Recent Results in Pluripotential Theory

1. (Unweighted) Pluripotential Theory.

Let $E \subset \mathbf{C}^{d}$ be a bounded Borel set. The global extremal function of E is given by

$$
V_{E}^{*}(z):=\limsup _{\zeta \rightarrow z} V_{E}(\zeta) \text { where }
$$

$$
V_{E}(z):=\sup \left\{u(z): u \in L\left(\mathbf{C}^{d}\right), u \leq 0 \text { on } E\right\}
$$

Here, $u \in L\left(\mathbf{C}^{d}\right)$ if $u \in \operatorname{PSH}\left(\mathbf{C}^{d}\right)$ and

$$
u(z)-\log |z|=0(1),|z| \rightarrow \infty
$$

If E is compact,

$$
V_{E}(z)=\sup \left\{\frac{1}{\operatorname{deg}(p)} \log |p(z)|:\|p\|_{E} \leq 1\right\}
$$

We call the Monge-Ampere measure of V_{E}^{*},

$$
\mu_{E}:=\frac{1}{(2 \pi)^{d}}\left(d d^{c} V_{E}^{*}\right)^{d}
$$

the extremal measure for E if E is not pluripolar. In this case, $V_{E}^{*} \in L^{+}\left(\mathbf{C}^{d}\right)$ where

$$
L^{+}\left(\mathbf{C}^{d}\right)=\left\{u \in L\left(\mathbf{C}^{d}\right): u(z) \geq \log ^{+}|z|+C_{u}\right\}
$$

2. Weighted Pluripotential Theory.

Let $K \subset \mathbf{C}^{d}$ be closed and let w be an admissible weight function on $K: w$ is a nonnegative, usc function with $\{z \in K: w(z)>0\}$ nonpluripolar; if K is unbounded, we assume

$$
|z| w(z) \rightarrow 0 \text { as }|z| \rightarrow \infty, \quad z \in K
$$

Let $Q:=-\log w$ and define the weighted extremal function

$$
V_{K, Q}^{*}(z):=\limsup _{\zeta \rightarrow z} V_{K, Q}(\zeta) \text { where }
$$

$$
V_{K, Q}(z):=\sup \left\{u(z): u \in L\left(\mathbf{C}^{d}\right), u \leq Q \text { on } K\right\} .
$$

Then $S_{w}:=\operatorname{supp}\left(\mu_{K, Q}\right)$ is compact where

$$
\mu_{K, Q}:=\frac{1}{(2 \pi)^{d}}\left(d d^{c} V_{K, Q}^{*}\right)^{d}
$$

$V_{K, Q}(z)=\sup \left\{\frac{1}{\operatorname{deg}(p)} \log |p(z)|:\left\|w^{\operatorname{deg}(p)} p\right\|_{S_{w}} \leq 1\right\} ;$
and

$$
\left\|w^{\operatorname{deg}(p)} p\right\|_{S_{w}}=\left\|w^{\operatorname{deg}(p)} p\right\|_{K}
$$

We call $w^{\operatorname{deg}(p)} p=e^{-\operatorname{deg}(p) Q} p$ a weighted polynomial.
3. Example.
(1) Let $K=\{z:|z| \leq 1\}$ and $Q(z)=|z|^{2}$. Then

$$
V_{K, Q}=Q \text { on the ball }\{z:|z| \leq 1 / \sqrt{2}\}
$$

and

$$
V_{K, Q}(z)=\log |z|+1 / 2-\log (1 / \sqrt{2})
$$

outside this ball.
(2) Let $K=\mathbf{C}^{d}$ and the same weight function $Q(z)=$ $|z|^{2}$. One obtains the same weighted extremal function $V_{\mathbf{C}^{d}, Q}$. In particular, S_{w} is compact.

In the examples, $S_{w}=\left\{V_{K, Q}=Q\right\}$. In general,

$$
S_{w} \subset S_{w}^{*}:=\left\{z \in K: V_{K, Q}^{*}(z) \geq Q(z)\right\}
$$

Notation: We write \mathcal{P}_{n} for the polynomials of degree at most n in \mathbf{C}^{d} and

$$
N=\operatorname{dim} \mathcal{P}_{n}=\binom{n+d}{d}
$$

4. Bernstein-Markov Measures.

Given a compact set $K \subset \mathbf{C}^{d}$ and a measure ν on K, we say that (K, ν) satisfies a Bernstein-Markov property if for all $p_{n} \in \mathcal{P}_{n}$,

$$
\left\|p_{n}\right\|_{K} \leq M_{n}\left\|p_{n}\right\|_{L^{2}(\nu)} \text { with } \limsup _{n \rightarrow \infty} M_{n}^{1 / n}=1
$$

If (K, ν) satisfies the Bernstein-Markov inequality then

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n} \log K_{n}^{\nu}(z, z)=V_{K}(z)(\text { weak asymptotics })
$$

locally uniformly on \mathbf{C}^{d} where

$$
B_{n}^{\nu}(z):=K_{n}^{\nu}(z, z)=\sum_{j=1}^{N}\left|q_{j}^{(n)}(z)\right|^{2}
$$

is the $n-t h$ Bergman function of K, ν and

$$
K_{n}^{\nu}(z, \zeta):=\sum_{j=1}^{N} q_{j}^{(n)}(z) \overline{q_{j}^{(n)}(\zeta)}
$$

where $\left\{q_{j}^{(n)}\right\}_{j=1, \ldots, N}$ is an orthonormal basis for \mathcal{P}_{n} with respect to $L^{2}(\nu)$.

5. Weighted Bernstein-Markov Measures.

For $K \subset \mathbf{C}^{d}$ compact, $w=e^{-Q}$ an admissible weight function on K, and ν a measure on K, we say that the triple (K, ν, Q) satisfies a weighted BernsteinMarkov property if for all $p_{n} \in \mathcal{P}_{n}$,
$\left\|w^{n} p_{n}\right\|_{K} \leq M_{n}\left\|w^{n} p_{n}\right\|_{L^{2}(\nu)}$ with $\limsup _{n \rightarrow \infty} M_{n}^{1 / n}=1$.

For such (K, ν, Q) we have that
$\lim _{n \rightarrow \infty} \frac{1}{2 n} \log K_{n}^{\nu, w}(z, z)=V_{K, Q}(z)$ (weak asymptotics)
locally uniformly on \mathbf{C}^{d} where

$$
B_{n}^{\nu, w}(z):=K_{n}^{\nu, w}(z, z) w(z)^{2 n}=\sum_{j=1}^{N}\left|q_{j}^{(n)}(z)\right|^{2} w(z)^{2 n}
$$

is the $n-t h$ Bergman function of K, w, ν and

$$
K_{n}^{\nu, w}(z, \zeta):=\sum_{j=1}^{N} q_{j}^{(n)}(z) \overline{q_{j}^{(n)}(\zeta)}
$$

Here, $\left\{q_{j}^{(n)}\right\}_{j=1, \ldots, N}$ is an orthonormal basis for \mathcal{P}_{n} with respect to the weighted $L^{2}-$ norm $\left\|w^{n} p_{n}\right\|_{L^{2}(\nu)}$.

6. Strong Bergman Asymptotics.

Strong Bergman asymptotics says that if (K, μ, w) satisfies a weighted Bernstein-Markov inequality, then

$$
\begin{equation*}
\frac{1}{N} B_{n}^{\mu, w} d \mu \rightarrow \mu_{K, Q} \text { weak- } * \tag{SBA}
\end{equation*}
$$

(SBA) follows from the main result of Berman and Boucksom (Theorem 2). A key ingredient in the proof of Theorem 2 is a special case of (SBA):

Theorem 1 (Berman, IUMJ). Strong Bergman asymptotics holds if $K=\mathbf{C}^{d}, Q(z) \geq(1+\epsilon) \log |z|$, $Q \in C^{1,1}\left(\mathbf{C}^{d}\right)$. That is,

$$
\begin{gathered}
\frac{1}{N} B_{n}^{\omega_{d}, w} \omega_{d} \rightarrow \frac{1}{(2 \pi)^{d}}\left(d d^{c} V_{\mathbf{C}^{d}, Q}\right)^{d} \text { weak }-* ; \text { indeed }, \\
\frac{1}{N} B_{n}^{\omega_{d}, w} \cdot \chi_{D} \omega_{d} \rightarrow \frac{1}{(2 \pi)^{d}}\left(d d^{c} V_{\mathbf{C}^{d}, Q}\right)^{d} \text { weak }-*
\end{gathered}
$$

where $D=\left\{V_{\mathbf{C}^{d}, Q}=Q\right\}$ and ω_{d} is Lebesgue measure on \mathbf{C}^{d}.

Moreover, $V_{\mathbf{C}^{d}, Q} \in C^{1,1}\left(\mathbf{C}^{d}\right)$ and $\left(d d^{c} V_{\mathbf{C}^{d}, Q}\right)^{d}$ is absolutely continuous.

What is Theorem 2? Sorry - first we need some more definitions!
7. Ball Volume Ratios and Gram Determinants.

Given an N-dimensional vector space V (e.g., $V=\mathcal{P}_{n}$, and two subsets A, B in V, we write

$$
[A: B]:=\log \frac{\operatorname{vol}(A)}{\operatorname{vol}(B)}
$$

Here, "vol" denotes any (Haar) measure on V. If V is equipped with two Hermitian inner products h, h^{\prime}, and B, B^{\prime} are the corresponding unit balls, then

$$
\left[B: B^{\prime}\right]=\log \operatorname{det}\left[h^{\prime}\left(e_{i}, e_{j}\right)\right]_{i, j=1, \ldots, N}
$$

where e_{1}, \ldots, e_{N} is an h-orthonormal basis for V. Thus [$B: B^{\prime}$] is a Gram determinant with respect to the h^{\prime} inner product relative to the h-orthonormal basis.

For $E \subset \mathbf{C}^{d}$ closed and $w=e^{-Q}$ admissible weight on E, let

$$
\mathcal{B}^{\infty}(E, n Q):=\left\{p_{n} \in \mathcal{P}_{n}:\left|p_{n}(z) e^{-n Q(z)}\right| \leq 1 \text { on } E\right\}
$$

be a weighted L^{∞}-ball in \mathcal{P}_{n}. If μ is a measure on E,

$$
\mathcal{B}^{2}(E, \mu, n Q):=\left\{p_{n} \in \mathcal{P}_{n}: \int_{E}\left|p_{n}\right|^{2} e^{-2 n Q} d \mu \leq 1\right\}
$$

is a weighted L^{2}-ball in \mathcal{P}_{n}.
8. Asymptotics of Ball Volume Ratios: Theorem 2.
(Remark: Ball volume ratios trivially satisfy a cocycle condition: $[A: B]+[B: C]+[C: A]=0$.)

Given Q, Q^{\prime} admissible weights on E, E^{\prime}, consider the sequence

$$
\left\{\frac{1}{2 n N}\left[\mathcal{B}^{\infty}(E, n Q): \mathcal{B}^{\infty}\left(E^{\prime}, n Q^{\prime}\right)\right]\right\}_{n=1, \ldots}
$$

and if μ and μ^{\prime} are measures on E and E^{\prime} with both (E, μ, Q) and $\left(E^{\prime}, \mu^{\prime}, Q^{\prime}\right)$ satisfying a weighted BM property, consider the sequence

$$
\left\{\frac{1}{2 n N}\left[\mathcal{B}^{2}(E, \mu, n Q): \mathcal{B}^{2}\left(E^{\prime}, \mu^{\prime}, n Q^{\prime}\right)\right]\right\}_{n=1, \ldots}
$$

Theorem 2. Both sequences converge to

$$
\frac{1}{(d+1)(2 \pi)^{d}} \mathcal{E}\left(V_{E, Q}^{*}, V_{E^{\prime}, Q^{\prime}}^{*}\right) .
$$

Question: What is \mathcal{E} ?

9. A Mabuchi-Aubin-type Energy: \mathcal{E}. For $u, v \in L^{+}\left(\mathbf{C}^{d}\right)$,

$$
\mathcal{E}(u, v):=\int_{\mathbf{C}^{d}}(u-v) \sum_{j=0}^{d}\left(d d^{c} u\right)^{j} \wedge\left(d d^{c} v\right)^{d-j} .
$$

Fixing $v, u \rightarrow \mathcal{E}(u, v)$ is a primitive for the complex Monge-Ampere operator $\left(d d^{c} u\right)^{d}$: if $u^{\prime} \in L^{+}\left(\mathbf{C}^{d}\right)$ and for $0 \leq t \leq 1$ we define

$$
f(t):=\mathcal{E}\left(u+t\left(u^{\prime}-u\right), v\right)
$$

then $f^{\prime}(t)$ exists for $0 \leq t \leq 1$ and

$$
f^{\prime}(t)=(d+1) \int_{\mathbf{C}^{d}}\left(u^{\prime}-u\right)\left(d d^{c}\left[u+t\left(u^{\prime}-u\right)\right]\right)^{d}
$$

In particular,

$$
f^{\prime}(0)=(d+1) \int_{\mathbf{C}^{d}}\left(u^{\prime}-u\right)\left(d d^{c} u\right)^{d}
$$

Note that $f^{\prime}(t)$ is independent of v. As a corollary, we obtain the cocycle property: Let $u, v, w \in L^{+}\left(\mathbf{C}^{d}\right)$. Then

$$
\mathcal{E}(u, v)+\mathcal{E}(v, w)+\mathcal{E}(w, u)=0
$$

10. Differentiability of $\mathcal{E} \circ P$.

New notation: given an admissible weight $w=$ e^{-Q} on K, write

$$
P(Q)=P_{K}(Q):=V_{K, Q}^{*}
$$

Theorem 3. Let $v \in L^{+}\left(\mathbf{C}^{d}\right)$. For $w=e^{-Q}$ an admissible weight on K and $u \in C(K)$, let

$$
F(t):=\mathcal{E}(P(Q+t u), v)
$$

for $t \in \mathbf{R}$. Then

$$
F^{\prime}(t)=(d+1) \int_{\mathbf{C}^{d}} u\left(d d^{c} P(Q+t u)\right)^{d}
$$

In particular,

$$
F^{\prime}(0)=(d+1) \int_{\mathbf{C}^{d}} u\left(d d^{c} P(Q)\right)^{d}
$$

Again, $F^{\prime}(t)$ is independent of v. This is the key ingredient in a variational approach to complex Monge-Ampere (Berman, Boucksom, Guedj, Zeriahi).
11. Proof of Differentiability of $\mathcal{E} \circ P$.

Take $F(t):=\mathcal{E}(P(Q+t u), P(Q))$. Then $F(0)=0$ and we want to show

$$
F^{\prime}(0)=(d+1) \int_{\mathbf{C}^{d}} u\left(d d^{c} P(Q)\right)^{d}
$$

It suffices to show
$\mathcal{E}(P(Q+t u), P(Q))=(d+1) t \int_{\mathbf{C}^{d}} u\left(d d^{c} P(Q)\right)^{d}+o(t)$.
This follows from two ingredients:

$$
\begin{gather*}
\mathcal{E}(P(Q+t u), P(Q))= \tag{A}\\
(d+1) \int_{\mathbf{C}^{d}}[P(Q+t u)-P(Q)]\left(d d^{c} P(Q)\right)^{d}+o(t)
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{D(0)-D(t)}\left(d d^{c} P(Q)\right)^{d}=0 \tag{B}
\end{equation*}
$$

where

$$
D(t):=\left\{z \in \mathbf{C}^{d}: P(Q+t u)(z)=(Q+t u)(z)\right\}
$$

12. Proof of Differentiability of $\mathcal{E} \circ P$ (cont'd). We have $\operatorname{supp}\left(d d^{c} P(Q)\right)^{d} \subset D(0)$, hence:

$$
\begin{gathered}
\mathcal{E}(P(Q+t u), P(Q))=(\text { from }(\mathrm{A})) \\
(d+1) \int_{\mathbf{C}^{d}}[P(Q+t u)-P(Q)]\left(d d^{c} P(Q)\right)^{d}+o(t) \\
=(d+1) \int_{D(0)-D(t)}[P(Q+t u)-P(Q)]\left(d d^{c} P(Q)\right)^{d} \\
+(d+1) \int_{D(0) \cap D(t)}[P(Q+t u)-P(Q)]\left(d d^{c} P(Q)\right)^{d}+o(t) \\
=(d+1) \int_{D(0)-D(t)}[P(Q+t u)-P(Q)]\left(d d^{c} P(Q)\right)^{d} \\
+(d+1) t \int_{D(0) \cap D(t)} u\left(d d^{c} P(Q)\right)^{d}+o(t)
\end{gathered}
$$

since $P(Q+t u)-P(Q)=t u$ on $D(0) \cap D(t)$. Now use (B) together with the observation that

$$
|P(Q+t u)-P(Q)|=0(t)
$$

on the bounded set $D(0)-D(t)$.

13. Proof of Theorem 2.

We will use an integrated version of the previous result:

$$
\begin{gather*}
\mathcal{E}(P(Q+u), P(Q))= \\
(d+1) \int_{t=0}^{1} d t \int_{\mathbf{C}^{d}} u\left(d d^{c} P(Q+t u)\right)^{d} \tag{I}
\end{gather*}
$$

Given a closed set K, an admissible weight $w=$ e^{-Q} on K, and a function $u \in C(K)$, we consider the perturbed weight $w_{t}:=w \exp (-t u)$. Equivalently, $Q_{t}:=Q+t u$. Let $\left\{\mu_{n}\right\}$ be a sequence of measures on K. We set

$$
f_{n}(t):=-\frac{(d+1)}{2 \operatorname{dnN}} \log \operatorname{det}\left(G_{n}^{\mu_{n}, w_{t}}\right)
$$

where

$$
G_{n}^{\mu_{n}, w_{t}}=G_{n}^{\mu_{n}, w_{t}}\left(\beta_{n}\right):=\left[\left\langle p_{i}, p_{j}\right\rangle_{\mu_{n}, w_{t}}\right] \in \mathbf{C}^{N \times N}
$$

is the Gram matrix with respect to the weighted inner product

$$
\langle f, g\rangle_{\mu_{n}, w_{t}}:=\int_{K} f(z) \overline{g(z)} w_{t}(z)^{2 n} d \mu_{n}
$$

and a fixed basis $\beta_{n}:=\left\{p_{1}, p_{2}, \cdots, p_{N}\right\}$ of \mathcal{P}_{n}. Then

$$
\begin{equation*}
f_{n}^{\prime}(t)=\frac{d+1}{d N} \int_{K} u(z) B_{n}^{\mu_{n}, w_{t}}(z) d \mu_{n} \tag{II}
\end{equation*}
$$

14. Sketch of Proof of (II).

Fixing a basis $\beta_{n}:=\left\{p_{1}, \ldots, p_{N}\right\}$ of \mathcal{P}_{n}, we set

$$
f_{n}(t):=-\frac{(d+1)}{2 \operatorname{dnN}} \log \operatorname{det}\left(G_{n}^{\mu_{n}, w_{t}}\right)
$$

where $G_{n}^{\mu_{n}, w_{t}}=G_{n}^{\mu_{n}, w_{t}}\left(\beta_{n}\right)$ and we want to show

$$
\begin{equation*}
f_{n}^{\prime}(t)=\frac{d+1}{d N} \int_{K} u(z) B_{n}^{\mu_{n}, w_{t}}(z) d \mu_{n} \tag{II}
\end{equation*}
$$

Using log $\operatorname{det}\left(G_{n}^{\mu_{n}, w_{t}}\right)=\operatorname{trace} \log \left(G_{n}^{\mu_{n}, w_{t}}\right)$,

$$
\begin{gathered}
\frac{2 d n N}{d+1} f_{n}^{\prime}(t)=-\frac{d}{d t} \operatorname{trace}\left(\log \left(G_{n}^{\mu_{n}, w_{t}}\right)\right)= \\
-\operatorname{trace}\left(\frac{d}{d t} \log \left(G_{n}^{\mu_{n}, w_{t}}\right)\right) \\
-\operatorname{trace}\left(\left(G_{n}^{\mu_{n}, w_{t}}\right)^{-1} \frac{d}{d t} G_{n}^{\mu_{n}, w_{t}}\right) \\
=2 n \operatorname{trace}\left((G _ { n } ^ { \mu _ { n } , w _ { t } }) ^ { - 1 } \left[\int_{K} p_{i}(z) \overline{p_{j}(z)} u(z) w(z)^{2 n} .\right.\right. \\
\left.\left.\exp (-2 n t u(z)) d \mu_{n}\right]\right) .
\end{gathered}
$$

Now use

$$
\operatorname{trace}(A B C)=\operatorname{trace}(C A B)=C A B
$$

and some linear algebra.

15. Proof of Theorem 2. (cont'd)

First do the L^{2}-case with $E=E^{\prime}=\mathbf{C}^{d}$ and Q, Q^{\prime} as in Theorem 1 with $d \mu=d \mu^{\prime}=\omega_{d}$. Take $u=$ $Q^{\prime}-Q$ and for $0 \leq t \leq 1$ let $w_{t}(z):=w(z) \exp (-t u(z))$. By Theorem 1,

$$
\frac{1}{N} B_{n}^{\omega_{d}, w_{t}} \omega_{d} \rightarrow \frac{1}{(2 \pi)^{d}}\left(d d^{c} P(Q+t u)\right)^{d} \text { weak }-* .
$$

Define $f_{n}(t):=-\frac{(d+1)}{2 d n N} \log \operatorname{det}\left(G_{n}^{\mu_{n}, w_{t}}\right)$ where we take $\mu_{n}:=\omega_{d}$ for all n and the basis $\beta_{n}:=\left\{p_{1}, \ldots, p_{N}\right\}$ of \mathcal{P}_{n} is chosen to be an orthonormal basis with respect to $\left\|w^{n} p\right\|_{L^{2}(\mu)}$. Then $f_{n}(0)=0$. Using (II)

$$
\lim _{n \rightarrow \infty} \frac{d}{d+1} f_{n}^{\prime}(t)=\int u \frac{1}{(2 \pi)^{d}}\left(d d^{c} P(Q+t u)\right)^{d}
$$

Integrate the expression for $f_{n}^{\prime}(t)$ from $t=0$ to $t=1$:

$$
\begin{gathered}
\frac{d}{d+1}\left[f_{n}(1)\right]=\frac{-1}{2 n N} \log \operatorname{det}\left(G_{n}^{\mu_{n}, w^{\prime}}\right) \\
=\frac{-1}{2 n N}\left[\mathcal{B}^{2}\left(\mathbf{C}^{d}, \omega_{d}, n Q\right): \mathcal{B}^{2}\left(\mathbf{C}^{d}, \omega_{d}, n Q^{\prime}\right)\right] \\
=\frac{1}{N} \int_{t=0}^{1} d t \int B_{n}^{\omega_{d}, w_{t}}\left(Q-Q^{\prime}\right) \omega_{d} .
\end{gathered}
$$

Apply Theorem 1. again to conclude that

$$
\begin{gathered}
\frac{-1}{2 n N}\left[\mathcal{B}^{2}\left(\mathbf{C}^{d}, \omega_{d}, n Q\right): \mathcal{B}^{2}\left(\mathbf{C}^{d}, \omega_{d}, n Q^{\prime}\right)\right] \\
=\frac{1}{N} \int_{t=0}^{1} d t \int B_{n}^{\omega_{d}, w_{t}}\left(Q-Q^{\prime}\right) \omega_{d} \\
\rightarrow \int_{t=0}^{1} d t \int\left(Q-Q^{\prime}\right) \frac{1}{(2 \pi)^{d}}\left(d d^{c} P(Q+t u)\right)^{d} .
\end{gathered}
$$

But by (I), the integrated version of differentiability of $\mathcal{E} \circ P$, we have

$$
\begin{gathered}
(d+1) \int_{t=0}^{1} d t \int\left(Q-Q^{\prime}\right) \frac{1}{(2 \pi)^{d}}\left(d d^{c} P(Q+t u)\right)^{d}= \\
\frac{1}{(2 \pi)^{d}} \mathcal{E}\left(P\left(Q^{\prime}\right), P(Q)\right)
\end{gathered}
$$

which proves Theorem 2. in the L^{2}-case when $E=$ $E^{\prime}=\mathbf{C}^{d}$ with $Q, Q^{\prime} \in C^{2}\left(\mathbf{C}^{d}\right)$ as in Theorem 1. with $d \mu=d \mu^{\prime}=\omega_{d}$. By the weighted Bernstein-Markov property this also proves the L^{∞}-case when $E=E^{\prime}=$ \mathbf{C}^{d} and $Q, Q^{\prime} \in C^{2}\left(\mathbf{C}^{d}\right)$ as in Theorem 1.

The remaining cases follow from approximation and the cocycle properties of \mathcal{E} and the ball volume ratios.

16. Applications.

Theorem 2. implies several important results:
(1) a proof of Rumely's formula relating the transfinite diameter $\delta(K)$ of a compact set K in \mathbf{C}^{d} with certain integrals involving the Robin function $\rho_{K}(z):=\lim \sup _{|\lambda| \rightarrow \infty}\left[V_{K}^{*}(\lambda z)-\log |\lambda|\right]$ of K, as well as weighted versions of the formula;
(2) a proof of the weighted Fekete conjecture: for each n, take an $n-$ th weighted Fekete set $x_{1}^{(n)}, \ldots, x_{N}^{(n)}$ for K and w and let $\mu_{n}:=\frac{1}{N} \sum_{j=1}^{N} \delta_{x_{j}^{(n)}}$. Then

$$
\mu_{n} \rightarrow \mu_{K, Q}:=\frac{1}{(2 \pi)^{d}}\left(d d^{c} V_{K, Q}^{*}\right)^{d} \text { weak }-* ;
$$

(3) analogous results to (2) for (weighted) optimal measures (defined by maximizing certain Gram determinants);
(4) general results on strong Bergman asymptotics for BM pairs (K, μ) where μ is a measure on K, as well as for weighted BM triples (K, μ, Q); i.e., we have

$$
\begin{equation*}
\frac{1}{N} B_{n}^{\mu, w} d \mu \rightarrow \mu_{K, Q} \text { weak- } * \tag{SBA}
\end{equation*}
$$

