Quasiplurisubharmonic Green functions

joint work with Vincent Guedj

Local setting: pluricomplex Green functions

 $D \subset\subset \mathbb{C}^n$, $u \in PSH(D)$, $x \in D$, Lelong number $\nu(u,x) = \text{largest } \nu$ for which $u(z) \leq \nu \log |z-x| + O(1)$ holds for z near x.

Say u has an isotropic pole at x with $\nu(u,x) = \nu$ if $u(z) = \nu \log |z - x| + O(1)$ for z near x.

Given $p_j \in D$, $\nu_j > 0$, $1 \le j \le k$,

$$g(z) := \sup\{u(z) : u \in PSH(D), u < 0, \nu(u, p_j) \ge \nu_j\}.$$

Then $g \in PSH(D)$ has isotropic poles at each p_j with $\nu(g,p_j)=\nu_j$ and

$$(dd^c g)^n = \sum_{j=1}^k \nu_j^n \, \delta_{p_j}, \quad d^c := \frac{1}{2\pi i} (\partial - \overline{\partial}).$$

(Lempert, Klimek, Demailly, Lelong)

$$(X,\omega)$$
 compact Kähler mfd., $n=\dim X$, $V_\omega=\int_X\omega^n$
$$PSH(X,\omega)=\{\varphi\in L^1(X,\mathbb{R})\ \mathrm{usc},\ \omega+dd^c\varphi\geq 0\}$$

$$\mathcal{P}(\omega)=\{\mathrm{positive\ closed\ }(1,1)\ \mathrm{currents}\ T\sim\omega\}$$

$$T\in\mathcal{P}(\omega)\Longleftrightarrow T=\omega+dd^c\varphi,\ \varphi\in PSH(X,\omega)$$

Definition. $\varphi \in PSH(X,\omega)$ is called a ω -psh Green function with (isolated) poles at $p_1, \ldots, p_k \in X$ if it is locally bounded in $X \setminus \{p_1, \ldots, p_k\}$ and

$$(\omega + dd^c \varphi)^n = V_\omega \sum_{j=1}^k m_j \delta_{p_j}, \ m_j > 0, \ \sum_{j=1}^k m_j = 1.$$

Local positivity indicators for ω (Demailly):

$$\nu(\{\omega\}, x) := \sup\{\nu(\varphi, x) : \varphi \in PSH(X, \omega)\} \text{ (max)}$$

$$\varepsilon(\{\omega\},x) :=$$

$$\begin{split} \sup\{\gamma:\,\exists\,\varphi\;\omega-\mathrm{psh},\,\|\varphi-\gamma\log dist(\cdot,x)\|_{L^\infty(X)}<+\infty\} =\\ \sup\{\gamma:\,\exists\,\varphi\;\omega-\mathrm{psh},\,\,\nu(\varphi,x)=\gamma,\,\,\varphi\in L^\infty_{loc}(U\setminus\{x\})\}, \end{split}$$

where U is a neighborhood of x depending on φ .

$$\varepsilon(\{\omega\},x) = \min_{V} \left(\frac{\int_{V} \omega^{\dim V}}{\operatorname{mult}_{x} V}\right)^{\frac{1}{\dim V}},$$

where $V \subseteq X$ irred. subvariety, dim $V \ge 1$, $x \in V$, is the *Seshadri constant* of $\{\omega\}$ at x (Demailly-Paun).

Have
$$0 < \varepsilon(\{\omega\}, x) \le V_{\omega}^{1/n} \le \nu(\{\omega\}, x), \ \forall x \in X.$$

If φ is ω -psh Green function with one isotropic pole at x then $\nu(\varphi,x)^n\delta_x=(\omega+dd^c\varphi)^n=V_\omega\delta_x$, so

$$\nu(\varphi, x) = \varepsilon(\{\omega\}, x) = V_{\omega}^{1/n}.$$

Will see that in general $\varepsilon(\{\omega\}, x) < V_{\omega}^{1/n}$ $(X = \mathbb{P}^1 \times \mathbb{P}^1)$.

Proposition. $x \to \nu(\{\omega\}, x)$ is usc, $x \to \varepsilon(\{\omega\}, x)$ is lsc (neither is in general continuous).

Notations: $PSH^{-}(X,\omega) = \{ \varphi \in PSH(X,\omega), \varphi \leq 0 \},$ $M(\varphi)$ is the *unbounded locus* of $\varphi \in PSH(X,\omega)$. For $p \in X$, $\mathcal{G}_p(V_\omega)$ is the set of germs of functions u at p so that $u \in PSH(U) \cap L^{\infty}_{loc}(U \setminus \{p\})$ for some open set $p \in U \subset X$, $u(p) = -\infty$, $(dd^c u)^n = V_\omega \delta_p$ on U.

Theorem. Let $p \in X$ and $u \in \mathcal{G}_p(V_\omega)$. There exists a unique function $g = g_{u,p} \in PSH^-(X,\omega)$ such that (i) $g \le u + C$ holds near p, for some constant C. (ii) If $\varphi \in PSH^-(X,\omega)$ and $\liminf_{q \to p} \varphi(q)/u(q) \ge 1$ then $\varphi \le g$ on X. In addition, $(\omega + dd^c g)^n = 0$ on $X \setminus (M(g) \cup \{g = 0\})$.

In addition, $(\omega + aa^{\circ}g)^{n} = 0$ on $X \setminus (M(g) \cup \{g = 0\})$. If p is an isolated point of M(g) then $M(g) = \{p\}$ and g is a ω -psh Green function on X with pole at p.

Remark. Same can be done for any k points $p_j \in X$, with $u_j \in \mathcal{G}_{p_j}(V_\omega)$, $m_j > 0$, $\sum_{j=1}^k m_j = 1$. Now (i) $g \leq m_j^{1/n} u_j + C$ holds near each p_j . (ii) If $\varphi \in PSH^-(X,\omega)$, $\liminf_{q \to p_j} \varphi(q)/u_j(q) \geq m_j^{1/n}$,

Remark. $u = V_{\omega}^{1/n} \log dist(\cdot, p) \Longrightarrow \nu(\{\omega\}, p) \ge V_{\omega}^{1/n}$.

then $\varphi \leq g$ on X.

Proof. Fix $U \subset X$ an open coordinate ball around p, so that u has the above properties on U.

Step 1. Technique of Demailly $\Rightarrow \exists \varphi \ \omega$ -psh with $\varphi \leq u$ near p.

Fix $p \in W \subset\subset W' \subset\subset U$, $\chi \in C_0^\infty(W')$, $0 \le \chi \le 1$, $\chi = 1$ on W. Let $\rho \le 0$ psh on W', $dd^c \rho = \omega$. May assume $u \ge 0$ on ∂W .

Let $u_j \setminus u$ be smooth psh on W', so $(dd^c u_j)^n \to V_\omega \delta_p$.

Let $\mu_j = C_j \chi (dd^c u_j)^n$, $C_j > 0$ s.t. $\mu_j(X) = V_\omega$. Note $\int_X \chi (dd^c u_j)^n \to V_\omega \chi(p) = V_\omega$, so $C_j \to 1$.

Yau's theorem (& Kolodziej) $\Rightarrow \exists \varphi_j$ continuous ω -psh with $(\omega + dd^c \varphi_j)^n = \mu_j$, $\max_X \varphi_j = 0$.

Wlog $\varphi_j \to \varphi \in PSH^-(X, \omega)$, ω^n -a.e. on X.

Choose $a_j \geq 1$, $a_j^n C_j > 1$, $a_j \rightarrow 1$. We have $a_j(\varphi_j + \rho) \leq 0 \leq u_j \text{ on } \partial W,$

 $a_j^n (dd^c (\varphi_j + \rho))^n = a_j^n C_j \chi (dd^c u_j)^n \ge (dd^c u_j)^n$ on W, as $\chi = 1$ on W. By the minimum principle of Bedford and Taylor, $a_j (\varphi_j + \rho) \le u_j$ on W, so $\varphi + \rho \le u$.

Step 2. An upper envelope method. Consider

$$\mathcal{F} = \left\{ \varphi \in PSH^{-}(X, \omega) : \liminf_{q \to p} \frac{\varphi(q)}{u(q)} \ge 1 \right\} \neq \emptyset.$$

(Rashkovskii: the relative type of φ w.r.t. u is ≥ 1).

 $g := \sup\{\varphi : \varphi \in \mathcal{F}\}, g^* \in PSH^-(X,\omega).$ Will show $g^* \le u + C$ near p. So $g = g^* \in \mathcal{F}$, g verifies (i), (ii).

Pick M>0 s.t. the conn. comp. D of $\{u<-M\}$ which contains p is relatively compact in U. Let $\rho<0$ on U with $dd^c\rho=\omega$. Given $\varphi\in\mathcal{F}$ there exist domains $D_j\subset\subset D$, with $D_j\searrow\{p\}$ and

$$\varphi \leq (1-j^{-1})u \text{ on } \overline{D}_j.$$

We have

$$\rho + \varphi \le 0 \le (1 - j^{-1})(u + M) \text{ on } \partial D,$$
$$\rho + \varphi \le (1 - j^{-1})(u + M) \text{ on } \partial D_j.$$

Since u is maximal psh on $U \setminus \{p\}$, it follows

$$\rho + \varphi \le (1 - j^{-1})(u + M) \text{ on } D \setminus D_j,$$

$$\rho + \varphi \le u + M \text{ on } D,$$

$$g^* \le u + (M - \min_D \rho) \text{ on } D.$$

The remaining properties of g:

Let $q \in \Omega = X \setminus (M(g) \cup \{g = 0\})$ (open), let ρ be defined near of q with $dd^c \rho = \omega$, $\rho(q) = 0$.

 $\exists \ \varepsilon > 0 \ \text{and} \ G \ \text{open,} \ q \in G \subset \Omega \ \text{s.t.} \ g < -\varepsilon, \ |\rho| < \varepsilon/2 \ \text{on} \ G. \ \text{Let} \ W \subset\subset G, \ v \ \text{psh on} \ W, \ v^\star \leq \rho + g \ \text{on} \ \partial W.$

$$\varphi := \left\{ \begin{array}{l} g, \text{ on } X \setminus W, \\ \max\{\rho + g, v\} - \rho, \text{ on } W, \end{array} \right., \ \varphi \in PSH^{-}(X, \omega).$$

Since $\varphi = g$ near p, have $\varphi \in \mathcal{F}$. So $v \leq \rho + g$ on W, and the psh function $\rho + g$ is maximal on G. Conclude $(\omega + dd^c g)^n = 0$ in G, and hence on Ω .

Assume $p \in M(g)$ is isolated: $\exists K$ closed ball centered at p with $K \cap M(g) = \{p\}$, so g > -C on ∂K .

$$\varphi := \left\{ \begin{array}{l} g, \text{ on } K, \\ \max\{g, -C\}, \text{ on } X \setminus K, \end{array} \right., \ \varphi \in \mathcal{F}.$$

Thus $\varphi \leq g$, so $M(g) = \{p\}$ and

$$(\omega + dd^c g)^n(\{p\}) \ge (dd^c u)^n(\{p\}) = V_\omega.$$

Conclude $(\omega + dd^c g)^n = V_\omega \delta_p$. \diamondsuit

Case $X = \mathbb{P}^n$.

Let $[z_0 : \ldots : z_n]$, $\pi_n : \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$, ω_n be the Fubini-Study form, so $\pi_n^* \omega_n = dd^c \log ||z||$ and $V_{\omega_n} = 1$.

Wlog
$$p = [1:0:...:0] \in \mathbb{C}^n \subset \mathbb{P}^n$$

 ω_n -psh functions φ correpsond to

$$u(z) = \log ||z|| + \varphi(\pi_n(z)) \in PSH(\mathbb{C}^{n+1}),$$

u log homogeneous. So $u(1,z_1,\ldots,z_n)\in\mathcal{L}(\mathbb{C}^n)$, and $\nu(\varphi,p)\leq 1$. Conclude

$$\nu(\{\omega_n\}, p) = \varepsilon(\{\omega_n\}, p) = 1.$$

Have $\nu(\varphi, p) = 1$ if and only if

$$\varphi(\pi_n(z)) = \frac{1}{2} \log \frac{|z_1|^2 + \ldots + |z_n|^2}{|z_0|^2 + \ldots + |z_n|^2} + h[z_1 : \ldots : z_n],$$

where $h \in PSH(\mathbb{P}^{n-1}, \omega_{n-1})$.

 $\varphi \in L^{\infty}_{loc}(\mathbb{P}^n \setminus \{p\})$ iff $h \in L^{\infty}_{loc}(\mathbb{P}^{n-1})$ iff φ has isotropic pole at p. In this case $(\omega_n + dd^c \varphi)^n = \delta_p$.

Thus ω_n -psh Green functions with one pole of maximal Lelong number 1 must have an isotropic pole.

Case $X = \mathbb{P}^1 \times \mathbb{P}^1 = \mathbb{P}^1_z \times \mathbb{P}^1_w$.

Let $\pi_z: X \to \mathbb{P}^1_z$, $\pi_w: X \to \mathbb{P}^1_w$, $\omega_z = \pi_z^\star \omega_1$, $\omega_w = \pi_w^\star \omega_1$ $\omega_{a,b} := a\omega_z + b\omega_w, \ a,b > 0.$

Let $\pi: (\mathbb{C}^2 \setminus \{0\}) \times (\mathbb{C}^2 \setminus \{0\}) \to X$,

$$\pi(z_0, z_1, w_0, w_1) = ([z_0 : z_1], [w_0 : w_1]),$$

and identify $(z_1, w_1) \in \mathbb{C}^2$ to $\pi(1, z_1, 1, w_1) \in X$.

 $T \in \mathcal{P}(\omega_{a,b}) \iff \pi^*T = dd^cu$, where u is bihomogeneous psh on \mathbb{C}^4 :

$$u(\lambda z_0, \lambda z_1, \mu w_0, \mu w_1) = a \log |\lambda| + b \log |\mu| + u(z_0, z_1, w_0, w_1), \ \lambda, \mu \in \mathbb{C}.$$

Proposition. For all $p = (x, y) \in X$, we have

$$\nu(\{\omega_{a,b}\}, p) = a + b, \ \varepsilon(\{\omega_{a,b}\}, p) = \min\{a, b\}.$$

If $T \in \mathcal{P}(\omega_{a,b})$ and $\nu(T,p) = a + b$ then

$$T = a[z = x] + b[w = y].$$

If T does not charge $\{z=x\}$, $\{w=y\}$ then $\nu(T,p) \leq \min\{a,b\}.$

Proof. Wlog $a \ge b$, $p = (0,0) \in \mathbb{C}^2$. Let $T \in \mathcal{P}(\omega_{a,b})$.

Consider $R_{a,b} \in \mathcal{P}(\omega_{a,b})$ defined by $\pi^{\star}R_{a,b} = dd^c u_{a,b}$,

$$u_{a,b}(z_0, z_1, w_0, w_1) :=$$

$$b \log \sqrt{|z_1 w_0|^2 + |w_1 z_0|^2} + (a - b) \log |z_0|.$$

It shows $\varepsilon(\{\omega_{a,b}\},p) \geq b$. As $T \wedge R_{1,1}$ is well defined,

$$\nu(T,p) = T \wedge R_{1,1}(\{p\}) \le \int_X T \wedge R_{1,1} = \int_X \omega_{a,b} \wedge \omega_{1,1} = a + b.$$

Assume T does not charge $\{z=x\}$. Demailly's regularization: $\exists \, \epsilon_j \searrow 0$, $T_j \in \mathcal{P}(\omega_{a,b} + \epsilon_j \omega_{1,1})$ with analytic singularities, s.t. $0 \leq \nu(T,q) - \nu(T_j,q) \leq \epsilon_j, \ \forall \, q \in X$.

So $T_j \wedge [z=x]$ is well defined. If $T_j = dd^cv_j$ near p,

$$\nu(T_j, p) \le \nu(v_j|_{\{z=x\}}, p) =$$

$$T_j \land [z = x](\{p\}) \le \int_X T_j \land [z = x] = b + \epsilon_j.$$

Conclude that $\nu(T,p) \leq b$, so $\varepsilon(\{\omega_{a,b}\},p) \leq b$.

Assume finally $\nu(T,p)=a+b$. Then

$$T = a'[z = x] + b'[w = y] + T', T' \in \mathcal{P}(\omega_{a-a',b-b'}),$$

where T' does not charge $\{z=x\}$ and $\{w=y\}$. So

$$a + b = \nu(T, p) \le a' + b' + \min\{a - a', b - b'\}.$$

This implies that a'=a, b'=b, and T'=0. \diamondsuit

Note
$$V_{\omega_{a,b}}^{1/2} = \sqrt{2ab} > \min\{a,b\} = \varepsilon(\{\omega_{a,b}\},p)$$
, hence:

Corollary. There is no Green function with one isotropic pole on $\mathbb{P}^1 \times \mathbb{P}^1$.

There are however Green functions g on X with one pole p and with many different types of singularities at p, even when $\nu(g,p)$ is maximal. E.g., let

$$p = (0,0) \in \mathbb{C}^2, \ a = b = 1, \ \pi^*(\omega_{1,1} + dd^c g) = dd^c u,$$

$$u(1, z_1, 1, w_1) = \frac{1}{2k} \log \left(|z_1^k w_1^k|^2 + |z_1^k + w_1^k + z_1 w_1 Q(z_1, w_1)|^2 \right),$$

where
$$k \geq 1$$
, $Q(z_1, w_1) = \sum_{i_1=0}^{k-1} \sum_{i_2=0}^{k-1} c_{i_1 i_2} z_1^{i_1} w_1^{i_2}$. Have

$$\nu(g,p) = 1 \iff ord(Q,p) \ge k-2.$$