Recent Results in Pluripotential Theory

1. (Unweighted) Pluripotential Theory.
Let £ C C? be a bounded Borel set. The global

extremal function of F is given by

Vi(z) := limsup Vg(() where

(—z
Vi(z) :=sup{u(z) : u € L(C%), u <0 on E}.
Here, u € L(C?) if u € PSH(CY) and
u(z) —log|z| = 0(1), |z| — oo.
If E is compact,

1
deg(p)

Vi (z) = sup{ log [p(2)] : |lpllz < 1}.

We call the Monge-Ampere measure of V,

1
= ddV)*

the extremal measure for E if E is not pluripolar. In
this case, V}; € LT(CY) where

LT(CY = {u e L(CY : u(z) >log™ |z| + Cy}.



2. Weighted Pluripotential Theory.
Let K C C? be closed and let w be an admissible
weight function on K: w is a nonnegative, usc func-

tion with {z € K : w(z) > 0} nonpluripolar; if K is
unbounded, we assume

|z|lw(z) — 0 as |z| — o0, 2z € K.

Let () := —logw and define the weighted extremal
function

Vi o(2) == limsup Vi q(¢) where

(—z

Vi.o(2) := sup{u(z) : uw € L(C%), u < Q on K}.

Then S, := supp(px,q) is compact where

1 CY/*
HEK,Q = (27T>d(dd VK,Q)d§

1
Vic.q(2) = sup{ Jegn) 8 p(2)] : w9 Pplls,, < 1};

and
w9 ®P)p||s, = [Jw9P)p|| k.

We call w9(P)p = ¢=e(P)Qp o weighted polynomial.



3. Example.
(1) Let K = {z:|2| <1} and Q(z) = |2|*. Then
Vi.g = Q on the ball {z: |z| < 1/v2}
and
Vic.o(2) = log|z] + 1/2 — log(1/v/2)
outside this ball.

(2) Let K = C% and the same weight function Q(z) =
|z|2. One obtains the same weighted extremal
function Ve . In particular, S, is compact.

In the examples, S, = {Vk g = @}. In general,
Sw C Sy =1{z€ K: Vg o(2) > Q2)}.

Notation: We write P,, for the polynomials of degree
at most n in C¢ and

N =dimP,, = (n;—d)



4. Bernstein-Markov Measures.

Given a compact set K C C? and a measure v
on K, we say that (K, v) satisfies a Bernstein-Markov
property if for all p,, € P,

pnllx < My||pnl|L2) with limsup M /™ = 1.

n—oo
If (K, v) satisfies the Bernstein-Markov inequality then

1
lim —log K (2, 2) = Vk(2) (weak asymptotics)

n—oo 2N

locally uniformly on C? where

Byi(2) = K}i(22) = Y_1a]" (=)

is the n — th Bergman function of K,v and

N
KX (20 =Y ¢ ()™ ()
j=1

where {q§n)}j:1,,.,, ~ 1s an orthonormal basis for P,
with respect to L?(v).



5. Weighted Bernstein-Markov Measures.

For K C C% compact, w = e~ % an admissible
weight function on K, and v a measure on K, we say
that the triple (K, v, Q) satisfies a weighted Bernstein-
Markov property if for all p,, € Py,

W'l < My||lw"pnllr2y with lim sup MM =1,
(v) n

n—oo

For such (K, v, Q) we have that

1
lim —log K" (2,2) = Vk.g(2) (weak asymptotics)

n—oo 2N

locally uniformly on C? where
N
By (2) = K (z, 2)w(2)™ = ) 1a;"” () Pw(z)*"
j=1

is the n — th Bergman function of K,w, v and

N
K5 (z,0) =Y ¢ (2)d™ (0.
j=1

Here, {q§n)}j:1,_,,,N is an orthonormal basis for P,
with respect to the weighted L*—norm |[w"py||L2(,).-



6. Strong Bergman Asymptotics.
Strong Bergman asymptotics says that if (K, u, w)
satisfies a weighted Bernstein-Markov inequality, then

1
NB‘nf’wd,u — UK. weak- * . (SBA)

(SBA) follows from the main result of Berman and
Boucksom (Theorem 2). A key ingredient in the proof
of Theorem 2 is a special case of (SBA):

Theorem 1 (Berman, IUMJ). Strong Bergman
asymptotics holds if K = C%, Q(z) > (1 + ¢€)log |2/,
Q € CH1(C?). That is,

1 1
_BCUd,w
N T (27)d

1 1

— B¥Wd,W |

(dd°Viga o) weak — *; indeed,

N (ddCVCd,Q)d weak — *

where D = {Vca g = Q} and wq is Lebesgue measure
on C9.

Moreover, Vaa g € CH1(C?) and (dd“Vga o) is abso-
lutely continuous.

What is Theorem 27 Sorry — first we need some
more definitions!



7. Ball Volume Ratios and Gram Determi-
nants.

Given an N —dimensional vector space V (e.g.,
V =P,), and two subsets A, B in V, we write

vol(A)
vol(B)

A : B| :=log

Here, “vol” denotes any (Haar) measure on V. If V
is equipped with two Hermitian inner products h, b/,
and B, B’ are the corresponding unit balls, then

[B . B/] = log det[h’(ei, ej)]i,jzl,m,N

where €1, ..., en is an h—orthonormal basis for V. Thus
|B : B'| is a Gram determinant with respect to the b’
inner product relative to the h—orthonormal basis.

For E C C% closed and w = e~ % admissible
weight on F, let

B¥(E,nQ) = {pn € Py : |pn(2)e "?*)| <1 on E}
be a weighted L°°—ball in P,,. If i is a measure on F,
B?(E, 11,nQ) := {pn € Py : / pn|?e 2 Cdu < 1}

E
is a weighted L?—ball in P,,.
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8. Asymptotics of Ball Volume Ratios: Theo-
rem 2.

(Remark: Ball volume ratios trivially satisfy a cocycle
condition: [A: B]+ [B:C]+[C: A] =0.)

Given ), Q" admissible weights on F/, E’, consider
the sequence

1 o0 . o0 / /
W[B (E,nQ) : B>(E",nQ")|}n=1,...

and if ;4 and p/ are measures on E and E’ with both
(F,u, Q) and (E',u', Q") satisfying a weighted BM
property, consider the sequence

1

Q’II—N[BZ(E7 :up nQ) : Bz(Ela :u/7 ’nQ’)]}nzl,...-

Theorem 2. Both sequences converge to

1
(d+1)(2n)

EVe.o Ve )

Question: What is £7



9. A Mabuchi-Aubin-type Energy: £.
For u,v € LT(C?),

d . .
E(u,v) = /C (u—v) Z(ddcu)J A (ddv)?=7

J

Fixing v, u — &(u,v) is a primitive for the complex
Monge-Ampere operator (dd°u)?: if v’ € L*T(C?) and
for 0 <t <1 we define

f(t) =Eu+tu —u),v),
then f'(t) exists for 0 <t <1 and
1) = (d+1) /Cd(u' — ) (dd°[u + t(u' —u)])”.

In particular,

F(0) = (d+ 1)/ (0 — ) (ddeu)?,

Cd

Note that f’(¢) is independent of v. As a corollary,
we obtain the cocycle property: Let u,v,w € LT (C?).
Then

E(u,v) + E(v,w) + E(w,u) = 0.



10. Differentiability of £ o P.
New notation: given an admissible weight w =
e~ ® on K, write

P(Q) = Pr(Q) := Vi o

Theorem 3. Let v € LT(C%. For w = ¢ @ an
admissible weight on K and u € C(K), let

F(t) = E&(P(Q + tu),v)

fort € R. Then

F/(t) = (d+1) / w(dd°P(Q + tu))*.

Cd
In particular,
F'(0) =(d+1) /Cd u(dch(Q))d.

Again, F’(t) is independent of v. This is the
key ingredient in a variational approach to complex
Monge-Ampere (Berman, Boucksom, Guedj, Zeriahi).
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11. Proof of Differentiability of £ o P.
Take F'(t) := E(P(Q+tu), P(Q)). Then F(0) =0

and we want to show

F'(0) = (d+ 1) / u(dd® P(Q))°.

Cd

It suffices to show

E(P(Q+1tu), P(Q)) = (d+1)t / w(dd°P(Q)) + o(t).

Cd

This follows from two ingredients:

E(P(Q+tu), P(Q)) = (4)

(@+1) [ [P(Q+tu) = PIQId"P(Q))" + ol

and

lim (dd°P(Q))* =0 (B)
t=0JD(0)-D(t)

where

D(t):=={z€ C*: P(Q+tu)(z) = (Q+tu)(2)}.

11



12. Proof of Differentiability of £ o P (cont’d).
We have supp(ddP(Q))? c D(0), hence:

E(P(Q+tw), P(Q)) = (from (A))
(@+1) [ [P(Q+tu) = PIQId" P(Q))" + ol
=@+ [ (P@+ ) - PQIATPQ)’
waen) [ (P@Qr)-PQIP@) oty
=@ [ P@ ) - QU PQ)

H(d+ 1)t / w(dd°P(Q))* + o(#)

D(0)ND(t)

since P(Q+tu) — P(Q) = tu on D(0)N D(t). Now use
(B) together with the observation that

[P(Q +tu) — P(Q)] = 0(¢)

on the bounded set D(0) — D(t).
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13. Proof of Theorem 2.
We will use an integrated version of the previous
result:

E(P(Q+u), P(Q)) =
(d+1xl;dﬁlﬂuuw¢wg+mnﬂ. (1)

Given a closed set K, an admissible weight w =
e~@ on K, and a function v € C(K), we consider
the perturbed weight w; := wexp(—tu). Equivalently,

Q: == Q + tu. Let {u,} be a sequence of measures on
K. We set

() = (d+1)

-~ 2dnN

log det(Ghn"t)

where
ng’wt — Gﬁn’wt <5n> — [<pi7pj>,un,wt] c CNXN

is the Gram matrixz with respect to the weighted inner
product

(F, oo = /K F(2)9 (2w (=) dpi

and a fixed basis 3, := {p1,p2,---,pn} of P,. Then

Cd+1

o) = G [ B @ (1)
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14. Sketch of Proof of (II).
Fixing a basis 3, := {p1,...,pn} of P, we set

(d+1)
fn(2) Sy 108 det(Grm™)
where G#nWt = GEnt(3,,) and we want to show

d—+1
fu) = 1=
0= /.

Using log det(G#n"t) = trace log(GHn"t),

2dn N d

/ = — 1 Hn, Wt =
I (1) = — & race (1og(Gl )

d
_t 1 Hon , Wt
race (dt og(GH ))

u(z) BE"t (2)dpy,. (IT)

d
—trace ((ngﬂ”t ) -1 aGﬁn ’wt)

= 2ntrace<(G‘;”’wt)_1[/sz-(z)pj(z)u(z)w(z)%.

exp(—2ntu(z))duy, | ).

Now use
trace(ABC') = trace(CAB) = CAB

and some linear algebra.
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15. Proof of Theorem 2. (cont’d)

First do the L?—case with £ = E' = C% and
Q, Q" as in Theorem 1 with du = du’ = wy. Take u =
Q'—Q and for 0 <t < 1let we(z) := w(z) exp(—tu(z)).
By Theorem 1,

1 1
NBsd,wtwd — o) (dd°P(Q + tu))? weak — .
P— (d+1) Hn , Wt
Define f,(t) := — 55 log det(GL»"*) where we take

y, = wq for all n and the basis 3, := {p1,...,pn} of
P, is chosen to be an orthonormal basis with respect
to ||w"p||r2(u)- Then f,(0) = 0. Using (II)

d 1
lim T/ fr(t) = / u (QW)d(ddCP(Q—ktu))d.

Integrate the expression for f/(t) from ¢t =0 to t = 1:

L [fa)] = 51 lo det(G)

d—l—l

—1

=N ——[B*(C*% wy,nQ) : B>(C%, wg,nQ")]

1 1
= — [ at / B2 (Q — Q' )wq
N Ji=o
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Apply Theorem 1. again to conclude that

—1
W[B2(Cd,wd,nQ) : B2(C% wg,nQ)]
1 1
_ 1 dt/Bgd’wt Q- Q')wa.
N/ ( Jwq

 Jio dt/(Q ) (271r)d(ddCP(Q + tu))*.

But by (I), the integrated version of differentiability of
& o P, we have

[+ [t—O dt/(Q ~9) (271T)d (dd°P(Q + tu))* =
1

5t (P@). P@Q)

which proves Theorem 2. in the L?—case when E =
E' = C? with Q, Q" € C%(C?) as in Theorem 1. with
du = dy' = wgy. By the weighted Bernstein-Markov
property this also proves the L>°—case when £ = E' =
C? and Q,Q’ € C?(C?) as in Theorem 1.

The remaining cases follow from approximation
and the cocycle properties of £ and the ball volume
ratios.
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16.

(1)

Applications.
Theorem 2. implies several important results:

a proof of Rumely’s formula relating the trans-
finite diameter §(K) of a compact set K in C¢
with certain integrals involving the Robin func-
tion px(z) := limsup)y_[Vg(Az) — log|A|] of
K, as well as weighted versions of the formula;

a proof of the weighted Fekete conjecture: for each

n, take an n—th weighted Fekete set xﬁ”), e :UE\?)

for K and w and let pu,, := % Z;V:l 0 (. Then

1 CY/*
fn = BE.Q = 0 (dd°Vi o) weak — x;

analogous results to (2) for (weighted) optimal
measures (defined by maximizing certain Gram
determinants);

general results on strong Bergman asymptotics for
BM pairs (K, ) where p is a measure on K, as
well as for weighted BM triples (K, u, Q); i.e., we
have

1
NBﬁ,f’wd,u — UK. weak- x . (SBA)
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