0 : z1 : z2 : z3] ∈ CP3 | z0 = z̄3e
h(z1/z0), z1 = z̄2e

h(z1/z0)}
which is a deformation of the standard real submanifold (6.1). Notice that the U(1)-action
defined in (6.2) preserves Ph, and the image π(Ph) = CP1 ⊂ CP1 × CP1 is not deformed from
the standard case (6.3).

Theorem 7.1. Let h be a smooth function on S2 and (V,A) be the corresponding monopole
solution. Suppose V > 0. Then the self-dual metric on S2 × S2 induced by (V,A) is Zollfrei,
and its LeBrun-Mason twistor space is given by (CP3, Ph).

Exactly speaking, the correspondence is characterized in the following way. For given h ∈
C∞
∗ (S2), suppose V > 0 or equivalently |∂tRh(t, v)| < 1. Then there exists a family of holomor-

phic disks F = {Dx} on CP3 with boundaries on Ph such that
(1) F is parameterized by x ∈ S2 × S2;
(2) each class [Dx] ∈ H2(CP3, Ph; Z) ∼= Z gives a generator; and
(3) F foliates CP3 \ Ph.

Moreover the following holds:



(i) F induces a self-dual Zollfrei conformal structure [g] on S2 ×S2 in the sense of Theorem
2.2;

(ii) an S1-action on S2 × S2 is induced and is free on M := {x ∈ S2 × S2 | Dx ⊂ Z};
(iii) the quotient M/S1 has a natural Einstein-Weyl structure which is equivalent to the

standard S3
1 ; and

(iv) the class [g] contains the metric induced by the monopole solution (V,A) corresponding
to h.

Finally we notice to the case when the condition |∂tRh(t, v)| < 1 does not satisfied. Even in
this case, we can construct the family of holomorphic disks F = {Dx} on CP3 with boundaries
on Ph satisfying the above conditions (1) and (2). However, the condition (3) does not hold.

Proposition 7.2. If |∂tRh(t, v)| > 1 for some (t, v) ∈ S3
1 , then the family F does not give a

foliation on CP3\Ph.

This result insists that if the LeBrun-Mason twistor space (CP3, Ph) is far from the standard
one so that the critical condition |∂tRh(t, v)| < 1 does not be satisfied, then the family of
holomorphic disks ‘degenerate’, and the LeBrun-Mason correspondence does not work well at
least in the sense so far.
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