Variation formulas for principal functions (I)

Sachiko Hamano

Department of Mathematics, Matsue College of Technology, Matsue, Shimane, 690-8518 JAPAN

hamano@matsue-ct.jp

July 21th. 2009

Let $B = \{|t| < \rho\} \subset \mathbb{C}_t$. For $\forall t \in B$, R(t) is a bordered Riemann surface in \tilde{R} parameterized over \mathbb{C}_z s.t. $0 \in R(t) \subset \tilde{R}$.

We identify the variation of R(t): $t \in B \to R(t)$ with the total space of complex 2-dim manifold $\mathcal{R} = \bigcup_{t \in B} (t, R(t)) \subset B \times \tilde{R}$.

We say that \mathcal{R} is a domain in $B \times \tilde{R}$, parametrized by $B \times \mathbb{C}_z$ with smooth boundary if \mathcal{R} satisfies the following conditions:

- $\partial R(t)$ consists of a finite number of C^{ω} smooth closed curves
- $\partial R(t)$ varies C^{ω} smoothly with $t \in B$.

Background : Variation formula for the Robin constants

Assume that $\mathcal{R} = \bigcup_{t \in B} (t, R(t))$ is an unramified domain in $B \times \tilde{R}$, parametrized by $B \times \mathbb{C}_z$ with smooth boundary and $B \times \{0\} \subset \mathcal{R}$. Let g(t, z) be the Green function for (R(t), 0), and $\lambda(t)$ be the Robin constant for (R(t), 0). Then, for $t \in B$,

Fact [04, Maitani-Yamaguchi]

Here the function

$$k_2(t,z) = \left(\frac{\partial^2 \varphi}{\partial t \partial \bar{t}} \left| \frac{\partial \varphi}{\partial z} \right|^2 - 2 \operatorname{Re} \left\{ \frac{\partial^2 \varphi}{\partial \bar{t} \partial z} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial \bar{z}} \right\} + \left| \frac{\partial \varphi}{\partial t} \right|^2 \frac{\partial^2 \varphi}{\partial z \partial \bar{z}} \right) \left| \frac{\partial \varphi}{\partial z} \right|^{-3}$$

on $\partial \mathcal{R}$, which does not depend on the choice of defining functions $\varphi(t,z)$ of $\partial \mathcal{R}$, and ds_z is the arc length element of $\partial R(t)$ at z. The fn $k_2(t,z)$ is due to N.Levenberg-H.Yamaguchi.

The proof of this variation formula for $\lambda(t)$ depends on the following fact : the Green function is a defining fn of $\partial \mathcal{R}_{+}$ and $\lambda(t) = 0.000$

Motivation

In more general case than the Green functions, is there analogy to the variation formula for the Robin constants?

Results

• There exist analogue variation formulas for principal functions with logarithmic poles.

	L_1 -principal fn	L_0 -principal fn
one logarithmic pole and C_0		×
two logarithmic poles		(R(t) is planar)

- Application 1: The variation theorem for the harmonic span s(t) of planar Riemann surfaces R(t)
- Application 2: The simultaneous uniformization of the Schottky covering of compact Riemann surfaces $(g \ge 2)$

2. Variation formula for the radius of circular slit mapping

For $\forall t \in B$, R(t) is a bordered Riemann surface in \tilde{R} over \mathbb{C}_z s.t. $\partial R(t) = \sum_{j=0}^{\nu} C_j(t)$ is C^{ω} -class and $0 \in R(t) \subset \tilde{R}$.

Definition 1. (L_1 -principal fn with one logarithmic pole)

 $\exists 1 \ u(t,z)$: a real-valued fn on $R(t) \setminus \{0\}$ s.t.

- u(t,z) is harmonic on $R(t) \setminus \{0\}$ and is C^0 on $\overline{R(t)}$;
- ② ∃ a neighborhood U(0) s.t. $u(t, z) = \log \frac{1}{|z|} + \gamma(t) + h(t, z)$, where h(t, 0) = 0;

3
$$u(t,z) = 0$$
 on $C_0(t)$;

• for each
$$j=1,\ldots,
u$$

(i) $u(t,z) = \text{constant } a_j(t) \text{ on } C_j(t),$ (ii) $\int_{C_j(t)} *du(t,z) = 0.$

In the case when R(t) is a **planar** Riemann surface, u(t, z) induces a circular slit mapping.

For $\forall t \in B$, R(t) is a bordered Riemann surface in \tilde{R} over \mathbb{C}_z s.t. $\partial R(t) = \sum_{j=0}^{\nu} C_j(t)$ is C^{ω} -class and $0 \in R(t) \subset \tilde{R}$.

Definition 1^{*}. (L_0 -principal fun with one logarithmic pole)

 $\exists 1 \ u(t,z)$: a real-valued fn on $R(t) \setminus \{0\}$ s.t.

- u(t,z) is harmonic on $R(t) \setminus \{0\}$ and is C^0 on $\overline{R(t)}$;
- ② ∃ a neighborhood U(0) s.t. $u(t,z) = \log \frac{1}{|z|} + \Gamma(t) + h(t,z)$, where h(t,0) = 0;

3
$$u(t,z) = 0$$
 on $C_0(t)$;

• for each
$$j = 1, \ldots, \nu$$
, $\frac{\partial u}{\partial n_z}(t, z) = 0$ on $C_j(t)$.

In the case when R(t) is a **planar** Riemann surface, u(t, z) induces a radial slit mapping.

Lemma 1.

Assume that $\mathcal{R} = \bigcup_{t \in B} (t, R(t))$ is a domain in $B \times \tilde{R}$ over $B \times \mathbb{C}_z$ with smooth boundary s.t. $R(t) \ni 0$. Then, for $t \in B$,

$$\begin{aligned} \frac{\partial^2 \boldsymbol{\gamma}(t)}{\partial t \partial \bar{t}} &= -\frac{1}{\pi} \int_{\partial R(t)} k_2(t,z) \left| \frac{\partial u(t,z)}{\partial z} \right|^2 ds_z \\ &- \frac{4}{\pi} \iint_{R(t)} \left| \frac{\partial^2 u(t,z)}{\partial \bar{t} \partial z} \right|^2 dx dy. \end{aligned}$$

If \mathcal{R} is a 2-dim pseudoconvex domain, then $k_2(t,z) \ge 0$ on $\partial \mathcal{R}$.

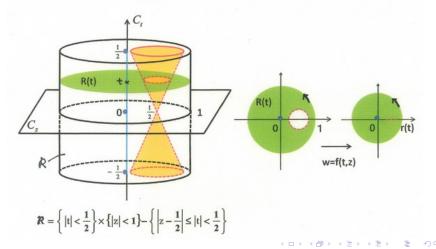
Theorem 1.

 \mathcal{R} is a 2-dim pseudoconvex domain over $B \times \mathbb{C}_z$ with smooth boundary $\Longrightarrow \gamma(t)$ is a superharmonic fn on B.

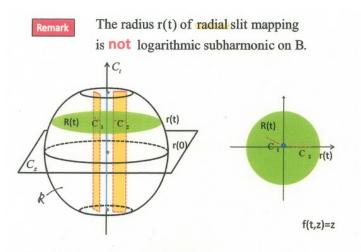
・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

The radius r(t) of radial slit mapping is **not** logarithmic superharmonic on B.



Cf. The radius of radial slit mapping



 $\mathbf{\mathcal{R}} = \bigcup_{\substack{t \in B \\ \text{where } \log r(t)}} \{ |z| < r(t) \} - \{ B \times (C_1 \cup C_2) \},\$

3. Variation formula for principal fn with two logarithmic poles

For $\forall t \in B$, R(t) is a bordered Riemann surface in \tilde{R} over \mathbb{C}_z s.t. $\partial R(t) = \sum_{j=0}^{\nu} C_j(t)$ is C^{ω} -class and $R(t) \ni 0$, $\xi(t) (\neq 0$, holo for t).

Definition 2. $(L_1$ -principal fn with two logarithmic poles)

 $\exists 1 \ p(t,z): \text{ a real-valued fn on } R(t) \setminus \{0,\xi(t)\} \text{ s.t.}$

$${f 0} \ p(t,z)$$
 is harmonic on $R(t)\setminus\{0,\xi(t)\}$ and is C^0 on $\overline{R(t)};$

2)
$$p(t,z) = \log \frac{1}{|z|} + h_0(t,z)$$
 on $U(0)$, where $h_0(t,0) = 0$;

3
$$p(t,z) = \log |z - \xi(t)| + \alpha(t) + h_{\xi}(t,z)$$
 on $U(\xi(t))$, where $h_{\xi}(t,\xi(t)) = 0$;

• for each
$$j = 0, 1, \dots, \nu$$
,
(i) $p(t, z) = \text{constant } a_j(t) \text{ on } C_j(t)$, (ii) $\int_{C_j(t)} *dp(t, z) = 0$.

In the case when R(t) is a **planar** Riemann surface, u(t, z) induces a **circular** slit mapping.

For $\forall t \in B$, R(t) is a bordered Riemann surface in \tilde{R} over \mathbb{C}_z s.t. $\partial R(t) = \sum_{j=0}^{\nu} C_j(t)$ is C^{ω} -class and $R(t) \ni 0$, $\xi(t) \neq 0$, holo for t).

Definition 2^* . (L₀-principal fn with two logarithmic poles)

 $\exists 1 \ q(t,z)$: a real-valued fn on $R(t) \setminus \{0,\xi(t)\}$ s.t.

• q(t,z) is harm on $R(t) \setminus \{0,\xi(t)\}$ and is C^0 on $\overline{R(t)}$;

②
$$q(t,z) = \log \frac{1}{|z|} + h_0(t,z)$$
 on $U(0)$, where $h_0(t,0) = 0$;

• $q(t,z) = \log |z - \xi(t)| + \beta(t) + h_{\xi}(t,z)$ on $U(\xi(t))$, where $h_{\xi}(t,\xi(t)) = 0$

• for each
$$j = 0, 1, ..., \nu$$
,

$$rac{\partial q(t,z)}{\partial n_z}=0 \ \ {
m on} \ \ C_j(t).$$

In the case when R(t) is a **planar** Riemann surface, q(t, z) induces a **radial** slit mapping.

Assume that $\mathcal{R} = \bigcup_{t \in B} (t, R(t))$ is a domain in $B \times \tilde{R}$ over $B \times \mathbb{C}_z$ with smooth boundary s.t. $R(t) \ni 0, \ \xi(t) (\neq 0, \text{ holo on } B)$. Then, for $t \in B$,

Lemma 2 [H]

$$\frac{\partial^2 \boldsymbol{\alpha(t)}}{\partial t \partial \bar{t}} = \frac{1}{\pi} \int_{\partial R(t)} k_2(t,z) \left| \frac{\partial p(t,z)}{\partial z} \right|^2 ds_z + \frac{4}{\pi} \iint_{R(t)} \left| \frac{\partial^2 p(t,z)}{\partial \bar{t} \partial z} \right|^2 dx dy.$$

Lemma 2^* [H-M-Y]

$$\begin{split} \frac{\partial^2 \beta(t)}{\partial t \partial \bar{t}} &= -\frac{1}{\pi} \int_{\partial R(t)} k_2(t,z) \left| \frac{\partial q(t,z)}{\partial z} \right|^2 ds_z - \frac{4}{\pi} \iint_{R(t)} \left| \frac{\partial^2 q(t,z)}{\partial \bar{t} \partial z} \right|^2 dx dy \\ &- \frac{1}{\pi} \mathrm{Im} \left\{ \sum_{k=1}^g \frac{\partial}{\partial t} \left(\int_{A_k(t)} * dq(t,z) \right) \frac{\partial}{\partial \bar{t}} \left(\int_{B_k(t)} * dq(t,z) \right) \right\}. \end{split}$$

Here R(t) is of genus $g \geq 0$, $\{A_k(t), B_k(t)\}_{k=1}^g$ are A, B cycles on R(t), and each $A_k(t), B_k(t)$ varies continuously with $t \in B$.

Theorem 2 [H]

 \mathcal{R} is a 2-dim pseudoconvex domain over $B \times \mathbb{C}_z$ with smooth boundary $\Longrightarrow L_1$ -const $\alpha(t)$ is a subharmonic fn on B.

Theorem 2^* [H-M-Y]

 \mathcal{R} is a 2-dim pseudoconvex domain over $B \times \mathbb{C}_z$ with smooth boundary and each R(t), $t \in B$ is planar $\implies L_0$ -const $\beta(t)$ is a superharmonic fn on B.

Application 1 [H-M-Y]

 ${\mathcal R}$ is a 2-dim pseudoconvex domain over $B\times {\mathbb C}_z$ with smooth boundary and each $R(t),\,t\in B$ is planar

$$\implies$$
 $|s(t) := \alpha(t) - \beta(t)|$ is subharmonic on *B*.

harmonic span of R(t)

Schottky covering of a compact Riemann surface $(g \ge 2)$

• Schottky covering \tilde{S} of a compact Riemann surface S ($g \ge 2$)

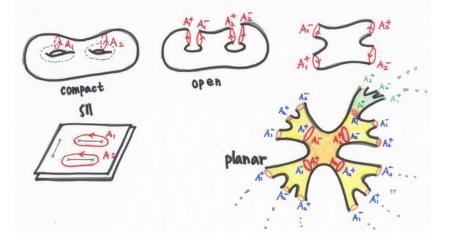


Figure: Schottky covering

Let B be a simply connected domain in \mathbb{C}_t . Let $\pi: \mathcal{S} \to B$ be a holomorphic family of compact Riemann surfaces $S(t) = \pi^{-1}(t)$ over B such that each fiber S(t) is of genus ≥ 2 and non-singular in \mathcal{S} . For a fixed $t \in B$, we consider the Schottky covering $\widetilde{S}(t)$ of each S(t). We denote by $\widetilde{\mathcal{S}}$ the total space of the variation: $t \in B \to \widetilde{S}(t)$, namely, $\widetilde{\mathcal{S}} = \bigcup_{t \in B} (t, \widetilde{S}(t))$. Then we have:

Application 2 [H]

The total space \widetilde{S} consisting of the Schottky covering $\widetilde{S}(t)$ of compact Riemann surfaces S(t) with one complex parameter $t \in B$ is **holomorphically** uniformized to a univalent domain on $B \times \mathbb{P}^1$.

Assume that $\mathcal{R} = \bigcup_{t \in B} (t, R(t))$ is a non-singular ramified pseudoconvex domain over $B \times \mathbb{C}_z$.

• [N]: $R(t), t \in B$ is conformal equivalent to \mathbb{C}^1 $\implies \mathcal{R} \cong \underline{B} \times \mathbb{C}^1$

• [M-Y]: $R(t), t \in B$ is planar and parabolic $\implies \mathcal{R} \cong$ a univalent domain in $B \times \mathbb{P}^1$

• [H]: $R(t), t \in B$ is the Schottky covering of cpt Riemann surfs of $g \ge 2 \Longrightarrow \mathcal{R} \cong$ a univalent domain in $B \times \mathbb{P}^1$

Remark In [Y], Yamaguchi wrote a resume about the Apprication 2 with a rough sketch of the proof. But his proof had a "gap". Then I bridge the gap by the variation formula for L_1 -principal fn, and obtain it.

[H] S.Hamano, Variation formulas for L_1 -principal functions and application to the simultaneous uniformization problem, Michigan Math. J. **59** (2010). (to appear)

[H-M-Y] S.Hamano, F.Maitani and H.Yamaguchi, Variation formulas for principal functions II -Applications to variation for harmonic spans. (submitted)

[M-Y] F.Maitani and H.Yamaguchi, *Variation of Bergman metrics on Riemann surfaces*, Math. Ann. **330** (2004), 477–489.

[N] T.Nishino, *Nouvelles recherches sur les fonctions entières de plusieurs variables complexse (II)*, J. Math. of Kyoto Univ. **9** No.2 (1969), 221–274.

[Y] H.Yamaguchi, *Variations de surfaces de Riemann surfaces*, C.R. Acad. Sc. Paris, **286** (1978), 1121–1124.