
Recent Results in Pluripotential Theory

1. (Unweighted) Pluripotential Theory.
Let E ⊂ Cd be a bounded Borel set. The global

extremal function of E is given by

V ∗E(z) := lim sup
ζ→z

VE(ζ) where

VE(z) := sup{u(z) : u ∈ L(Cd), u ≤ 0 on E}.

Here, u ∈ L(Cd) if u ∈ PSH(Cd) and

u(z)− log |z| = 0(1), |z| → ∞.

If E is compact,

VE(z) = sup{ 1
deg(p)

log |p(z)| : ||p||E ≤ 1}.

We call the Monge-Ampere measure of V ∗E ,

µE :=
1

(2π)d
(ddcV ∗E)d,

the extremal measure for E if E is not pluripolar. In
this case, V ∗E ∈ L+(Cd) where

L+(Cd) = {u ∈ L(Cd) : u(z) ≥ log+ |z|+ Cu}.
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2. Weighted Pluripotential Theory.
Let K ⊂ Cd be closed and let w be an admissible

weight function on K: w is a nonnegative, usc func-
tion with {z ∈ K : w(z) > 0} nonpluripolar; if K is
unbounded, we assume

|z|w(z)→ 0 as |z| → ∞, z ∈ K.

Let Q := − logw and define the weighted extremal
function

V ∗K,Q(z) := lim sup
ζ→z

VK,Q(ζ) where

VK,Q(z) := sup{u(z) : u ∈ L(Cd), u ≤ Q on K}.

Then Sw := supp(µK,Q) is compact where

µK,Q :=
1

(2π)d
(ddcV ∗K,Q)d;

VK,Q(z) = sup{ 1
deg(p)

log |p(z)| : ||wdeg(p)p||Sw
≤ 1};

and
||wdeg(p)p||Sw = ||wdeg(p)p||K .

We call wdeg(p)p = e−deg(p)Qp a weighted polynomial.
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3. Example.

(1) Let K = {z : |z| ≤ 1} and Q(z) = |z|2. Then

VK,Q = Q on the ball {z : |z| ≤ 1/
√

2}

and

VK,Q(z) = log |z|+ 1/2− log(1/
√

2)

outside this ball.

(2) Let K = Cd and the same weight function Q(z) =
|z|2. One obtains the same weighted extremal
function VCd,Q. In particular, Sw is compact.

In the examples, Sw = {VK,Q = Q}. In general,

Sw ⊂ S∗w := {z ∈ K : V ∗K,Q(z) ≥ Q(z)}.

Notation: We write Pn for the polynomials of degree
at most n in Cd and

N = dimPn =
(
n+ d

d

)
.
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4. Bernstein-Markov Measures.
Given a compact set K ⊂ Cd and a measure ν

on K, we say that (K, ν) satisfies a Bernstein-Markov
property if for all pn ∈ Pn,

||pn||K ≤Mn||pn||L2(ν) with lim sup
n→∞

M1/n
n = 1.

If (K, ν) satisfies the Bernstein-Markov inequality then

lim
n→∞

1
2n

logKν
n(z, z) = VK(z) (weak asymptotics)

locally uniformly on Cd where

Bνn(z) := Kν
n(z, z) =

N∑
j=1

|q(n)
j (z)|2

is the n− th Bergman function of K, ν and

Kν
n(z, ζ) :=

N∑
j=1

q
(n)
j (z)q(n)

j (ζ)

where {q(n)
j }j=1,...,N is an orthonormal basis for Pn

with respect to L2(ν).
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5. Weighted Bernstein-Markov Measures.
For K ⊂ Cd compact, w = e−Q an admissible

weight function on K, and ν a measure on K, we say
that the triple (K, ν,Q) satisfies a weighted Bernstein-
Markov property if for all pn ∈ Pn,

||wnpn||K ≤Mn||wnpn||L2(ν) with lim sup
n→∞

M1/n
n = 1.

For such (K, ν,Q) we have that

lim
n→∞

1
2n

logKν,w
n (z, z) = VK,Q(z) (weak asymptotics)

locally uniformly on Cd where

Bν,wn (z) := Kν,w
n (z, z)w(z)2n =

N∑
j=1

|q(n)
j (z)|2w(z)2n

is the n− th Bergman function of K,w, ν and

Kν,w
n (z, ζ) :=

N∑
j=1

q
(n)
j (z)q(n)

j (ζ).

Here, {q(n)
j }j=1,...,N is an orthonormal basis for Pn

with respect to the weighted L2−norm ||wnpn||L2(ν).
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6. Strong Bergman Asymptotics.
Strong Bergman asymptotics says that if (K,µ,w)

satisfies a weighted Bernstein-Markov inequality, then

1
N
Bµ,wn dµ→ µK,Q weak- ∗ . (SBA)

(SBA) follows from the main result of Berman and
Boucksom (Theorem 2). A key ingredient in the proof
of Theorem 2 is a special case of (SBA):

Theorem 1 (Berman, IUMJ). Strong Bergman
asymptotics holds if K = Cd, Q(z) ≥ (1 + ε) log |z|,
Q ∈ C1,1(Cd). That is,

1
N
Bωd,w
n ωd →

1
(2π)d

(ddcVCd,Q)d weak− ∗; indeed,

1
N
Bωd,w
n · χDωd →

1
(2π)d

(ddcVCd,Q)d weak− ∗

where D = {VCd,Q = Q} and ωd is Lebesgue measure
on Cd.

Moreover, VCd,Q ∈ C1,1(Cd) and (ddcVCd,Q)d is abso-
lutely continuous.

What is Theorem 2? Sorry – first we need some
more definitions!
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7. Ball Volume Ratios and Gram Determi-
nants.

Given an N−dimensional vector space V (e.g.,
V = Pn), and two subsets A,B in V , we write

[A : B] := log
vol(A)
vol(B)

.

Here, “vol” denotes any (Haar) measure on V . If V
is equipped with two Hermitian inner products h, h′,
and B,B′ are the corresponding unit balls, then

[B : B′] = log det[h′(ei, ej)]i,j=1,...,N

where e1, ..., eN is an h−orthonormal basis for V . Thus
[B : B′] is a Gram determinant with respect to the h′

inner product relative to the h−orthonormal basis.
For E ⊂ Cd closed and w = e−Q admissible

weight on E, let

B∞(E,nQ) := {pn ∈ Pn : |pn(z)e−nQ(z)| ≤ 1 on E}

be a weighted L∞−ball in Pn. If µ is a measure on E,

B2(E,µ, nQ) := {pn ∈ Pn :
∫
E

|pn|2e−2nQdµ ≤ 1}

is a weighted L2−ball in Pn.
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8. Asymptotics of Ball Volume Ratios: Theo-
rem 2.
(Remark: Ball volume ratios trivially satisfy a cocycle
condition: [A : B] + [B : C] + [C : A] = 0.)

Given Q,Q′ admissible weights on E,E′, consider
the sequence

{ 1
2nN

[B∞(E,nQ) : B∞(E′, nQ′)]}n=1,...

and if µ and µ′ are measures on E and E′ with both
(E,µ,Q) and (E′, µ′, Q′) satisfying a weighted BM
property, consider the sequence

{ 1
2nN

[B2(E,µ, nQ) : B2(E′, µ′, nQ′)]}n=1,....

Theorem 2. Both sequences converge to

1
(d+ 1)(2π)d

E(V ∗E,Q, V
∗
E′,Q′).

Question: What is E?
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9. A Mabuchi-Aubin-type Energy: E.
For u, v ∈ L+(Cd),

E(u, v) :=
∫
Cd

(u− v)
d∑
j=0

(ddcu)j ∧ (ddcv)d−j .

Fixing v, u → E(u, v) is a primitive for the complex
Monge-Ampere operator (ddcu)d: if u′ ∈ L+(Cd) and
for 0 ≤ t ≤ 1 we define

f(t) := E(u+ t(u′ − u), v),

then f ′(t) exists for 0 ≤ t ≤ 1 and

f ′(t) = (d+ 1)
∫
Cd

(u′ − u)
(
ddc[u+ t(u′ − u)]

)d
.

In particular,

f ′(0) = (d+ 1)
∫
Cd

(u′ − u)(ddcu)d.

Note that f ′(t) is independent of v. As a corollary,
we obtain the cocycle property: Let u, v, w ∈ L+(Cd).
Then

E(u, v) + E(v, w) + E(w, u) = 0.
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10. Differentiability of E ◦ P .
New notation: given an admissible weight w =

e−Q on K, write

P (Q) = PK(Q) := V ∗K,Q.

Theorem 3. Let v ∈ L+(Cd). For w = e−Q an
admissible weight on K and u ∈ C(K), let

F (t) := E(P (Q+ tu), v)

for t ∈ R. Then

F ′(t) = (d+ 1)
∫
Cd

u(ddcP (Q+ tu))d.

In particular,

F ′(0) = (d+ 1)
∫
Cd

u(ddcP (Q))d.

Again, F ′(t) is independent of v. This is the
key ingredient in a variational approach to complex
Monge-Ampere (Berman, Boucksom, Guedj, Zeriahi).
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11. Proof of Differentiability of E ◦ P .
Take F (t) := E(P (Q+tu), P (Q)). Then F (0) = 0

and we want to show

F ′(0) = (d+ 1)
∫
Cd

u(ddcP (Q))d.

It suffices to show

E(P (Q+ tu), P (Q)) = (d+1)t
∫
Cd

u(ddcP (Q))d+o(t).

This follows from two ingredients:

E(P (Q+ tu), P (Q)) = (A)

(d+ 1)
∫
Cd

[P (Q+ tu)− P (Q)](ddcP (Q))d + o(t)

and
lim
t→0

∫
D(0)−D(t)

(ddcP (Q))d = 0 (B)

where

D(t) := {z ∈ Cd : P (Q+ tu)(z) = (Q+ tu)(z)}.
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12. Proof of Differentiability of E ◦ P (cont’d).
We have supp(ddcP (Q))d ⊂ D(0), hence:

E(P (Q+ tu), P (Q)) = (from (A))

(d+ 1)
∫
Cd

[P (Q+ tu)− P (Q)](ddcP (Q))d + o(t)

= (d+ 1)
∫
D(0)−D(t)

[P (Q+ tu)− P (Q)](ddcP (Q))d

+(d+1)
∫
D(0)∩D(t)

[P (Q+tu)−P (Q)](ddcP (Q))d+o(t)

= (d+ 1)
∫
D(0)−D(t)

[P (Q+ tu)− P (Q)](ddcP (Q))d

+(d+ 1)t
∫
D(0)∩D(t)

u(ddcP (Q))d + o(t)

since P (Q+ tu)−P (Q) = tu on D(0)∩D(t). Now use
(B) together with the observation that

|P (Q+ tu)− P (Q)| = 0(t)

on the bounded set D(0)−D(t).

12



13. Proof of Theorem 2.
We will use an integrated version of the previous

result:
E(P (Q+ u), P (Q)) =

(d+ 1)
∫ 1

t=0

dt

∫
Cd

u(ddcP (Q+ tu))d. (I)

Given a closed set K, an admissible weight w =
e−Q on K, and a function u ∈ C(K), we consider
the perturbed weight wt := w exp(−tu). Equivalently,
Qt := Q+ tu. Let {µn} be a sequence of measures on
K. We set

fn(t) := − (d+ 1)
2dnN

log det(Gµn,wt
n )

where

Gµn,wt
n = Gµn,wt

n (βn) := [〈pi, pj〉µn,wt
] ∈ CN×N

is the Gram matrix with respect to the weighted inner
product

〈f, g〉µn,wt
:=
∫
K

f(z)g(z)wt(z)2ndµn

and a fixed basis βn := {p1, p2, · · · , pN} of Pn. Then

f ′n(t) =
d+ 1
dN

∫
K

u(z)Bµn,wt
n (z)dµn. (II)

13



14. Sketch of Proof of (II).
Fixing a basis βn := {p1, ..., pN} of Pn, we set

fn(t) := − (d+ 1)
2dnN

log det(Gµn,wt
n )

where Gµn,wt
n = Gµn,wt

n (βn) and we want to show

f ′n(t) =
d+ 1
dN

∫
K

u(z)Bµn,wt
n (z)dµn. (II)

Using log det(Gµn,wt
n ) = trace log(Gµn,wt

n ),

2dnN
d+ 1

f ′n(t) = − d

dt
trace (log(Gµn,wt

n )) =

−trace
(
d

dt
log(Gµn,wt

n )
)

−trace
(

(Gµn,wt
n )−1 d

dt
Gµn,wt
n

)
= 2n trace

(
(Gµn,wt

n )−1
[ ∫

K

pi(z)pj(z)u(z)w(z)2n·

exp(−2ntu(z))dµn
])
.

Now use

trace(ABC) = trace(CAB) = CAB

and some linear algebra.
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15. Proof of Theorem 2. (cont’d)
First do the L2−case with E = E′ = Cd and

Q,Q′ as in Theorem 1 with dµ = dµ′ = ωd. Take u =
Q′−Q and for 0 ≤ t ≤ 1 let wt(z) := w(z) exp(−tu(z)).
By Theorem 1,

1
N
Bωd,wt
n ωd →

1
(2π)d

(ddcP (Q+ tu))d weak− ∗.

Define fn(t) := − (d+1)
2dnN log det(Gµn,wt

n ) where we take
µn := ωd for all n and the basis βn := {p1, ..., pN} of
Pn is chosen to be an orthonormal basis with respect
to ||wnp||L2(µ). Then fn(0) = 0. Using (II)

lim
n→∞

d

d+ 1
f ′n(t) =

∫
u

1
(2π)d

(ddcP (Q+ tu))d.

Integrate the expression for f ′n(t) from t = 0 to t = 1:

d

d+ 1
[fn(1)] =

−1
2nN

log det(Gµn,w
′

n )

=
−1

2nN
[B2(Cd, ωd, nQ) : B2(Cd, ωd, nQ

′)]

=
1
N

∫ 1

t=0

dt

∫
Bωd,wt
n (Q−Q′)ωd.
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Apply Theorem 1. again to conclude that

−1
2nN

[B2(Cd, ωd, nQ) : B2(Cd, ωd, nQ
′)]

=
1
N

∫ 1

t=0

dt

∫
Bωd,wt
n (Q−Q′)ωd.

→
∫ 1

t=0

dt

∫
(Q−Q′) 1

(2π)d
(ddcP (Q+ tu))d.

But by (I), the integrated version of differentiability of
E ◦ P , we have

(d+ 1)
∫ 1

t=0

dt

∫
(Q−Q′) 1

(2π)d
(ddcP (Q+ tu))d =

1
(2π)d

E(P (Q′), P (Q))

which proves Theorem 2. in the L2−case when E =
E′ = Cd with Q,Q′ ∈ C2(Cd) as in Theorem 1. with
dµ = dµ′ = ωd. By the weighted Bernstein-Markov
property this also proves the L∞−case when E = E′ =
Cd and Q,Q′ ∈ C2(Cd) as in Theorem 1.

The remaining cases follow from approximation
and the cocycle properties of E and the ball volume
ratios.
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16. Applications.
Theorem 2. implies several important results:

(1) a proof of Rumely’s formula relating the trans-
finite diameter δ(K) of a compact set K in Cd

with certain integrals involving the Robin func-
tion ρK(z) := lim sup|λ|→∞[V ∗K(λz) − log |λ|] of
K, as well as weighted versions of the formula;

(2) a proof of the weighted Fekete conjecture: for each
n, take an n−th weighted Fekete set x(n)

1 , ..., x
(n)
N

for K and w and let µn := 1
N

∑N
j=1 δx(n)

j

. Then

µn → µK,Q :=
1

(2π)d
(ddcV ∗K,Q)d weak− ∗;

(3) analogous results to (2) for (weighted) optimal
measures (defined by maximizing certain Gram
determinants);

(4) general results on strong Bergman asymptotics for
BM pairs (K,µ) where µ is a measure on K, as
well as for weighted BM triples (K,µ,Q); i.e., we
have

1
N
Bµ,wn dµ→ µK,Q weak- ∗ . (SBA)

17


