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1. Preliminary

Let B = {[t| < p} C C;. For Vt € B, R(t) is a bordered Riemann
surface in R parameterized over C, s.t. 0 € R(t) C R.

We identify the variation of R(t) : ¢t € B — R(t) with the total
space of complex 2-dim manifold R = (J,c5(t, R(t)) C B x R.

We say that R is a domain in B x R, parametrized by B x C,
with smooth boundary if R satisfies the following conditions:

O OR(t) consists of a finite number of C* smooth closed curves
O OR(t) varies C* smoothly with ¢ € B.
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Background . Variation formula for the Robin constants

Assume that R = |J,c(t, R(t)) is an unramified domain in

B x R, parametrized by B x C, with smooth boundary and

B x {0} C R. Let g(t,z) be the Green function for (R(t),0), and
A(t) be the Robin constant for (R(t),0). Then, for ¢t € B,

82A(§):_1/8k2(t,2)’agt2 _//R(t)

8tat R(t) 8taz
Here the function
0% Oyp Oy Oy
{8t62 ot 6z}+ ot

(t, )= 0%p |0p|” 2 0% \|0p|”
20\ oo |92 at| 920z | |9z
on R, which does not depend on the choice of defining functions ¢(t, z)

of OR, and ds, is the arc length element of OR(t) at z. The fn ka(t, 2) is
due to N.Levenberg-H.Yamaguchi.

Fact [04, Maitani-Yamaguchi]

xdy.

The proof of this variation formula for A(t) depends on the
following fact : the Green function is a defining fn of OR.
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Motivation and Results

Motivation

In more general case than the Green functions, is there analogy to
the variation formula for the Robin constants?

Results

@ There exist analogue variation formulas for principal functions
with logarithmic poles.

Li-principal fn Lo-principal fn
one logarithmic pole and Co o X
two logarithmic poles o o (R(t) is planar)

@ Application 1: The variation theorem for the harmonic span
s(t) of planar Riemann surfaces R(t)

@ Application 2: The simultaneous uniformization of the
Schottky covering of compact Riemann surfaces (g > 2)
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2. Variation formula for the radius of circular slit mapping

For Vt € B, R(t) is a bordered Riemann surface in~R over C; s.t.
OR(t) = > ", Cj(t) is C¥~class and 0 € R(t) C R.

Definition 1. (Lj-principal fn with one logarithmic pole)

31 u(t,z) : a real-valued fn on R(t) \ {0} s.t.
Q u(t, z) is harmonic on R(t) \ {0} and is C° on R(t);
@ 3 a neighborhood U(0) s.t. u(t, z) = log Til +(t) + h(t, 2),
where h(t,0) = 0;
Q u(t,z) =0 on Cy(t);
Q foreach j=1,...,v,

) el )= Gt w(8) on O, (@) /C =0

v

In the case when R(t) is a planar Riemann surface, u(t, z) induces
a circular slit mapping.
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2. Variation formula for the radius of circular slit mapping

For Vt € B, R(t) is a bordered Riemann surface inNR over C, s.t.
OR(t) = > ", Cj(t) is C¥~class and 0 € R(t) C R.

Definition 1*. (Lo-principal fun with one logarithmic pole)

31 wu(t, z) : a real-valued fn on R(¢) \ {0} s.t.
© u(t, z) is harmonic on R(t) \ {0} and is C° on R(t);
@ 3 a neighborhood U (0) s.t. u(t, z) = log ﬁ +I'(t) + h(t, 2),
where h(t,0) = 0;
Q u(t,z) =0 on Cy(t);
Q foreach j=1,...,v, a‘%(t,z):Oon C;(t).

In the case when R(t) is a planar Riemann surface, u(t, z) induces
a radial slit mapping.
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2. Variation formula for the radius of circular slit mapping

Assume that R = | J,c5(t, R(t)) is a domain in B x R over
B x C, with smooth boundary s.t. R(¢) 0. Then, for t € B,

2
ds,

ator  « aR(fz(t’z)

5%~(t) 1 ‘ du(t, 2)

z

_4//
T JJR@)

0u(t, 2)

2
dxdy.

ot0z

If R is a 2-dim pseudoconvex domain, then ky(t,z) > 0 on OR.

R is a 2-dim pseudoconvex domain over B x C, with smooth
boundary = ~(t) is a superharmonic fn on B.
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Cf. The radius of radial slit mapping

The radius r(t) of radial slit mapping

is not logarithmic superharmonic on B.

~

R={]t|<;—}x{[z|<l}—{
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Cf. The radius of radial slit mapping

The radius r(t) of radial slit mapping

is not logarithmic subharmonic on B.

Ca ()

f(t,z)=z

R={lzl<rn}-{Bx(c,Uc,)}
where log r(t) is superharmonic on B.
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3. Variation formula for principal fn with two logarithmic poles

For Vt € B, R(t) is a bordered Riemann surface in R over C, s.t.
OR(t) = X1 Cj(t) is C¥~class and R(t) 3 0, £(t)(# 0, holo for ¢).

Definition 2. (L;-principal fn with two logarithmic poles)
31 p(t,z) : a real-valued fn on R(t) \ {0,&(t)} s.t.

@ p(t,z) is harmonic on R(t) \ {0,£(¢)} and is CY on R(t);

Q p(t,z) =log ﬁ + ho(t, z) on U(0), where hy(t,0) = 0;

Q p(t,z) =loglz — &(t)| + a(t) + he(t, 2) on U(&()), where
he(t,€(t)) = 0;

@ foreach j=0,1,...,v,

(i) p(t, z) = constant a;(t) on C;(t), (ii) /C‘(:;dp(t, z)=0.

In the case when R(t) is a planar Riemann surface, u(t, z) induces
a circular slit mapping.
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For Vt € B, R(t) is a bordered Riemann surface in R over C, s.t.
OR(t) = X1 Cj(t) is C¥~class and R(t) 3 0, £(t)(# 0, holo for ¢).

Definition 2*. (Lg-principal fn with two logarithmic poles)
31 q(t, z) : a real-valued fn on R(t) \ {0,£(¢)} s.t

@ q(t,2) is harm on R(t) \ {0,£(t)} and is C° on R(t);
Q q(t,z) =log Eia ho(t, z) on U(0), where ho(t,0) = 0;
Q q(t,2) =log|z — £(t)] + B(t) + he(t, 2) on U(&(t)), where
he(t,€(t)) =
Q foreach j=0,1,...,r,
dq(t, 2)
on,

=0 on Cj(t).

v

In the case when R(t) is a planar Riemann surface, ¢(t, z) induces
a radial slit mapping.
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Assume that R = | J,c5(t, R(t)) is a domain in B x R over

B x C, with smooth boundary s.t.
R(t) 20, &(t)(#0, holo on B). Then, fort € B,

Ny

Lemma 2 [H]

Q2a(t) 1 ap(t,
ook w/aR(th(t’z)‘

Lemma 2* [H-M-Y]

8taz dmdy.

023(t) 1
otor |« ARﬁﬁ(t’ z)’ ' _/ /R(t) 8t82 d dy
1 N / )
——Im — xdq(t, z) | = / xdq(t, z .
™ {% ot ( A(®) ( )> ot < Bi(t) ( )>}

Here R(t) is of genus g (> 0), {A(t), Bx(t)}]_, are A, B cycles
on R(t), and each Ag(t), Bi(t) varies continuously with ¢ € B.
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Theorem 2 [H]

R is a 2-dim pseudoconvex domain over B x C, with smooth
boundary = Lj-const «(t) is a subharmonic fn on B.

Theorem 2* [H-M-Y]

R is a 2-dim pseudoconvex domain over B x C, with smooth
boundary and each R(t), t € B is planar
= Lo-const [3(t) is a superharmonic fn on B.

Application 1 [H-M-Y]

R is a 2-dim pseudoconvex domain over B x C, with smooth
boundary and each R(t), t € B is planar

= ’s(t) = a(t) — B(t) ‘ is subharmonic on B.

harmonic span of R(t)
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Schottky covering of a compact Riemann surface (g > 2)

e Schottky covering S of a compact Riemann surface § (g =22)

At A A: Az

open

Figure: Schottky covering
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Application of Theorem 2

Let B be a simply connected domain in C;. Let 7: S — B be a
holomorphic family of compact Riemann surfaces S(t) = 7w 1(#)
over B such that each fiber S(¢) is of genus > 2 and non-singular
in S. For a fixed t € B, we consider the Schottky covering S(t) of
each S(t). We denote by S the total space of the variation:

t € B — S(t), namely, S = U, 5(t, S(t)). Then we have:

Application 2 [H]

The total space S consisting of the Schottky covering §(t) of
compact Riemann surfaces S(t) with one complex parameter t € B
is holomorphically uniformized to a univalent domain on B x P'.

Sachiko Hamano Matsue College of Technology Variation formulas for principal functions (1)



Assume that R = |J,c(t, R(t)) is a non-singular ramified
pseudoconvex domain over B x C,.

e [N]: R(t), t € B is conformal equivalent to C*
= R~ B xC!

e [M-Y]: R(t), t € B is planar and parabolic
— R 2 a univalent domain in B x P!

e [H]: R(t), t € B is the Schottky covering of cpt Riemann surfs
of g > 2 = R = a univalent domain in B x P!

In [Y], Yamaguchi wrote a resume about the Apprication 2 with
a rough sketch of the proof. But his proof had a “gap”. Then | bridge
the gap by the variation formula for L1-principal fn, and obtain it.
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