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0. Introduction

A locally conformal Kähler (LCK) manifold M is a Hermitian manifold of which the
fundamental form ω satisfies dω = ω ∧ θ for some 1-form θ.

A Hopf manifold is known as the first example of a compact non-Kähler LCK man-
ifold. A generalized Hopf manifold is a compact complex manifold of which the
universal covering is Cn − {0}. We have shown that any generalized Hopf manifold
admits a LCK structure, using the technique of Kähler potential.

A classification of homogeneous Kähler manifolds is now well known; in particular a
compact homogeneous Kähler manifold is biholomorphic to the product of a complex
torus and a flag manifold. We have shown that a compact homogeneous LCK
manifold (which is non-Kähler) is biholomorphic to a complex torus T 1

C bundle over
a flag manifold.
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We will consider a class of compact locally homogeneous manifolds, which are of
the form Γ\G/K, where G/K is a simply connected homogeneous manifold and
Γ is a discrete subgroup of G. We have obtained some results on compact locally
homogeneous (LCK) Kähler manifolds.

We know that an Hermitian symmetric space of non-compact type is a homoge-
neous Kähler manifold which is biholomorphic to a symmetric bounded domain;
and the converse with the Bergman metric also holds. We consider a slightly gener-
alized class of pseudo-Hermitian symmetric spaces of non-compact type, which can
be constructed by defining a left-invariant complex structure compatible with the
Kähler structure on a normal J-agebra associated to the Hermitian symmetric space.
We found some examples of homogeneous domains which are pseudo-Hermitian but
not Hermitian symmetric spaces of non-compact type. This contrasts with the fact
[6] that an Hermitian symmetric space of compact type admits only the original J
and −J as compatible complex structures.

Part I

1. Preliminaries

Let M be a homogeneous space of Lie group G. We can express M as G/H, where G
is a simply connected Lie group, H a closed subgroup of G. Let H0 be the identity
component of H.

Then, M̃ = G/H0 is simply connected and a principal bundle over M = G/H with

structure group Γ = H/H0 (the fundamental group of M) acting on M̃ from the
right.

We also consider the case when a discrete subgroup Γ of G is acting freely and
properly discontinuously on M̃ from the left. In this case M can be considered as
Γ\G/H0 (double coset space), which defines a locally homogeneous space.

Let g and h be the Lie algebra of G and H0 respectively. The tangent space of
M̃ = G/H0 is a G-bundle G×H0 g/h over M̃ , where the action of H0 on g/h is given
by the adjoint action Ad(h) (h ∈ H0).
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Definition 1.

(1) A homogeneous complex structure on M̃ = G/H0 is defined by an integrable
complex structure J on g/h, which satisfies the condition JAd(h) = Ad(h)J
for h ∈ H0, which is equivalent to the condition Jad(X) = ad(X)J for X ∈ h

(since H0 is connected).

(2) In the case when there exists a subspace q of g such that g = q + h and
ad(X)(q) ⊂ q for X ∈ h, J may be defined on q satisfying Jad(X) = ad(X)J
for X ∈ h.

(3) A homoegenous complex structure J on M is a homogeneous complex struc-

ture on M̃ which is invariant by the right action of Γ. We may define it as
an integrable complex structure on J on g/h, which satisfies the condition
JAd(h) = Ad(h)J for h ∈ H.

(4) If a discrete subgroup Γ of G is acting freely and properly discontinuously

on M̃ from the left, a homogeneous complex structure J on M̃ defines a com-
plex structure on M = Γ\G/H0, which we call a locally homogeneous complex
structure or left-invariant complex structure on M .

Notes.

(1) A homogeneous complex structure on a simply connected Lie group G is nothing
but a left-invariant complex structure on G; and it is both left and right invariant
if and only if G is a complex Lie group.

(2) A homogeneous complex structure on a compact manifold M is said to be
complex-homogeneous, that is, M can be written as GC/D, where GC is a com-
plex Lie group with closed complex subgroup D (since the automorphism group
of M is a complex Lie group) [23].

(3) A homogeneous complex structure on M = G/Γ, where Γ is a discrete subgroup
of a simply connected solvable Lie group G is a G-left and Γ-right invariant
complex structure on G; but then G is actually a complex solvable Lie group.

(4) A discrete subgroup Γ of a simply connected G defines a locally homogeneous
(or left-invariant) complex structure on Γ\G.
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Definition 2.

(1) M is a homogeneous complex Kähler manifold, if M is a homogeneous complex
manifold G/H which admits a Kähler structure.

(2) M is a homogeneous Kähler manifold, if it is a homogeneous complex Kähler
manifold G/H and the Kähler structure is invariant by the action of G from
the left.

(3) If a discrete subgroup Γ of G acts freely and properly discontinuously on a
simply connected homogeneous Kähler manifold G/K from the left, it defines a
locally homogeneous (or left-invariant) Kähler structure on M = Γ\G/K, where
K is a compact subgroup of G.

We have the following fundamental result on compact homogeneous Kähler mani-
folds.

Theorem 1 (Matsushima, Borel-Remmert) ([16], [7]).

A compact homogeneous complex Kähler manifold is biholomorphic to a product of
a complex torus and a flag manifold (which is a compact simply connected homo-
geneous algebraic manifold).

We have a class of compact locally homogeneous (left-invariant) Kähler manifolds
which do not admit any homogeneous Kähler structures.

Example 1.

Let G =: Cl o R2k, where the action φ : R2k → Aut(Cl) is defined by

φ(t̄i)((z1, z2, . . . , zl)) = (e
√
−1 ηi

1 tiz1, e
√
−1 ηi

2 tiz2, ..., e
√
−1 ηi

l tizl),

where t̄i = tiei (ei: the i-th unit vector in R2k), and e
√
−1 ηi

j is the si-th root of unity,
i = 1, . . . , 2k, j = 1, . . . , l.

If an abelian lattice Z2l of Cl is preserved by the action φ on Z2k, then M = Γ\G
defines a solvmanifold, where Γ = Z2l o Z2k is a lattice of G.

The Lie algebra g of G is the following:

g = {X1, X2, . . . , X2l, X2l+1, . . . , X2l+2k}R,
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where the bracket multiplications are defined by

[X2l+2i, X2j−1] = −X2j, [X2l+2i, X2j] = X2j−1

for i = 1, . . . , k, j = 1, . . . , l, and all other brackets vanish.

The canonical left-invariant complex structure is defined by

JX2j−1 = X2j, JX2j = −X2j−1,

JX2l+2i−1 = X2l+2i, JX2l+2i = −X2l+2i−1

for i = 1, . . . , k, j = 1, . . . , l.

Notes.

(1) The class of complex surfaces with l = k = 1 in the above example coincides
with the class of hyperelliptic surfaces [13].

(2) The above class of compact Kähler manifolds is exactly the class of compact
locally homogeneous Kähler solvmanifolds ([13], [14]).

(3) It is well known that a simply connected homogeneous Kähler manifold is bi-
holomorphic to Ck × S × D, where S is a flag manifold, which is a projective
manifold, D is a bounded domain.

We conjecture that a compact locally homogeneous Kähler manifold is, up to
finite covering, biholomorphic to T k

C×S×Γ\D, where T k
C is a complex torus and

D is a symmetric bounded domain. Remark that a a bounded domain admits a
discrete automorphism group Γ such that Γ\D is compact if and only if it is a
symmetric bounded domain.
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2. Locally conformal Kähler structures

Definition 3.

(1) A locally conformal Kähler structure (LCK structure for short) on M is a

Kähler structure ω on the universal covering M̃ on which the the fundamental
group Γ acts homothetically; that is, for every γ ∈ Γ, γ∗ω = ρ(γ)ω holds for
some positive costant ρ(γ) (see [15]).

Let H(M̃) be the group of (holomorphic) homothetic transformations on M . We

call ρ : H(M̃) → R+ the monodromy map (which is a group homomorphism).

(2) A locally conformal homogeneous Kähler structure (or homogeneous LCK) on

M = G/H is defined by a homogeneous conformal Kähler structure ω on M̃ =
G/H0 on which Γ acts (holomorphically and) homothetically from the right. In

other words, G ⊂ H(M̃), and Γ acts homothetically from the right.

(3) A locally homogeneous LCK structure on M = Γ\G/K is a homogeneous LCK
structure on G/K with a discrete subgroup Γ of G which acts freely and properly
discontinuously on G/K from the left.

Remark. A conformal Kähler structure can be defined by a Hermitian structure of
which the fundamental form Ω satisfies d Ω = θ∧Ω for some closed 1-form θ (called
Lee form).

Example 2.

Let G = R × SU(2) = R × U(2)/U(1) be a simply connected reductive Lie group,
which is diffeomorphic to R×S3. For λ ∈ C, 0 < |λ| < 1, we have a diffeomorphism
Φ : R × S3 → C2 − {0} defined by

Φ : (t, z1, z2) −→ (λt z1, λ
t z2),

where S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}, which induces a left-invariant complex
structure on G.

The group homomorphism (t, z1, z2) → (t+1, z1, z2) corresponds to the holomorphic
automorphism (z1, z2) → (λz1, λz2) on C2 − {0}; and h ∈ SU(2) corresponds the
holomorphic automorphism (z1, z2) → h(z1, z2).

G acts as a group of homothetic transformations w.r.t. the standard Kähler structure
ω = −

√
−1d z1 ∧ d z1 + d z2 ∧ d z2 on C2 − {0}.
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The fundamental form and Lee form are given by Ω = 1
(|z1|2+|z2|2)

ω and θ =

− 1
(|z1|2+|z2|2)

∑2
i=1(zid zi + zi d zi).

A uniform discrete subgroup Γ of G = R × SU(2) induces a locally homogeneous
LCK structure on Γ\G; and some Γ act homothetically on G from the right, defining
a homogeneous LCK structure on G/Γ.

For instance, Γ = Z ⊂ R clearly induces a homogeneous LCK structure on S1 ×
SU(2), which is biholomorphic to C2 − {0}/Γ. We also have a uniform discrete
subgroup Γ = {(n, (−1)nI2) ∈ G |n ∈ Z}, which induces a homogeneous complex
structure and a homogeneous LCK structure on U(2) = S1 o SU(2).

Notes.

(1) A Hopf manifold is a compact complex manifold of which the universal covering
is Cn − {0}.

(2) For G = R×U(n) and K = U(n− 1), G/K is diffeomorphic to R×S2n−1. We
can construct a homogeneous LCK manifold (G/K)/Γ or a locally homogeneous
LCK manifold Γ\G/K for some discrete subgroups Γ of G. Such a Hopf manifold
is called of linear type.

(3) A (generalized) Hopf manifold is diffeomorphic to the linear one, which is a fiber
bundle over S1 with fiber F\S2n−1, where F is a finite subgroup of U(n) acting
freely on S2n−1.

Definition 4.

Let M be an LCK manifold. An LCK potential for M is a positive proper function
φ on the universal covering {M̃ ; ω}, satisfying the following conditions:

(1) −
√
−1 ∂∂φ = ω (Kähler potential)

(2) For every γ ∈ Γ, γ∗φ = ρ(γ)φ holds for some positive constant ρ(γ)

In Example 2, φ(z1, z2) = z1z1 + z2z2 is clearly defines a potential for any Hopf
manifold M of linear type.

Theorem 2 (Ornea-Verbitsky) [19].

A small deformation of a compact LCK manifold with potential is also a LCK
manifold with potential. In other words, LCK structure with potential is preserved
under small deformations.
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A generalized Hopf manifold M can be written as W/Γ, where W denotes Cn−{0},
and Γ is the covering transformation group of M , which acts freely and properly
discontinuously on W . Let L(Γ) be a linear transformation group of W which
consists of linear parts of each element of G. Then, we see that L(Γ) and Γ is
isomorphic as a group, and L(Γ) acts on W freely and properly discontinuously.

We can then construct a complex analytic family

{Mt|Mt = W/Γ(t) (t ∈ C},
where Γ(t) = {gt|g ∈ Γ}, gt = L−1

t gLt for

Lt : (z1, z2, ..., zn) −→ (tz1, tz2, ..., tzn).

Note that Γ(0) = L(Γ) and M0 = W/L(Γ); and Mt1 and Mt2 are biholomorphic for
any t1, t2 6= 0 (see [12]). Therefore, we have

Theorem 3.

Any generalized Hopf manifold admits a LCK structure with potential.

Remark. There exists an example of a compact complex surface which admits no
LCK structures(due to Bergun [2]); it is an Inoue surface of type S+ obtained by
small deformations of the original Inoue surface of the same type S+ which admits a
LCK structure. This shows that small deformations do not preserve LCK structures.

3. Sasakian and LCK structures

Definition 5.

(1) A contact metric structure {η, ξ, φ, g} on M2n+1 is a contact structure η , η ∧
(dη)n 6= 0 with the Reeb field ξ , i(ξ)η = 1, i(ξ)dη = 0, a (1, 1)-tensor φ , φ2 =
−I + η ⊗ ξ and a Riemannian metric g , g(X,Y ) = η(X)η(Y ) + d η(X,φY ) (see
[3]).

(2) A Sasaki structure on M2n+1 is a contact metric structure {η, ξ, φ, g} satisfying
Lξg = 0 (Killing field) and the integrability of J = φ|D on D = ker η (CR-
structure) (see [4]).

(3) The automorphism group A(M) of a Sasakian manifold M is the set of all
diffeomorphisms ψ with ψ∗η = η, Jψ∗ = ψ∗J, ψ∗D ⊂ D. M is a homogeneous
Sasakian manifold, if A(M) acts transitively on M .
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Notes.

(1) The automorphism group A(M) is a Lie group; and if M is compact, so is
A(M).

(2) A locally homogeneous Sasakian manifold may be defined as in the case of
Kähler or LCK structures.

Theorem 4 (Boothby-Wang).

Any compact homogeneous contact manifold {M, η} admits a homogeneous
Sasakian structure with contact form η, which is a S1-bundle over a flag mani-
fold.

We have a class of compact locally homogeneous Sasakian manifolds which do not
admit any homogeneous Sasakian structures.

Example 3.

Let Hn be a Heisenberg Lie group, which can be expressed as a matrix form:

Hn =

{ 1 x z
0 In yt

0 0 1

 x,y ∈ Rn, z ∈ R

}
,

of which the Lie algebra hn is generated by

{X1, X2, ..., Xn, Y1, Y2, ..., Yn, Z}

with the bracket multiplications: [Xi, Yj] = δijZ, and all other brackets are 0, where

Xi =
∂

∂xi

, Yj =
∂

∂yj

+ xi
∂

∂z
, Z =

∂

∂z
.

Hn admits a family of uniform lattices

Γk
n =

{ 1 a c
k

0 In bt

0 0 1

 a,b ∈ Zn, c ∈ Z

}
,

where k is a fixed positive integer.
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We can express Γk
n as a non-split short exact sequence

0 → Z → Γk
n → Z2n → 0,

where [Γk
n, Γk

n] = kZ, and Γk
n/[Γk

n, Γ
k
n] = Z2n × Zk.

Hn = Γk
n\Hn is called a Heisenberg manifold, which is Sasakian with a contact

metric structure {η, ξ, φ, g}, where η is the dual form of Z, ξ = Z, and setting the
dual forms of Xi, Yj as ρi, σj, i, j = 1, 2, ..., n,

φ =
∑

i

Yi ⊗ ρi − Xi ⊗ σi,

g =
∑

i

ρi ⊗ σi + η2.

The complex structure J is simply defined as

JXi = Yi, JYi = −Xi, i = 1, 2, ..., n.

Example 4.

A (generalized) Hopf manifold M of linear type can be written as Γ\G/K or
(G/K)/Γ, where G = R × U(n), K = U(n − 1) and Γ is a discrete subgroup of
G. We have U(n) = S1 × S, where S1 = {αIn||α| = 1} and S is a compact semi-
simple Lie group. The diffeomorphism Φ : G/K = R × S2n−1 → W = Cn − {0}
defined by

Φ : (t, z1, z2, ..., zn) −→ (λt z1, λ
t z2, ..., λ

t zn)

induces a homogeneous complex structure on G/K. For the case where Γ = Z, π ·Φ
induces a holomorphic map from M onto CP n where π : W → CP n is a canonical
projection, which turns out to be a holomorphic T 1

C bundle over CP n.

We have shown that a compact homogeneous LCK manifold has a similar structure.

Theorem 5.

A compact homogeneous LCK manifold (which is non-Kähler) is biholomorphic to
a complex torus T 1

C bundle over a flag manifold.

To be more precise, let M = G/H be a homogeneous LCK manifold; then G =
R× (S1×S) where S is a compact semi-simple Lie group, and R×S1 is the center
of G, which induces a complex torus action on M . M is diffeomorphic to a product
of S1 and a compact homogeneous Sasaki manifold, which is a S1- bundle over a
flag manifold S/K with a parabolic subgroup K of S.
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A LCK manifold {M, Ω} with the Lee form θ (d Ω = θ∧Ω) is of Vaisman type if the
Lee form θ is parallel w.r.t. the Hermitian metric.

As expected, there is a close relation between LCK and Sasaki structures.

Theorem 6.

Let M be a compact LCK manifold of Vaisman type. Then M is a fiber bundle
over S1 with fiber a compact Sasakian manifold.

Note that as a consequence of Theorem 5, a compact homogeneous LCK manifold
is of Vaisman type
Concerning compact locally homogeneous LCK manifolds, we have some partial
results.

Theorem 7 (Sawai [24]).

A compact locally homogeneous LCK nilmanifold is biholomorphic to Hn × S1.

We have a following slightly generalized result.

Theorem 8.

A homogeneous Sasakian (LCK) structure on a nilpotent Lie group is a Heisenberg
Lie group Hn (Hn × R) with a standard Sasakian (LCK) structure.

Accordingly, a compact locally homogeneous Sasakian (LCK) nilmanifold is Hn

(Hn × S1). Furthermore, there is no homogeneous Sasakian (LCK) nilmanifolds.

Proof (of Theorem 8 for LCK).

Let g be a nilpotent Lie algebra with LCK form Ω. Ω is a non-degenerate 2-form
such that dΩ = α ∧ Ω for some closed 1-form α. By Theorem of Dixmier, there
exists a 1-form β such that Ω = −α ∧ β + dβ.

Let A,B be the dual element of g corresponding to α, β. Let h be the vector subspace
of g generated by A, B, and n the orthogonal complement of h w.r.t. Ω. Since Ω
is non-degenerate, there exist Xi, Yj ∈ n, i, j = 1, ...,m such that n is generated by
Xi, Yj, and dβ =

∑
ρi ∧ σi, where ρi, σi is the dual forms corresponding to Xi, Yi.
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Since Ω(Xi, Yi) = dβ(Xi, Yi) = β([Xi, Yi]) = 1, we must have [Xi, Yi] = B mod n,
i, j = 1, ...,m. Since dα(U, V ) = α([U, V ]) = 0 and dβ(U, V ) = β([U, V ]) = 0 except
for the case U = Xi, V = Yi, We have that [U, V ] ∈ n = {Xi, Yj}R.

Let g(i) = [g, g(i−1)], g(0) = g. Since g is nilpotent, there exists some positive integer
k such that g(k) 6= {0} and g(k+1) = {0}.

We will show that g(k) = {B}. In fact, any element Z of g(k) can be written as
Z = bB +

∑
xiXi + yjYj (b, xi, yj ∈ R). Then [Z, Yi] = xiB = 0 mod n, so xi = 0.

In the same way we get yj = 0; and thus g(k) = {B}.

The associated metric g(U, V ) = Ω(U, JV ) is positive definite. Since g(A, A) =
Ω(A, JA) is non-zero, JA = B (up to constant); and we may actually put JA = B.
In fact, we can set g(A,A) = g(B,B) = 1, JA = B + Z, and JB = −A + Z ′ for
Z ∈ {A,Xi, Yj}, Z ′ ∈ {B,Xi, Yj}; and thus we have Z ′ = −JZ. Then we have

Ω(A, JA) = Ω(B + Z, JB + JZ) = Ω(B, JB) + Ω(Z, JZ),

from which we get g(Z,Z) = Ω(Z, JZ) = 0. We also have JXi = Yi, i, j = 1, ...,m.

We can consider g as an extension of n′ by A, where n′ is an extension of B by n:

0 → n′ → g → A → 0

0 → B → n′ → n → 0

Since {n, J} is a nilpotent Kähler algebra, n must be abelian (due to Hano). Since
ad(A)(n′) ⊂ n, g(1) = [g, g] = [n′, n′] = {B}. In particular, ad(A)(n′) ⊂ n ∩ g(1) =
{0}.

We have shown that g is an extension of h, which is an abelian ideal generated by
A,B, by the abelian algebra n.

0 → h → g → n → 0
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Conjectures.

(1) A compact locally Homogeneous LCK solvmanifold is diffeomorphic to a “gen-
eralized Inoue manifold”, which is a fiber bundle over a T k with fiber T l or a
Heisenberg manifold.

(2) A compact nilmanifold (solvmanifold) admits a LCK structure if and only if
it is a product of S1 and Heisenberg manifold (a generalized Inoue manifold
respectively).

(3) A compact nilmanifold (solvmanifold) admits a Sasakian structure if and only
if it is a Heisenberg manifold.

Part II

4. Hermitian symmetric spaces and skew-symmetric
complex structures

Definition 6

A Hermitian manifold M is Hermitian symmetric if each point p ∈ M is an isolated
fixed point of an involutive holomorphic isometry sp of M .

(1) A Hermitian symmetric space M is a Riemannian symmetric space {M ; g} with
a Hermitian complex structure J , defining a Kähler structure on M . It is a simply
connected homogeneous Kähler manifold.

(2) A Hermitian symmetric space M is irreducible if it is irreducible as a Riemannian
symmetric space (i.e. the holonomy representation is irreducible).

There are two types, non-compact type and compact type, of irreducible Hermitian
symmetric spaces.

(a) If M is of non-compact type, then it can be written as G/H (effectively), where G
is a connected non-compact simple Lie group with center {e} and H is a maximal
compact subgroup of G which has non-discrete center ZH .
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(b) If M is of compact type, then it can be written as G/H (effectively), where G
is a connected compact simple Lie group with center {e} and H is a maximal
connected proper subgroup of G which has non-discrete center ZH .

Let g be the Lie algebra of G and h that of H. Then we have the standard decom-
position of g:

g = h + m (as a vector space),

where h = {X ∈ g|σX = X}, m = {X ∈ g|σX = −X}, and h = [m,m] is isomorphic
to the holonomy algebra adm[m,m].

We know that any G-invariant complex structure is defined by J ∈ GL(m), satisfying
the following conditions:

(1) J2 = −1.

(2) J · admX = admX · J for every X ∈ h.

(3) [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ] = 0 for all X,Y ∈ m.

We have the Hermitian complex structure J ∈ GL(m) as the form J = admZ for
some Z ∈ zh, defining a G-invariant complex structure on M . We know that ZH

is actually a cyclic group with the Lie algebra zh of dimension 1. Hence, we have
only two G-invariant complex structure J and −J , which are compatible with the
Riemannian metric (see [11]).

Definition 7

A complex structure J on a Riemannian manifold {M ; g} is orthogonal or (skew-
symmetric) if J is compatible with respect to the Riemannian metric g, defining a
Hermitian structure {g, J} on M .

Burstall-Rawnsley Conjecture [7]

Orthogonal complex structures on an irreducible Hermitian symmetric space
{M ; g, J} are unique up to sign, namely J,−J .

They showed that the conjecture holds for Hermitian symmetric spaces of compact
type. The proof is based on Twistor theory of symmetric spaces they have developed.
They also show the following related result.
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Theorem 9 (Burstall et al) [6]

An inner symmetric space of compact type admits an orthogonal complex structure
if and only if it is a Hermitian symmetric space.

In particular, any sphere S2m, m ≥ 2 or their products admit no orthogonal complex
structures. Recall that S2m = SO 2m+1/SO 2m with an involution σ defined by

σ(g) = sgs−1 for g ∈ SO 2m+1,

where

s =

(
1 0
0 −I2m

)
∈ SO 2m+1.

For a non-compact simple Lie group G, we have Iwasawa decomposition: G = SH,
where S is a simply connected solvable Lie group (called the Iwasawa group).

S acts simply-transitively on the Hermitian symmetric space M = G/H. Hence, M
can be considered as a homogeneous Kähler solvable Lie group.

Let s be the Lie algebra of S. Then s is a non-unimodular and split solvable Lie
algebra, and has a so-called normal J-algebra structure, which is defined as follows:

Definition 8

A normal J-algebra is a solvable Lie algebra with an inner product <,> and a
complex structure J ∈ GL(s) (J2 = −1), satisfying the following conditions:

(i) < JX, JY >=< X, Y > for all X,Y ∈ s.

(ii) < [X,Y ], JZ > + < [Y, Z], JX > + < [Z,X], JY >
= 0 for all X,Y, Z ∈ s.

(iii) [JX, JY ] − J [JX, Y ] − J [X, JY ] − [X,Y ] = 0
for all X,Y, Z ∈ s.

(iv) adsX has only real eigenvalues for all X ∈ s.

(v) there is a linear form ω such that < X, Y >= ω[JX, Y ].
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A solvable Lie algebra satisfying (i), (ii), (iii) is called a solvable Kähler algebra. A
solvable Lie algebra satisfying (iv) is of split (or completely solvable) type.

Theorem 10 (Gindikin-Vinberg [22], Pyatetskii-Shariro [20])

A split solvable Kähler algebra s is decomposed into the semi-direct sum of an
abelian J-invariant ideal and a normal J-algebra.

The corresponding Lie group S is a homogeneous Kähler solvmanifold which is
biholomorphic to a direct product of Ck and a bounded homogeneous domain D.

It is known [9] that any homogeneous Kähler-Einstein metric on a bounded homoge-
neous domain is a positive multiple of the Bergman metric; and [17] that a bounded
homogeneous domain with non-positive sectional curvature in Bergman metric is
biholomorphic to a bounded symmetric domain.
Therefore, we see from [8] the following.

Theorem 11

A simply connected irreducible homogeneous Kähler-Einstein solvmanifold with
non-positive sectional curvature is biholomorphic to an irreducible bounded sym-
metric domain; and the converse also holds for the Bergman metric.

Definition 9

J-algebras {s; J} and {s′; J ′} are isomorphic if there exists a Lie algebra isomor-
phism φ : s → s′ such that φJ = J ′φ.

(1) It is known (due to Pyatetskii-Shapiro) that there exists one to one corre-
spondence between isomorphism classes of normal J-algebras and biholomorphic
equivalence classes of bounded homogeneous domains ([20]).

(2) It is known (due to Dotti-Miatello [17]) that irreducible normal J-algebras {s; J}
and {s′; J ′} are isomorphic up to sign if and only if solvable Lie algebras s and
s′ are isomorphic as Lie algebras.

Let G be a connected simply connected (solvable ) Lie group of dimension 2m, and
g the Lie algebra of G
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Lemma 1

An almost complex structure J on g is integrable if and only if the subspace hJ of
gC generated by X +

√
−1JX (X ∈ g) is a complex subalgebra of gC which satisfy

gC = hJ ⊕ hJ .

Lemma 2

Let V be a real vector space of dimension 2m. Then, for a complex subspace W of
V ⊗C such that V ⊗C = W ⊕W , there exists a unique JW ∈ GL(V,R), JW

2 = −I
such that W = {X +

√
−1JW X|X ∈ V }C.

There exists one to one correspondence between complex structures J on g and
complex Lie subalgebras h which satisfy gC = h⊕ h, given by J → hJ and h → Jh.

For a complex structure J , the complex Lie subgroup HJ of GC corresponding to
hJ is closed, simply connected, and GC/HJ is biholomorphic to Cm.

The canonical inclusion g ↪→ gC induces an inclusion G ↪→ GC, and Γ = G ∩ HJ is
a discrete subgroup of G. We have the following canonical map g = i ◦ π:

G
π→ G/Γ

i
↪→ GC/HJ ,

where π is a covering map, and i is an inclusion. The left-invariant complex structure
J on G is the one induced by g from an open set U = Im g ⊂ Cm (see [21]).

Example 5

Let sm+1 be a solvable Lie algebra of dimension 2m+2 with a basis β = {Xi, Yj, Z,W}
for which the bracket multiplications are defined by

[Xi, Yi] = −Z, [W,Xj] =
1

2
Xj, [W,Yk] =

1

2
Yk, [W,Z] = Z,

where i, j, k = 1, ...,m, and all other brackets are 0.

We can express sm+1 as the semi-direct sum of a nilpotent ideal nm generated by
Xi, Yj, Z, i, j = 1, ...,m and an abelian Lie algebra w generated by {W}.

The inner product <,> is defined with respect to which β is an orthonormal basis.
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The complex structure J is defined by

JW = Z, JZ = −W,JXi = Yi, JYj = −Xj,

where i, j = 1, ...,m.

It is easy to check that J is integrable, and a linear form ω defined by

ω(Z) = 1, ω(Xi) = ω(Yj) = ω(W ) = 0,

satisfies < A,B >= ω([JA,B]) for any A,B ∈ sm+1; and thus {sm+1; J} is a
(irreducible) normal J-algebra.

We now take another complex structure Jk on sm+1. The complex structure Jk,
k = 1, 2, ...,m is defined by

JkW = Z, JkZ = −W,JkXi = Yi, JkYi = −Xi, i = 1, 2, ..., k

and
JkXj = −Yj, JkYj = Xj, j = k + 1, 2, ...,m,

then Jk is compatible with the inner product and integrable, but the condition (ii)
of normal J-algebra does not hold (Kähler form is not closed).

We see that the complex subalgebra h and hk of sC corresponding to J and Jk is
given by,

h = {W +
√
−1Z,X1 +

√
−1Y1, X2 +

√
−1Y2, ..., Xm +

√
−1Ym}C,

hk = {W+
√
−1Z,X1+

√
−1Y1, ..., Xk+

√
−1Yk, Xk+1−

√
−1Yk+1, ..., Xm−

√
−1Ym}C

where [W +
√
−1Z,Xi ±

√
−1Yi] = 1

2
(Xi ±

√
−1Yi), i = 1, 2, ...,m.

The corresponding Lie group Sm+1 is expressed as

Sm+1 = Hm o R,

where Hm is the Heisenberg group in Example 3 and the action φ : R → Aut (Hk)
is defined by

φ(s) :

 1 x z
0 Im yt

0 0 1

 →

 1 e
1
2
s x esz

0 Im e
1
2
s yt

0 0 1

 .
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The complex subgroup Hk of SC corresponding to hk is expressed as a semi-direct
product Hk = Uk o V , where

Uk =

 1 u 1
2

√
−1‖u‖k

0 Im
√
−1εku

t

0 0 1

 , k = 1, 2, ...,m,

V =
(  1 0

√
−1(es − 1)

0 Im 0
0 0 1

 , s
)
,

u ∈ Cm, s ∈ C, ‖u‖k = uεku
t (εk =

(
Im−k 0

0 −Ik

)
). Note that Uk is an abelian

subgroup of SC and V is a 1-parameter subgroup of SC corresponding to W +
√
−1V .

Define φk : SC → Cm+1 by

(  1 u z
0 Im vt

0 0 1

 , s
)
→ (u+

√
−1εkv, (< u,v > −2z)+

√
−1 (

1

2
(‖u‖2

k+‖v‖2
k)+2es)).

Then, φk induces a biholomorphic map φk : SC/Hk → Cm+1, and the image of Sm+1

is the open subset of Cm+1:

Sk = φk(Sm+1) = {(z, w) ∈ Cm+1 | Im w >
1

2
‖z‖2

k}.

We know that S0 is biholomorphic to Dm+1 = {(z, w)| ‖z‖2 + |w|2 < 1}, which is a
complex hyperbolic (m + 1)-space (or a Siegel domain of type II). And we can see
that Sm is biholomorphic to D′

m+1 = {(z, w) ∈ Cm+1 | Im w < 1
2
‖z‖2}, which can be

considered as CPm+1 − Dm+1 ∪ P , where P is a projective m-plane tangent to the
boundary of Dm+1 (cf. [18] for m = 1).

Remark. The homogeneous complex solvmanifold Sk = {Sm+1; Jk} is non-Kähler
in any Sm+1-invariant metric: Suppose it admits a Sm+1-invariant Kähler metric.
Then {sm+1; Jk} defines an irreducible split solvable Kähler algebra. Since sm+1

has no Jk-invariant abelian ideal, it is an irreducible normal J-algebra. But then,
according to the above result of Dotti-Miatello, we must have Jk = J, or − J . In
particular, Sk is not biholomorphic to S0 = {Sm+1;±J}.
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We now consider irreducible Hermitian symmetric spaces of non-compact type in
general, that is irreducible bounded homogeneous symmetric domain. The following
theorem was obtained based on Twistor theory of symmetric spaces.

Theorem 12 (Burstall and Rawnsley) [7]

Let {M ; g, J} be a Hermitian symmetric space of non-compact type. Then, any
orthogonal complex structure J ′ on M commutes with J at each point of M .

Let D be an irreducible bounded homogeneous space on which a simply connected
solvable Lie group S act simply-transitively, and {s, g, J} be the corresponding ir-
reducible normal J-algebra.

We have the structure theorem ( due to Gindikin, Vinberg and Pyatetskii-Shapiro).

Theorem 13 (Gindikin-Vinberg and Pyatetskii-Shariro)

Let {s; g, J} be a normal J-algebra. Then s can be decomposed as

s = f ⊕ n,

where f is abelian, n = [s, s]. Furthermore, n can be decomposed as an orthogonal
direct sum of root spaces,

n = ⊕ nα,

where nα = {X ∈ n | [A,X] = α(A)X,A ∈ f}.

There are roots α1, α2, ...αf (f = dim f), dim nαi
= 1 for i = 1, ..., f , and all other

roots are expressed as
1

2
αi,

1

2
(αj ± αk)

for j, k (1 ≤ j < k ≤ f). We also have

J nαi
= f, J n 1

2
αi

= n 1
2
αi

, J n 1
2
(αj±αk) = n 1

2
(αj∓αk).

In Example 5, f is generated by W , and

α(W ) = 1, nα = {Z}, n 1
2
α = {Xi, Yj}.
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In particular, if J and J ′ commute, we can take an orthonormal basis β, preserving
the decomposition, with respect to which J and J ′ are expressed by the skew-
symmetric matrices

J = J1 ⊕ J1 ⊕ · · · ⊕ J1,

and
J ′ = ±J1 ⊕±J1 ⊕ · · · ⊕ ±J1,

where

J1 =

(
0 1
−1 0

)
.

Therefore, we have a finite number of S-invariant skew-symmetric complex struc-
tures on Hermitian symmetric spaces of no-compact type {S; g, J}.

We still have to check which of those skew-symmetric complex structures are inte-
grable, and whether some of them define biholomorphic complex structures.

Remark. The corresponding homogeneous domain {D; J ′} is non-Kähler in any
S-invariant metric: Suppose it admits a S-invariant Kähler metric. Then {s; J ′}
defines an irreducible split solvable Kähler algebra. Since s has no J ′-invariant
abelian ideal, it is an irreducible normal J-algebra. But then we must have J ′ =
J, or − J .

Example 6 (Apostolov et al) [1]

Let Xi be a generator of nαi
, i = 1, ..., f . Then we have JXi ∈ f, and X1, JX1, X2, JX2,

..., Xf , JXf can be extended to an orthonormal basis of s.

Assume that n 1
2
αi

= 0, i = 1, ..., f , and let η be the dual of Xf ∧ JXf with respect
to <,>. Then η is closed and J is compatible with η:

η(JX, JY ) = η(X,Y )

η([X,Y ], Z) + η([Y, Z], X) + η([Z,X], Y ) = 0

If we define a new complex structure J ′ by J ′ = −J on the J-invariant subalgebra
xf generated by {Xf , JXf} and J ′ = J on the orthogonal complement of xf , then
J ′ is compatible with <,> and the fundamental form Ω − 2η is closed, where Ω is
the fundamental from for J . Remark that J ′ is not integrable (due to the result of
Dotti-Miatello).
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It is known that the normal J-algebra associated to a Siegel domain of type I satisfies
the condition n 1

2
αi

= 0, i = 1, ..., f .

We now consider skew-symmetric complex structures on a Lie algebra g with an
inner product <,>. Note that J is skew-symmetric with respect to <,> if and only
if hJ is (maximal ) isotropic with respect to <,>C, that is < hJ , hJ >C= 0.

Lemma 3

Let J be a left invariant complex structure on g with its corresponding subalgebra
hJ . Then, there is a one to one correspondence between left invariant complex
structures J ′ commuting with J and decompositions

hJ = p+ ⊕ p−

where p+ and p− are subalgebras of h which satisfies

[p+, p−] ⊂ p+ ⊕ p−.

In this case the subalgebra hJ ′ corresponding to J ′ satisfies hJ ′ = p+ ⊕ p− with
p+ = hJ ∩ hJ ′ and p− = hJ ∩ hJ ′ . And J ′ is skew-symmetric with respect to <,> if
and only if < p+, p− >= 0.

We consider again Example 5 of normal J-algebra sm+1 (which is called an elemen-
tary J-algebra). Note that the corresponding homogeneous symmetric domain is a
complex hyperbolic space CHm+1.

The corresponding subalgebra hJ is a simi-direct sum of {W +
√
−1Z}C and z, where

z = {Xi +
√
−1Yi}C (i = 1, 2, ...,m) is an abelian ideal of hJ with

[W +
√
−1Z,Xi +

√
−1Yi] =

1

2
(Xi +

√
−1Yi).
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Lemma 4

Let p+ be a subalgebra of hJ which corresponds to an orthogonal complex structure
J ′ commuting with J , satisfying the condition in Lemma 3. Then p+ is, up to
isomorphism, one of the following types.

(1) p+ is an abelian subalgebra of z

(2) p+ is a semi direct sum of {W +
√
−1Z}C and an abelian subalgebra z′ of z

with [W +
√
−1Z, S] = 1

2
S for S ∈ z′.

We may assume, taking a suitable basis {Ui, Vi} of z if necessary, that p+ = {W +√
−1Z,Ui +

√
−1Vi}C for i = 1, 2, ..., k (1 ≤ k ≤ m), and p− = {Ui +

√
−1Vi}C for

i = k + 1, 2, ...,m, or the other way around, where J is defined by JW = Z, JZ =
−W,JUi = Vi, JVi = −Ui, i = 1, 2, ...,m.

We have hJk
= p+ ⊕ p−, where Jk is defined by

JkW = Z, JkZ = −W,JkUi = Vi, JkVi = −Ui, i = 1, 2, ..., k

and
JkUj = −Vj, JkVj = Uj, j = k + 1, 2, ...,m,

or the other way around.

Therefore, there exist, up to sign, m+1 skew-symmetric complex structures on sm+1.
As remarked before, we still have to check that none of them define biholomorphic
homogeneous complex structures ({sm+1; Jk} is not a normal J-algebra anymore).

Remark. For each Jk, < X, Y >k=< JX, JkY > defines a pseudo-Kähler structure
on sm+1, and the corresponding solvable Lie group with the invariant pseudo-Kähler
structure defines a pseudo-Hermitian symmetric space of non-compact type.
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