Elliptic j-function and Borcherds Φ-function (Joint work with Ken-Ichi Yoshikawa)

Shu Kawaguchi

Osaka University

Hayama Symposium, July 22, 2009

Plan

1. Introduction - rough sketch of the result
2. Details
3. Ideas of proof

Part 1 Introduction

Elliptic j-function

Let $\mathfrak{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$ be the Siegel upper half plane, on which $\mathrm{SL}_{2}(\mathbb{Z})$ acts by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d}$.
For $\tau \in \mathfrak{H}$, let $E_{\tau}:=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$ be a 1-dimensional complex torus, i.e., an elliptic curve (with origin 0).
Then $E_{\sigma} \cong E_{\tau} \Longleftrightarrow \sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot \tau$ for some $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
So, the quotient space $S L_{2}(\mathbb{Z}) \backslash \mathfrak{H}$ is the coarse moduli space of elliptic curves.

The elliptic j-function is a function on \mathfrak{H} invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$. In fact, it gives an isomorphism $j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H} \xrightarrow{\sim} \mathbb{C}$.

Kummer surfaces and Enriques surfaces

For $\sigma, \tau \in \mathfrak{H}$, consider the 2-dimensional complex torus $E_{\sigma} \times E_{\tau}$.
The quotient $\left(E_{\sigma} \times E_{\tau}\right) /[-1]_{E_{\sigma} \times E_{\tau}}$ has 16 singular points. Blowing up at these points, we obtain a smooth complex surface $\operatorname{Km}\left(E_{\sigma} \times E_{\tau}\right)$.

It is called a Kummer surface of product type, and is denoted by $X_{\sigma, \tau}:=\mathrm{Km}\left(E_{\sigma} \times E_{\tau}\right)$.

Let (σ, τ) be general. Up to conjugacy, there are 15 (fixed-point-free, anti-symplectic) involutions on $X_{\sigma, \tau}$.

- 9 of them are of even type (Lieberman involutions).
- 6 of them are of odd type (Kondo-Mukai involutions).
(I will explain in more detail later.)
For each involution ι, the quotient $X_{\sigma, \tau} / \iota$ is an Enriques surface.

Borcherds Φ-function

Let $\mathcal{M}^{\circ}:=\left(\Omega_{\Lambda}^{+} \backslash \mathcal{D}\right) / O^{+}(\Lambda)$ denote the coarse moduli space of Enriques surfaces, where Ω_{Λ}^{+}is a certain 10 -dimensional symmetric bounded domain of type $I V, \mathcal{D}$ is the discriminant divisor, and $O^{+}(\Lambda)$ is the group of isometries.
(I will explain in more detail later.)
The Borcherds Φ-function is an automorphic form of weight 4 with some character on Ω_{Λ}^{+}. Thus, $\|\Phi\|$ is a function on $\mathcal{M}:=\Omega_{\Lambda}^{+} / O^{+}(\Lambda)$, where $\|\cdot\|$ is the Petersson metric.

In particular, for an Enriques surface Y, we can consider the value $\|\Phi\|(Y) \in \mathbb{R}$.

Result

Let $\sigma, \tau \in \mathfrak{H}$.
We relate

- The difference of elliptic j-functions $j(\sigma)-j(\tau)$ and
- Certain products of the values of the Borcherds Φ-function $\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)$, where $X_{\sigma, \tau}:=\operatorname{Km}\left(E_{\sigma} \times E_{\tau}\right)$ is a Kummer surface of product type, and ι runs over the 15 involutions on $X_{\sigma, \tau}$.

To be precise,
Main Theorem

$$
\frac{\prod_{\iota: \text { odd }}\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)^{3}}{\prod_{\iota: \text { even }}\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)^{2}}=|j(\sigma)-j(\tau)|^{6}
$$

Remark (1)

- The difference $j(\sigma)-j(\tau)$ is the denominator function of the monster Lie algebra. Borcherds gave the infinite product expansion for $j(\sigma)-j(\tau)$:

$$
j(\sigma)-j(\tau)=\frac{1}{q_{\sigma}} \prod_{m>0, n \in \mathbb{Z}}\left(1-q_{\sigma}^{m} q_{\tau}^{n}\right)^{c(m n)}
$$

where $q_{\sigma}=\exp (2 \pi \sqrt{-1} \sigma)$ and $q_{\tau}=\exp (2 \pi \sqrt{-1} \tau)$, and $c(n)$ is the coefficient of q^{n} in $j(\tau)=q^{-1}+744+196884 q+\cdots$.

- The Borcherds Φ function is the denominator function of the fake monster superalgebra. Borcherds also gave the infinite product expansion for Φ.
- Main Theorem relates these two infinite product expansions.

Remark (2)

- Yoshikawa showed that the Borcherds Φ-function is essentially the analytic torsion function on the coarse moduli space \mathcal{M}° of Enriques surfaces.
(Here, for a compact Kähler manifold (Y, γ), Ray and Singer defined a quantity $\tau(Y, \gamma) \in \mathbb{R}_{>0}$ called analytic torsion, using spectral zeta functions of the Laplace operators acting on the space of differential forms on Y.)
Theorem (Yoshikawa 2004) Let Y be an Enriques surface, and γ be any Ricci-flat Kähler metric on Y. Then

$$
T(Y):=\operatorname{Vol}(Y, \gamma)^{\frac{1}{2}} \tau(Y, \gamma)
$$

does not depend on γ. Further, there is a universal constant such that

$$
T(Y)=c\|\Phi\|(Y)^{\frac{1}{4}}
$$

Remark (2) (cont'd)

- Main Theorem says that $j(\sigma)-j(\tau)$ is related to the analytic torsion of the corresponding Kummer surface $X_{\sigma, \tau}$ and involutions on $X_{\sigma, \tau}$:

Corollary

$$
\frac{\prod_{\iota: \text { even }} T\left(\mathrm{Km}\left(E_{\sigma} \times E_{\tau}\right) / \iota\right)^{2}}{\prod_{\iota: \text { odd }} T\left(\mathrm{Km}\left(E_{\sigma} \times E_{\tau}\right) / \iota\right)^{3}}=|j(\sigma)-j(\tau)|^{\frac{3}{2}} .
$$

Note: Vincent Maillot asked if $j(\sigma)-j(\tau)$ is expressed as analytic torsion. Main Theorem may be seen an answer to his question. (This was our original motivation.)

Remark (3)

- Gross and Zagier (1985) showed that $j(\sigma)-j(\tau)$ has some deep arithmetic properties:

Let d, e be discriminants, i.e., integers with $d, e \equiv 0,1(\bmod .4)$. Assume that d, e are relatively coprime and that if $d=d^{\prime} D^{2}$ (resp. $e=e^{\prime} E^{2}$) with an integer D (resp. E) and a discriminant d^{\prime} (resp. e^{\prime}), then $D= \pm 1$ (resp. $E= \pm 1$).

Then $j(\sigma)-j(\tau)$ is an algebraic integer, and one has

$$
\prod_{\sigma, \tau}(j(\sigma)-j(\tau))= \pm \prod_{x \in \mathbb{Z}, x^{2}<d e, x^{2} \equiv d e(\bmod .4)} F\left(\frac{d e-x^{2}}{4}\right)
$$

where σ and τ run over representatives of equivalence classes of imaginary quadratic irrationals with discriminant d and e, respectively, and $F(m)=\prod_{n n^{\prime}=m, n, n^{\prime}>0} n^{\varepsilon\left(n^{\prime}\right)}$ with $\varepsilon\left(n^{\prime}\right)= \pm 1$.

Remark (3) (cont'd)

- Main Theorem says that the Borcherds Φ-function also has some arithmetic properties (for Enriques surfaces associated to $X_{\sigma, \tau}$ with quadratic imaginary numbers $\left.\sigma, \tau\right)$:

Corollary Let d, e be relatively coprime negative integers as above. Then

$$
\frac{\prod_{l: \text { odd }}\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)^{\frac{1}{2}}}{\prod_{t: \text { even }}\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)^{\frac{1}{3}}}
$$

is the absolute value of an algebraic integer, and we have

$$
\prod_{\sigma, \tau} \frac{\prod_{l: \text { odd }}\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)^{\frac{1}{2}}}{\prod_{l: \text { even }}\|\Phi\|\left(X_{\sigma, \tau} / \iota\right)^{\frac{1}{3}}}=\prod_{x^{2}<d e, x^{2} \equiv d e \bmod 4} F\left(\frac{d e-x^{2}}{4}\right) .
$$

Plan

1. Introduction - rough sketch of the result
2. Details
3. Ideas of proof

Part 2 Details

Elliptic j-function

Let $\mathfrak{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$ be the Siegel upper half plane. The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathfrak{H} by $\left(\begin{array}{l}a \\ a \\ c\end{array}\right) \cdot \tau=\frac{a \tau+b}{c \tau+d}$.

The elliptic j-function

$$
j: \mathfrak{H} \rightarrow \mathbb{C}
$$

is invariant under the action of $\mathrm{SL}_{2}(\mathbb{Z})$ and is given by

$$
\begin{aligned}
j(\tau) & =\frac{\left(1+240 \sum_{n>0} \sigma_{3}(n) q^{n}\right)^{3}}{q \prod_{n>0}\left(1-q^{n}\right)^{24}} \\
& =\frac{1}{q}+744+196884 q+\cdots
\end{aligned}
$$

where $q=\exp (2 \pi \sqrt{-1} \tau)$ and $\sigma_{3}(n)=\sum_{d \mid n} d^{3}$.

$K 3$ surface

A smooth compact complex surface X is a $K 3$ surface if

- $H^{1}\left(X, \mathcal{O}_{X}\right)=0$, and
- $\Omega_{X}^{2} \simeq \mathcal{O}_{X}$.

Then

$$
H^{2}(X, \mathbb{Z}) \simeq \mathbb{L}_{K 3}:=U^{\oplus 3} \oplus E_{8}(2)^{\oplus 2} \quad \text { (isometry) }
$$

where $H^{2}(X, \mathbb{Z})$ is endowed with the cup product, and $U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and E_{8} is the negative Cartan matrix.

Example (Kummer surface) Let A be a 2-dimensional complex torus. Let $\mathrm{Km}(A)$ be the smooth surface obtained by blowing up the 16 singular points of the quotient $A /[-1]_{A}$.
Then $\operatorname{Km}(A)$ is a $K 3$ surface.

Enriques surface

A smooth compact complex surface Y is an Enriques surface if

- $H^{1}\left(Y, \mathcal{O}_{Y}\right)=0$,
- $\Omega_{Y}^{2} \not 千 \mathcal{O}_{Y}$, and
- $\left(\Omega_{Y}^{2}\right)^{\otimes 2} \simeq \mathcal{O}_{Y}$

Let $\pi: X \rightarrow Y$ be the universal covering. Then

- X is a $K 3$ surface
- π is a degree 2 map.

The covering transformation induces a (fixed-point-free, anti-symplectic) involution

$$
\iota: X \rightarrow X
$$

with $Y \simeq X / \iota$.

Enriques surface (cont'd)

Let Y be an Enriques surface.
Let (X, ι) be as above.
Set

$$
H_{ \pm}^{2}(X, \mathbb{Z}):=\left\{\ell \in H^{2}(X, \mathbb{Z}) \mid \iota^{*} \ell= \pm \ell\right\}
$$

Set $\Lambda:=U \oplus U(2) \oplus E_{8}(2)$, and fix a primitive embedding $\Lambda \subset \mathbb{L}_{K 3}$.
Then there is an isometry $\alpha: H^{2}(X, \mathbb{Z}) \rightarrow \mathbb{L}_{K 3}$ such that

$$
\alpha\left(H_{-}^{2}(X, \mathbb{Z})\right)=\Lambda
$$

If $\eta \in H^{0}\left(X, \Omega_{X}^{2}\right) \backslash\{0\}$, then $\iota^{*}(\eta)=-\eta$.
Thus $\eta \in H_{-}^{2}(X, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}$.

Moduli of Enriques surfaces

Set

$$
\begin{aligned}
\Omega_{\Lambda} & :=\{[\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}) \mid(\eta, \eta)=0,(\eta, \bar{\eta})>0\}=\Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-} \\
\mathcal{D} & :=\bigcup_{d \in \Lambda, d^{2}=-1} d^{\perp} \subset \Omega_{\Lambda}^{+} \quad(\text { discriminant locus }) \\
O^{+}(\Lambda) & :=\left\{\varphi: \Lambda \rightarrow \Lambda \mid \varphi \text { is an isometry preserving } \Omega_{\Lambda}^{+}\right\}
\end{aligned}
$$

Then Ω_{Λ}^{+}is a symmetric bounded domain of type $I V$ of dimension 10. The group $O^{+}(\Lambda)$ acts on Ω_{Λ}^{+}properly discontinuously.
Theorem (Horikawa 1978) The coarse moduli space of Enriques surfaces is given by

$$
\mathcal{M}^{\circ}:=\left(\Omega_{\Lambda}^{+} \backslash \mathcal{D}\right) / O^{+}(\Lambda)
$$

For an Enriques surface Y, its point in $\bar{\varpi}(Y) \in \mathcal{M}^{\circ}$ is given by $\left[\alpha\left(\eta_{X}\right)\right]$, where $\eta_{X} \in H^{0}\left(X, \Omega_{X}^{2}\right) \backslash\{0\}$.

Borcherds Φ-function

We set $L:=U \oplus E_{8}(2)$. Then $\Lambda=U(2) \oplus L$.
Let $\mathcal{C}_{L}:=\left\{v \in L \otimes \mathbb{R} \mid v^{2}>0\right\}$ be the positive cone. Then the tube domain $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}$ is identified with Ω_{Λ} via the map

$$
L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L} \ni z \mapsto\left[\left(-z^{2} / 2,1 / 2, z\right)\right] \in \Omega_{\Lambda}
$$

We write \mathcal{C}_{L}^{+}for the connected component of \mathcal{C}_{L} such that $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$is identified with Ω_{Λ}^{+}.
We set $\rho:=((0,1), 0), \rho^{\prime}:=((1,0), 0) \in L$ and
$\Pi^{+}:=\mathbb{N} \rho \cup\left\{\lambda \in L ;\langle\lambda, \rho\rangle_{L}>0\right\}$.
Borcherds (1992) introduced the following infinite product on $L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$:

$$
\Phi(z)=e^{2 \pi\langle\rho, z\rangle} \prod_{\lambda \in \Pi^{+}}\left(1-e^{2 \pi \sqrt{-1}\langle\lambda, z\rangle}\right)^{(-1)^{\left\langle\lambda, \rho-\rho^{\prime}\right\rangle} c\left(\lambda^{2} / 2\right)}
$$

where $\{c(n)\}_{n \geq-1}$ is the generating function
$\sum_{n \geq-1} c(n) q^{n}=\eta(\tau)^{-8} \eta\left(2 \tau^{8}\right) \eta(4 \tau)^{-8}$.

Borcherds Φ-function (cont'd)

$\Phi(z)$ is called the Borcherds Φ-function. It is an automorphic form with some character on Ω_{Λ}^{+}of weight 4 with zero divisor \mathcal{D}.

For $z \in L \otimes \mathbb{R}+\sqrt{-1} \mathcal{C}_{L}^{+}$, the Petersson norm of Φ is given by

$$
\|\Phi(z)\|^{2}(z):=\langle\operatorname{Im}(z), \operatorname{lm}(z)\rangle^{4}|\Phi(z)|^{2}
$$

Then $\|\Phi\|$ is a function on $\mathcal{M}:=\Omega_{\Lambda}^{+} / O^{+}(\Lambda)$.

Two types of involutions on $X_{\sigma, \tau}$

Let

$$
e_{1}(\sigma)=\frac{1}{2}, \quad e_{2}(\sigma)=\frac{\sigma}{2}, \quad e_{3}(\sigma)=\frac{1+\sigma}{2} .
$$

be the nonzero 2-torsion points on $E_{\sigma}=\mathbb{C} / \mathbb{Z}+\sigma \mathbb{Z}$. Similarly, let

$$
e_{1}(\tau)=\frac{1}{2}, \quad e_{2}(\tau)=\frac{\tau}{2}, \quad e_{3}(\tau)=\frac{1+\tau}{2} .
$$

be the nonzero 2-torsion points on $E_{\tau}=\mathbb{C} / \mathbb{Z}+\tau \mathbb{Z}$.
We will explain two types of involutions on $X_{\sigma, \tau}:=\operatorname{Km}\left(E_{\sigma} \times E_{\tau}\right)$:

- 9 even involutions (Lieberman involutions)
- 6 odd involutions (Kondo-Mukai involutions)

From now on, we assume that $(\sigma, \tau) \in \mathfrak{H} \times \mathfrak{H}$ is general.

Lieberman involutions (even involutions)

For $(i, j) \in\{1,2,3\}^{2}$, set

$$
t_{i j}:=\left(e_{i}(\sigma), e_{j}(\tau)\right) \in E_{\sigma} \times E_{\tau} .
$$

Let $T_{t_{i j}}: E_{\sigma} \times E_{\tau} \rightarrow E_{\sigma} \times E_{\tau}$ be the translation by $t_{i j}$.
Then

$$
\left([-1]_{E_{\sigma}}, \mathrm{id}_{E_{\tau}}\right) \circ T_{t_{i j}}: E_{\sigma} \times E_{\tau} \rightarrow E_{\sigma} \times E_{\tau}
$$

induces a (fixed-point-free, anti-symplectic) involution on $X_{\sigma, \tau}:=\mathrm{Km}\left(E_{\sigma} \times E_{\tau}\right)$.

These involutions are called Lieberman (even) involutions. There are 9 of them (with respect to the choice of $(i, j) \in\{1,2,3\}^{2}$).

Kondo-Mukai involutions (odd involutions)

Odd involutions are more difficult to describe.
The Weierstrass \wp-function gives $2: 1$ map $E_{\sigma} \rightarrow \mathbb{P}^{1}$ be the $2: 1$ map ramified at $\left\{\wp\left(e_{1}(\sigma)\right), \wp\left(e_{2}(\sigma)\right), \wp\left(e_{3}(\sigma)\right), \infty\right\}$.

We identify $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with a quadratic in \mathbb{P}^{3}.
Let $\pi: \mathbb{P}^{3} \longrightarrow \mathbb{P}^{2}$ be projection from $(\infty, \infty) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$.
Let $\varepsilon: \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{2}$ be the the restriction of π to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then ε is a birational map, and contracts two curves P and Q.

Let γ be a permutation of $\{1,2,3\}$. Set $g_{i}=\varepsilon\left(\left(\wp\left(e_{i}(\sigma)\right), \wp\left(e_{\gamma(i)}(\tau)\right)\right)\right) \in \mathbb{P}^{2}$. Consider the Cremona transformation centered at g_{1}, g_{2}, g_{3} interchanging P and Q.

Kondo-Mukai involutions (odd involutions) (cont'd)

$$
X_{\sigma, \tau} \rightarrow X_{\sigma, \tau} /\left([-1]_{E_{\sigma}}, \text { id }_{E_{\tau}}\right) \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \stackrel{-}{\varepsilon} \mathbb{P}^{2}
$$

is a $2: 1$ map.
The Cremona transformation on \mathbb{P}^{2} induces two automorphisms $\nu, \mu: X_{\sigma, \tau} \rightarrow X_{\sigma, \tau}$. Then $\nu \circ \mu: X_{\sigma, \tau} \rightarrow X_{\sigma, \tau}$ is a (fixed-point-free, anti-symplectic) involution.

These involutions are called odd (Kondo-Mukai) involutions. There are 6 of them (with respect to the choice of $\gamma \in S_{3}$).

Remark Kondo-Mukai involutions are first found by Kondo, and then completed by Mukai. Ohashi (2007) showed that, if (σ, τ) is generic, then these $9+6=15$ involutions are the only involutions on $X_{\sigma, \tau}$ up to conjugacy. Further, he showed that there is a natural bijection between the conjugacy class of 15 involutions and $(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 4} \backslash\{0\}$.

Main Theorem (revisited)

For $(\sigma, \tau) \in \mathfrak{H} \times \mathfrak{H}$

$$
\frac{\prod_{\iota: \text { odd }}\|\Phi\|\left(\bar{\varpi}\left(X_{\sigma, \tau} / \iota\right)\right)^{3}}{\prod_{\iota: \text { even }}\|\Phi\|\left(\bar{\varpi}\left(X_{\sigma, \tau} / \iota\right)\right)^{2}}=|j(\sigma)-j(\tau)|^{6} .
$$

(To be precise, the above formula holds for general (σ, τ), but we can interpret the formula for any (σ, τ).)

Plan

1. Introduction - rough sketch of the result
2. Details
3. Ideas of proof

Part 3 Ideas of proof

Setting

$$
\begin{aligned}
Y(1) & :=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H} & & \cong \mathbb{C} \\
X(1) & :=Y(1) \cup\{\infty\} & & \cong \mathbb{P}^{1} \\
\operatorname{Sym}^{2}(X(1)) & :=(X(1) \times X(1)) / \Sigma_{2} & & \cong \mathbb{P}^{2} \\
B & :=\operatorname{Sym}^{2}(X(1)) \backslash \operatorname{Sym}^{2}(Y(1)) & & \subset \mathbb{P}^{2} \\
\Delta & :=\text { diagonal locus of } \operatorname{Sym}^{2}(X(1)) & & \subset \mathbb{P}^{2}
\end{aligned}
$$

Given each of the 15 involutions ι on Kummer surfaces of product type, we have a holomorphic map $f_{\iota}: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathcal{M}$. (Explained later.) We are going to compare the pullback of $f_{\iota}^{*}\|\Phi\|$ (with various ι) and $|j(\sigma)-j(\tau)|^{2}$ on $\operatorname{Sym}^{2}(X(1)) \cong \mathbb{P}^{2}$.

Construction of $f_{\iota}: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathcal{M}$

Assume that $(\sigma, \tau) \in \mathfrak{H} \times \mathfrak{H}$ is general. Let $X_{\sigma, \tau}=\operatorname{Km}\left(E_{\sigma} \times E_{\tau}\right)$ be a Kummer surface of product type, and
$\iota: X \rightarrow X$ be a (fixed-point-free, anti-symplectic) involution.
The rational map $E_{\sigma} \times E_{\tau} \rightarrow \operatorname{Km}\left(E_{\sigma} \times E_{\tau}\right)$ induces

$$
H^{1}\left(E_{\sigma}, \mathbb{Z}\right) \otimes H^{1}\left(E_{\sigma}, \mathbb{Z}\right) \rightarrow H_{-}^{2}\left(X_{\sigma, \tau}, \mathbb{Z}\right)
$$

Via the isometry $\alpha: H^{2}\left(X_{\sigma, \tau}, \mathbb{Z}\right) \rightarrow \mathbb{L}_{K 3}$, we define

$$
K_{\iota}:=\alpha\left(\operatorname{lm}\left(H^{1}\left(E_{\sigma}, \mathbb{Z}\right) \otimes H^{1}\left(E_{\sigma}, \mathbb{Z}\right) \rightarrow H_{-}^{2}\left(X_{\sigma, \tau}, \mathbb{Z}\right)\right)\right) \subset \Lambda \subset \mathbb{L}_{K 3}
$$

Since $(\sigma, \tau) \in \mathfrak{H} \times \mathfrak{H}$ is general, we have

$$
K_{\iota} \cong U(2) \oplus U(2)
$$

Construction of $f_{\iota}: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathcal{M}\left(\right.$ cont'd $\left.^{\prime}\right)$

The holomorphic (2,0)-form $d z_{\sigma} \otimes d z_{\tau} \in H^{1}\left(E_{\sigma}, \mathbb{C}\right) \otimes H^{1}\left(E_{\sigma}, \mathbb{C}\right)$ gives an element $\eta_{X_{\sigma, \tau}} \in H_{-}^{2}\left(X_{\sigma, \tau}, \mathbb{Z}\right) \otimes \mathbb{C}$.
Via $\alpha: H_{-}^{2}\left(X_{\sigma, \tau}, \mathbb{Z}\right) \rightarrow \Lambda$, we obtain

$$
\left[\alpha_{\mathbb{C}}\left(\eta_{X_{\sigma, \tau}}\right)\right] \in \Omega_{\Lambda}^{+} \in \mathbb{P}(\Lambda \otimes \mathbb{C})
$$

Thus we have

$$
f_{\iota}: \mathfrak{H} \times \mathfrak{H} \ni(\sigma, \tau) \rightarrow\left[\alpha_{\mathbb{C}}\left(\eta_{X_{\sigma, \tau}}\right)\right] \in \mathcal{M}:=\Omega_{\Lambda}^{+} / O^{+}(\Lambda)
$$

In fact, f_{ι} is defined even if (σ, τ) is not general, and we have the holomorphic map

$$
f_{\iota}: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathcal{M} .
$$

Image of f_{ι}

According to the parity of $\iota, f_{\iota}: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathcal{M}$ behaves differently.
Recall that $\mathcal{M}^{\circ}=\mathcal{M} \backslash \overline{\mathcal{D}}$, where $\overline{\mathcal{D}}:=\mathcal{D} / O^{+}(\Lambda)$ is the discriminant locus of \mathcal{M}.

Proposition

(1) Suppose ι is an even involution. Then $\operatorname{Im}\left(f_{\iota}\right) \cap \overline{\mathcal{D}}=\emptyset$.
(2) Suppose ι is an odd involution. Then $\operatorname{Im}\left(f_{\iota}\right) \cap \overline{\mathcal{D}} \neq \emptyset$.

Proposition Suppose ८ is an odd involution, and d, $\delta \in \Lambda$ satisfy $d^{2}=\delta^{2}=-2$ and

$$
\operatorname{Im}\left(f_{\iota}\right) \cap d^{\perp}=\operatorname{Im}\left(f_{\iota}\right) \cap \delta^{\perp}
$$

Then $\delta= \pm d$ or $\delta= \pm \varsigma(d)$, where $\varsigma: \Lambda \rightarrow \Lambda$ is induced from $\left([-1]_{E_{\sigma}}, \mathrm{id}_{E_{\tau}}\right): X_{\sigma, \tau} \rightarrow X_{\sigma, \tau}$.

These propositions can be proven by lattice theoretic arguments.

Pull-back by f_{ι}

We pull back $\|\Phi\|$ by $f_{\iota}: \mathfrak{H} \times \mathfrak{H} \rightarrow \mathcal{M}$.
We consider three functions $\prod_{\iota: \text { odd }} f_{\iota}^{*}\|\Phi\|, \prod_{\iota: \text { even }} f_{\iota}^{*}\|\Phi\|$, and $|j(\sigma)-j(\tau)|^{2}$ on $\mathfrak{H} \times \mathfrak{H}$.

These functions are all equivariant under the action of $\mathrm{SL}_{2}(\mathbb{Z}) \times \mathrm{SL}_{2}(\mathbb{Z})$ and the switching of the first and second factors of $\mathfrak{H} \times \mathfrak{H}$.

So, we consider these functions on
$\operatorname{Sym}^{2}(X(1)):=\left(\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H}\right)^{*} \times\left(\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H}\right)^{*}\right) / \Sigma_{2}$.

Poincaré metric

Recall that $Y(1)=\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H} \cong \mathbb{C}$ and $X(1)=Y(1) \cup\{\infty\} \cong \mathbb{P}^{1}$
Let $\omega_{\mathfrak{H} \times \mathfrak{H}}$ be the Kähler form of the Poincaré metric on $\mathfrak{H} \times \mathfrak{H}$, i.e.,

$$
\omega_{\mathfrak{H} \times \mathfrak{H}}(\sigma, \tau):=-d d^{c} \log \operatorname{Im} \sigma-d d^{c} \log \operatorname{Im} \tau .
$$

Let $\omega_{\text {Sym }^{2}(Y(1))}$ be the Kähler form on $\operatorname{Sym}^{2}(Y(1))$ in the sense of orbifolds induced from $\omega_{\mathfrak{H} \times \mathfrak{H}}$.

The (1,1)-from $\omega_{\text {Sym }^{2}(Y(1))}$ extends trivially to a closed positive $(1,1)$-current on $\operatorname{Sym}^{2}(X(1))$, which we still denote by $\omega_{\text {Sym }^{2}(Y(1))}$.

Pull-back by f_{ι} (cont'd)
Recall that $\operatorname{Sym}^{2}(X(1)) \cong \mathbb{P}^{2}$,
$B:=\operatorname{Sym}^{2}(X(1)) \backslash \operatorname{Sym}^{2}(Y(1)) \subset \mathbb{P}^{2}$, and
$\Delta:=$ diagonal locus of $\operatorname{Sym}^{2}(X(1)) \subset \mathbb{P}^{2}$.
Theorem As $(1,1)$ currents on $\operatorname{Sym}^{2}(X(1))$, we have the following.
(1) $-d d^{c}\left[\log \prod_{t: \text { odd }} f_{\iota}^{*}\|\Phi\|^{2}\right]=24 \omega_{\mathrm{Sym}^{2}(Y(1))}-\delta_{\Delta}$.
(2) $-d d^{c}\left[\log \prod_{l: \text { even }} f_{\iota}^{*}\|\Phi\|^{2}\right]=36 \omega_{\text {Sym }^{2}(Y(1))}-3 \delta_{B}$.
(3) $-d d^{c}\left[\log \left|(j(\sigma)-j(\tau))^{2}\right|^{2}\right]=-\delta_{\Delta}+2 \delta_{B}$.

Remark Since $j: X(1) \rightarrow \mathbb{C}$ is an isomorphism and j has a simple pole at $\infty \in \mathbb{P}^{1}$, we get Theorem(3).

$$
\begin{aligned}
& \text { (1) }-d d^{c}\left[\log \prod_{l: \text { odd }} f_{\iota}^{*}\|\Phi\|^{2}\right]=24 \omega_{\operatorname{Sym}^{2}(Y(1))}-\delta_{\Delta} . \\
& \text { (2) }-d d^{c}\left[\log \prod_{l: \text { even }} f_{\iota}^{*}\|\Phi\|^{2}\right]=36 \omega_{\operatorname{Sym}^{2}(Y(1))}-3 \delta_{B} .
\end{aligned}
$$

Since Φ is an automorphic form of weight 4, as differential forms on some open sets of $\mathfrak{H} \times \mathfrak{H}$, we have

$$
-d d^{c} f_{\iota}^{*}\|\Phi\|^{2}=4 \omega_{\mathfrak{H} \times \mathfrak{H}},
$$

which explains the coefficients 24 and 36 in Theorem(1)(2).
Using

$$
\operatorname{Im}\left(f_{\iota}\right) \cap \overline{\mathcal{D}} \begin{cases}=\emptyset & \text { if } \iota \text { is even } \\ \neq \emptyset & \text { if } \iota \text { is odd }\end{cases}
$$

etc., we get the term $-\delta_{\Delta}$ and $-3 \delta_{B}$ in Theorem(1)(2).

Proof of Main Theorem

As $(1,1)$ currents on $\operatorname{Sym}^{2}(X(1))$, Theorem $(1)(2)(3)$ gives

$$
d d^{c}\left[\log \left(\frac{\prod_{\iota: \text { odd }}\left(\phi_{\iota}^{*}\|\Phi\|^{2}\right)^{3}}{\prod_{\iota: \text { even }}\left(f_{l}^{*}\|\Phi\|^{2}\right)^{2}} \cdot|j(\sigma)-j(\tau)|^{-12}\right)\right]=0 .
$$

Since $\operatorname{Sym}^{2}(X(1))$ is compact, we have

$$
\frac{\prod_{\iota: \text { odd }}\left(\phi_{\iota}^{*}\|\Phi\|^{2}\right)^{3}}{\prod_{\iota: \text { even }}\left(f_{\iota}^{*}\|\Phi\|^{2}\right)^{2}}=C|j(\sigma)-j(\tau)|^{12}
$$

which proves Main Theorem up to a constant C.
Finally, comparing the infinite products of both hand-sides, we get $C=1$.

