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Compact non― ktthler threefolds

associtted to hyperbolic 3-manifolds

Akira FUJIKI (Osatta university)

I would like to talk about a class of three dimensional non-kiihler compact complex

manifolds which are almost homogeneous with respect to the special linear group

SL2(C). These manifolds are related to hyperbolic manifolds and Kleinian groups .

In general my interest is in finding methods for constructing compact complex

manifolds which are non-k6,hler or, more generally which are not in class C. (A

compact complex manifold is said to be in class C if it is bimeromorphic to a compact

Kijhler manifold.) So far quite a few methods are known, but still very much in

sporadic ways.

Now it is known for long time that a class of compact non-kiihler manifolds are

provided by homogeneous manifolds, especially a complex parallelizable manifold

which is characterized by the following equivalent properties [5]:

(1) its (holomorphic) tangent bundle is trivial, and

(2) it is of the form X : G/1,

where G is a complex Lie group and I is a cocompact discrete subgroup of G.

Suppose for exa,rrpie that G is a simple linear Lie group. Then we can see rhar G/t

'is not Kiihler, or more strongly, is not in C.

Given a compact complex manifold a way of constructing new manifolds is to

consider its deformations. In the case under consideration, however, it is known by

Ra,ghunathan that X is rigid under local deformations unless G is locally isomorphic

fo SL2(C), while Ghys [1] has coustructi:d the Kuranishi fa,rnily of deformations of

X in the latter case, which is non=trivial for a general choice of the discrete group

r.
We then ask an almost complex analogue for the above manifolds, narnely we can

a"sk if for some discrete group | (which is not cocompact, but infinite), there exists

an equivariant compactification X of the quotient G/f which is non-kiihler, or is not
1
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in class Co So far no exmples of such manifblds seenl to have been known;in any

case it is easy to see that the resulting mttifolds satisサthe necesstty non―ktthler

properties:

P r o p o s i t i o n■.五ην st t cんXづ S ηθιれ cJa s s  C  aπれ ts  κθααづra流鶴cn sづθη κ(X ) =

―
C ' C ) .                                      ・

In this tttk we shall show that such equivariant compactincations exist fbr a class

o f  d i s c r e t e  s u b g r O u p s  o f  σ=PS L 2 ( C ) , a n d  S t u d y  s o t t e  o f  t h e  b t t i c  p r o p e r t i e s  o f

t h e s e  c o m p a c t i n e d  m t t i f o l d s . R e c t t l  t h t t  a  d i s c r e t e  s u b g r o u p  o f  G : = P S L 2 ( C ) i S

called a K■cづηづαη g"θγp and our lnanifblds should be related with rea1 3-dilnensional

hyperbolic mttifolds:

Rec」l that C is identi■ed with the group of oritentation―preserving iso五etries of

the hyperbolic upper―hJfspace∬ 3;G tt lsοπ+″ 3,狙 d13 beCOmes a homogeneous

spЖe of G;∬ 3堅 κ ＼G,Where X=PSび (2)。Now we tak狙 o■X a nOn―tr市ial

torsionfree Kleini〔Hl group「 . Then we hⅣ e a co― utative diagr〔In of quotients

び: = G/「

↓     ↓

M:=κ Gヽ/「=″3/F

where κ =PSび
(2),the VerticJ劉 田 ows tte五 就 urd projections of our complex

manif01dび to the 3-dimensiond complete hyperbolic manifold M。

H[ere an observation is that often there exists a natur〔狙compactincation ofthe base

■イ。 For instance for lnany knots in the 3-spheFe S3,its complement i√ :=S3_κ

is a complete hyperbolic mttifold as above so th就 」И is compacti■ed canonically

to the 3-sphere S3。 One Of the lnost typic圧[one is the case where Йr is the igure

eight knot,in which case r in y=∬3/「is the ttithmetic Kleinitt group explicitly

determined as the Bianchi group PSL2(03)aSSOCitted to the mttmal order 03 0f

the real qu〔dratic ield o(、だ)(Riley'82)[4].Especially9型「is volume inite and M

has a unique cusp.

In any tase one lnay ask if this compactiication i√(=Ⅳ :==S3can be lifted to a

(natural)equNミ iant compactiicttion 1/7⊆xo But thiS turns out to be impossible:

-2-
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Proposition2. Suppose that Glt iS volume finite and admits a cusp. Then G/l

admits no equivariant compactifications.

In view of this result we have to try another direction. H3 admits a natural

compactification I/3 as a 3-manifold with boundary by adding to it the sphere at

oo, denoted by bH|. Thus we have f/ : Hl)bff omitting the superscript. The

action of G extends naturally up to the boundary. Let I be a finitely generated

torsion-free Kleinian group. I then admits the (maximal) domain of discoinituity

Q g bH\ on the boundary, which we assume to be non-empty. Then M : I/S/f is

partially compactified to a &manifold with boundaxy N :: MU(Qlf) : (.U3U0)/f,

called a Kleinian rnaniJold, (cf. [3]).

Then our basic results are as follorrs.

Theorem The situati,on and, the assumptions being as aboae suppse further that

N is compact, or equiualently, C :: AI is enmpact (in geneml disconnectd'). Then

there esi,sts an quiuari,ant compactifico,tion G/f g X fi,tting into the commutatiae

diayam

Glr

J
M

such that

1) the uertical rnaps are the quotient rnap by K,

2) bL6) : bt(M), and,b2(X) : b2(M)+ the nunber of e.onnected components of

C, where b; denotes the i,-th betti number.

3) S :: X - G/T i,s isomorphic to the product C x Pt, wherc PL is the complen

projectiae line.

il -KX : 2[^9] and Nl'')c - -Ks, where K21 and Nq)( arc the e,anoniml bundle

of X and the normal bund,Ie of S in X rcspectiuely.

5) there exi,sts a four dimensional coueri,ng famitg of Pt uith norrnal bundle O(1)@

O(l); in fact X is a rnanifold of class L in the sense of Kato l2l.

Ｘ

　

↓
▼

Ⅳ

⊂
一　
　
　
⊂
一
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6) the algebraic d,imension a(X) : 0 unless I is elementarg, i.e., #(bH \ 0) S 2;

inthelatter ensel = Z, a(X):2 and in fact X is thetwi-stor space of a diagonal

Hopf surface.

Example. 1) The case I g PSLy(R) g PSL2(C) is a cocompact Fuchsian

group. In this case O : H* IJH- and the universal covering * of. X is the twistor

space of ,S4 - ,Si with the induced metric. Since N is known to be homeomorphic

to C x / [3] , we have br(X) :29 and b2(X) : f,.

2) The case I is the Schottoky group of rank g > L. In this case N is the

handlebody of genus g [1] ; thus we have fu(X) :9.

We shall also disucss'the deformation problem for such manifolds in analory with

the results of Ghys [1]. It is interesting to ask if any higher dimensional analogue of

the above manifolds.

RpppRpttcps
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EXPLICIT EXAMPLE OF MOISHEZON TWISTOR

SPACES AND THEIR MINITWISTOR SPACES

NOBUHIRO HONDA

In this report I would like to ocplain our recent results in [2, 3, 4]

about constructions and classifications of (mini)twistor spaces associ-

ated to self-dual metrics on 3CP2, the connected sum of three complen
projective planes. The main result is the following

Theorem L. 12] Let g be a self-dual metri'c on 3CP2 sati,sfging the

following 3 conditons: (i) the scalar curanture of g is positiue, (ii) g

admits a non-zero Killing field, (iii) g is not conformally isometric to

self-dual metri,cs constructed by C. LeBrun in 16l. Then the huistor
space of g is obtained, as a small resolution of a double coaering of

CP3 branched along certain si'ngular quartic surface whose def'ning

equation can be erylicitly giuen (cf.below). Conaersely, the compler

7-fold obtained bg the aboue construction is always a twistor space of

3CP2 andthe con'esponding self-dualmetric satisf'es (i), (ii) and (iii)-

The equation of the branch quartic surface is e>rplicitly given by

(r) {v"a" + Q@o,a)}' : aout(ao + al)(ao - out),

where (Ar,yr,Az,Az) is a homogeneous coordinate on CP3, Q(ao,gr) b
a homogeneous quardratic polynomial with real coefficients, and o is
a positive real number. Moreover, Q and a satisfy the condition that

Q(A',A)2 - AoAt(Ao + yL)(Uo - oA) has a unique double root which is
a real number. Under these conditions, the quartic surace (1) becomes
birational to an elliptic ruled surface and has just 3 isolated singular
points which are two simple elliptic singularities (of type E7) and one
ordinary double point. Correspondingly, there are a lot of small rese'
Iutions of the double covering. It is possible to give a small resolution
explicitly which actually yields a twistor space. We remark that the

twistor spaces do not admit a Kiihler metric (by a theorem of Hitchin

[1]), so that the projectivity is lost through small resolution of the

double covering. 
1
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The 'converse part' of Theorem 1 means that the qua,rtic surface (1)
naturally determines a self-dual metrics on 3CP2. This enable us to
determine a global structure of a moduli space of self.dual metrics on
3CP2 as follows:

Corollary 2. Let ,4 be the set of all conformal classes lgl on3CP2,
where g is a self-dual metric on 3CP2 satisfyi,ng (il, ft,il and (iii) of
Theorem 1. Then .fi can be naturallg identified uithF.3 /G, where G
is a reflection of R3 haui,ng Z-dimensi,onal fired, locus. In par-ticular,
,& is non-empty and connected.

Let us explain backgrounds related to these results. In general, it is
known that if [9] is a self-dual conformal class on a compact 4-manifold
M, andif the scalar curvature of [g] is of positive type, then M must be
homeomorphic to .94 or nCP2 for some n ) l. It is known that for ^Sa
and CP2, the standard metrics a,re unique self-duat structure respec-
tively (although strictly speaking, for CP2, one has to suppose that
the scalar curvature is positive.) In a cerebrated work [7] Y. S. Poon
constructed a family of self-dual metrics on 2CP2 of positive scalar
curvature and also showed that every such metrics 2CP2 belongs to
his family. For n ) 3, LeBrun [6] and Joyce [5] constructed fa,rrilies of
self-dual metrics on nCPz with posibive scalar curvature, for arbitrary
n. Significant feature of their metrics is that, they admit a semi-free
U(1)-isometry for LeBrun metrics, and U(1) x U(l)-isometry for Joyce
metrics. Moreover, these properties characterizes their metrics respec-
tively.

However, it is readily seen (by deformation theory applied to the
twistor space) that for any n ) 3 there axe many self-dual metrics on
nCP2 which are different from LeBrun or Joyce metrics. Corollary 2
classifies such self-dual metrics on 3CP2, under the condition that they
admit a non-trivial Killing freld. We remark that the existence of sudr
metric is never trivial.

A relation between our new self-dual metrics and LeBrun or Joyce
metrics on 3CP2 is as follows:

Theorem 3. l3l Our self-dual metri,cs on 3CP2 obtaineil in Theorem
1 can be smoothly deformed i,nto LeBntn metrics ai,a Jogce metri,cs,
where the self-d,uality and the eristence of a non-zern Killing field are
kept through defonnations. In other words, the moduli space of all self-
ilual e.onfonnal classes satisfying (i)rand (ii) in Theorem 1 is connected'.

-6-



Thus a global picture of the moduli space of all self-dual metrics on

3CP2 with a non-zero Kilting field (and with positive scalar curvature)
becarne well understood. We remark that when our self-dual metric is
deformed into LeBrun metric, a Killing field (or generated t/(1)-action)
must be exchanged when passing through a Joyce metric (namelS a
LeBrun metric with torus action). We'a,lso remark that the main result
of [3] determines all U(1)-subgroups of the torus for which one can
obtain equva,riant deformations of LeBrun metric with torus action,
for arbitrary nCP2. Moreover, the dimensions of the moduli space of
such new metrics with U(l)-action are also calculated.

Next we explain a result in [ ] which describes the structure of
minitwistor spaces associated to our twistor space in Theorem 1. For
this, let D2 be the Hirzebruch surface of degree 2 and Ez the surface
obtained from !2 by contracting the (-2)-section of the ruling. (So Ez
has a unique ordinary node.)

Theorem  . l{l Let I be the minituti,stor space of the twistor space in
Theorem 1, which i,s by definition a quotient space of the htti,stor space
by the C* -act'ion, where the action is the one com'ing from the KiUing

fietd. Then t has a structure of the double coueri,ng of E2 branched
along a smooth ellipti,c curle that is an anticanonical curue ofE2 not
going through the node. Moreoaer, general minituistor line (namelg the
image of tuistor lines by the quotient map) are anticanonical curtes of
9 which has a un'ique ord,inarg node.

We mention that the period of the branch elliptic curye is the same
as the period of the elliptic curve of the branch quartic elliptic ruled
surface. (So it is determined by a in (1).)

Theorem 4 shows that the structure of our minitwistor space is quite
different from that of LeBrun metrics. Na:nely, for LeBrun metrics,
the minitwistor space is CPr x CPr and general minitwistor lines are
curves of bidegree (1, 1); in particular, they are smooth.
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An application of the Hamiltonian flow to
the 6 equation

Takao Akahori University of Hyogo

This paper is a series of our study of the mixed Hodge structure (Rumin
complex) for the case hypersurface isolated singularities. We take a complo<
euclidean space C'+r, and take a holomorphic function /, whictr satisfies :
df (p) + 0,if p is not the origin. And consider analybic space V : {z : z €
Cn+l, f (r): 0). This isolated singularity is well studied by several mathema-
tians, but from the point of view of CR structures, even the case hypersurface
isolated singularities is not well understood. About 10 years ago' we were trying
to obtain a CR analogy for smoothness of the ve.rsal deformation of complex
structures(at that time, Tian and Todorov gave a simple proof for smoothness
of the versal family for cqmwct Calabi-Yau manifolds). And we found that EB
lemma is a quite important property(in the case compact Kaehler menifolds,
this holds, but, otherwise, it is not valid). Concerning 0D lemma, today we
discuss; on

Vop :  {z :  z € Cn}I ,  tk) :0,o ( l  z l< b},

" Is the (T'V",0)*-*lued Dolbeault cohomology, represented by the harmonic
forms ?" . Narnely, does the following isomorphism hold ?

Ht (u",0, A^- L (Tt uo,b)* ) =

{Q, d e | (vo,o, t n- t (T' uo,u)- f\ n1r" u",b)* )),6 o : 0, 5" Q : 0},

where d" is the formal adjoint of d- with respect to the Kaehler metric, induced
by the standard Kaehler metric on Co*l. We must meation that in [O], in a
general setting, by using the functional analysis method, it is discussed. But,
in our case, Vo,6, is no longer strongly pseudo convex. Ra,ther, here, we use the
Ha,miltonian flow, and the Euler vector field (we discuss only As - singularities).

1 Geometrical meaning of HL(V",b, An-t(T'V",0).)

Vo,a is an open Calabi-Yau manifold(this means that our V",a admits a non-
vanishing holomorphic (n,0) form. So,

HL (Vo,u, Ti.,") = Ht (uo,o, A"-L (T' uo,b)* ).

And we know that the left hand side is the infinitesimal deformation space of
comploc structures wer Vo,6. This versal family is explicitly written as follows.
on cn+l x ct '  

v :  {(z, t) , t  F(z, t)  :  o},

-9ニ



where Fレ,→=/1Z)+Σ延1れレ),lebr〃mc.1(し'叱ル),and{分1,g
means representatives of the moduli alE

CiZl,… 。,Zπ+ll

(話,ノ)◆ .

Let(y,π (Z),S)be a family of deform乱 lons of cOttplex structures of L,b.

H e r e  S  i s  a n  m a l y t i c  s p a c e  w i t h  t h e  o r i g i n ,狙dπ(z ) i S  a  s m 0 0 t h  m a p p  f r o m  y
to S. So we have the Koddira Spencer map

ρ。:亀S→ 11(路ら,T′ち,b) ( 1 ・
1 )

Assume thtt there is a holomorphic(π ,0)fOrm,ω ,which is non―ⅥLnishing

On L,b,and it can be extended to y h。1。morphicaly(we uSe the not乱 lonあ for

this extension).In this situttion,we write down the KodairttSpencer class.We

take a θ∞ direomorphism map from L,b× StO y,

ち,b×S 一 生→ 7

thepraectbntothesecondtttorl       lπ (Z)

s  些 塑 型 叫 s

Thёn,v」e haκ

Theore]ml。

{&づき(あlx3)IS=ο}し~1'⇒=ω tt ρ。((皇)ο)
れ 揺 電0日 闘 し‐Om“ 需

‰ 瓶 潔 維 登 鮮 装 )犠 鶏:天lmθαns tんθれncr praご鶴cち απα ιんC Cg鶴

器ll∬:麟鷲1驚幣 [:麓  留 :mill盤‖電IttT鷺
consider the corresponding hmily of deform乱19nS{y,π(Z),C}Ofち,b,Where

i二ご枕識削雀=鰍屁躍ぶ■鍾I∬]ユ亀F庶(肌lT篤:
σ∞‐tr市ializ乱lon and a holomorphic(2,0)お rm,we look for the correspondi,g

i :燎 :計 1,お i緊 「

'We  s e t  θ
tt t r M」 Lt t bち 狙 d m  S e血 3, w e  dおcu s s  a

2  σ
∞― tr i v i a l i z a t i o n

For the family9 constructed in Sectel,{y,π(Z),C},We COnstruct a σ
∞ tr市id二

ization,which preserves the standard induced]Kaehler metrico First,we set a

Hamiltonian vector ield XJ(fOr the convenient,wetak a(1,0)pttt)by;

Ωcn+1(XJ,7)=げ(7),7∈ T″Cπ+1

-10-



This flow, generated W Xf , preserves O6.ar. Our X1 is ocplicitly written as

follows.
v ({Ftao': 

L'\u') ao'

Set Xi : (;i+7)Xt. This vector field makes sense out side of the origin. Now

consider the liow, generated by Xi. This means that: in mod (t2,t), we consider

the C- map fi;
zi -+ zi. + (Xiz.)t in mod (t',I).

Then,
f (zt + (x'rdt) : f (z;) + t in mod (t',I)'

Our Xi is not a Hamiltonian vector filed, but still satisfies

;J(0 lv,) = O ly",u mod (t2,7).

Here % : zr-1(t).

3 Holomorphic (n,0) forms along the parameter
space

The c- trivialization map ft is determined in sec't.2. In this section, we find a
holomorphic (n, o) form. Let w' : Xfi(dan "' n dzoql). Then,

Proposition 2.

d,z1 A "' A dznql : df Aw' on Cn*L - o.

For the proof, see IAG l. Especially. this proposition means that our ar' is
holomorphic along the fiber. While, for any vector field of type (1,0)( we write
it by Y), satisfying Y I : 0 on Vo,r,

u'(Y1: (&fl (xr + Y)l(d,an...n d,zn+t)

also satisfies

d,z1 A "' Adznl+: df Au'(Y) on a neighborhood of.Vo,u in gn*L - o-

Suppose that i there is a type (1,0) vector field Y satsisfying Yf :0, and and

u'(Y)L is purely of type (n - 1,1), (3-1)

where @'(Y)t is defined by;

i;u'(Y) : u(Y) + u'(Y)1t' mod (t2'7)'

Then, as our ar'(Y) is d-closed on Vo,6, we have

6u'(Y)1 : o, ilw'(Y), :9..
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Furthermore asづt preserves Ω IL,b,Our ω
′
(y)l SttiSnes

Ω IL,b∧ω
′
(y)1=00

We recall some the Hodge identities,Fδ″=[A,列,狙d fOr the middle di―
mension,μ,Al=0。SO,We h¨

δ
〃
ω
′
(y)1=o.

Hence the problem iS tO And such a type(1,0)VectOr neld y sttistting(3。1).

4 The ordinary double points

Let
f  :  ,?  *  " ' *  4+t .

And consider

Vop : {z; z € Cn+L, r? + . . . + zn+r : \ra <l z I b}.

In this case, the situation is quite simple. In fact, talre the C--trivialization,
i6, defined in Sect.2, and take the holomorphic (n,0) form u;', defined in Sect.3.
Consider

,ilw' : u' + u'rt mod (f ,fl.

Then our c.r! is purely of (n-1, l)-type(see [AGL]). Therefore this arl is automat-
ically a harmonic form by the Hodge identities. However, for.Al-singualrities(l I
1), this is not true. In the next section, we sketdt how to remedy this point.

5 The Euler vector field

For Ar singularities, there is the Euler vector field. Let f : z?+. ..+ z7+ 
"'"*.Then on Voft :  {z:  z € C*+1,f(z):0,a ( l  z l<b},  there is the Euler vector

field

E =
1     ∂

J+1∂ Zπ+1・

We adopt gE as for Y in Sect.3. Namely, consider the holomorphic (n,0) form

u'(g): 
#y(xr 

+ sE))(d',,.n "'^ d'zn+t)'

Here g is an arbitrary complex rralued C- function. We choose a d- firnction
g satisfying (3.1)(in the notation in Sect.3, Y : gE).

Remark The holomorphic (n,0) form E)(ilz1n ...n dzn+t), restricted to
Vo,6, vanishes. And El(d,z1n . . . n dzn+t), on f (z) : f,, is a closed (n,0) form.
This corresponds to a vanishing cycle(Lagarange submanifold).

Theorern 3. Let f : 
"? 

+.'.+ z?*+ zt^\\. fnen,

∬1(L,ら
,∧

π~1(T′
ち,b)*)笙

{φ:φ∈「(比,b,∧π
~1(T′ち,b)*A∧(T″ち,b)*)),∂φ=0,δ″φ=0}e

＋∂
一亀

‥
〒
ん
Ｈ

ｌ
一２
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The (n,0) part of the coefficient of t of il@J@an "'n d,zn+)), is pro-
portional to c.r'. We write it by; hc..r'(here h is a C- function on V",a). If h

never vanishes, then by taking a suitable I' we can control (n,0) pa"rt. For .4t
singularities, this c* function h does not vanish on v",6(this is proved by a
direct computation). So, taking a proper g' we can cancel the (n,0) part of the
coefficient of t of 

qr,b).

Hence, we have a type (n-L,l) differential form which satisfies (3.1), and corre
sponds to the Kodaira-spencer class of the family of deformations (V, r(z)'C)-
The other deformations are the same.
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DISCRETE SPECTRUM OF QUANTUM TUBES

CHRISTOPHER LIN AND ZHIQIN LU

A quantum tube is essentially a tubular neighborhood about an im―

mersed complete lnanifbld in some:Euclidean space. To be lnore pre―

cis e , l e t  Σ→ Rπ+た,た≧ 1,η=α j鶴(Σ),b e  t t  i S O m e t r i c  i m m e r s i o n ,
where Σ  is a complete,noncompact, Orientable manifbld. Then con―

sider the resulting normal bundle l「⊥Σ over Σ,and the submanifbld
F={(■ ,ξ)lπ∈Σ,lξ<r}⊂ T⊥Σ fOr r sitt enOugho The quan―
tum tube is deined as the Riemttnian mttibld(二∫*(αSL)),Where
dSL iS the Euclidean metric in R・+た狙d the map∫is denned by
ノ(″,ξ)=″ +ξ・Ifた=1,then the quantum tube is Jso called the

quantun■layer. The iHlmersion of」r means that the resulting image

of F under∫ in Rπ+たCan hatt intersectionso Moreover,since Σ c狙

haК quite complictted topology in general,ノ(F)cm to00 HOWever,
by doing our ttdysis on F directly(with the pull―back metric),theSe

complicttions are ntturally bypassed(cf・μ,司)・

Although on noncompact,nonco面 plete lnanifblds there is no unique
seliattoint extension of the LaplЖian∝ ting on compЖ tly supported

functions,we can always,via the lDirichlet quadratic form deine the

DづにんJθt ttapJacづαη△D,which is the seliattoint extension thtt reduces
to the selittoint Laplacitts deined on complete manifolds ttld com―

pact manifolds with Dirichlet boundar,conditiOns.Therefore we can
_proceed to perform spectral analysis, in particu12r, on the quantum
tube.Geometers,like physicists,are■ rst and foremost interested in

the existence and distribution of the discrete spectrum. Fbr noncoΠl―

pact manifblds this is in general not an easy tttk at alle However,
using standard variational techniques,the authors]Duclos,Exner,and

Kr●こiFtt Were島lё to,in an interesting paper pl,prove the existence
of discrete spectra for the quantum lalyer(correspOnding to n=2鉦ld

Date: Dec. 18, 2005.
2000 Mathemotics Subject Classifim,tion Primary: 58C40; Secondary: 58E35.
Key words onil phmses, Essential spectrum, ground state, quantum layer, qua,n-

tum tube.
The second author is partially supported by NSF Career award DM$0347033

and the Alfred P. Sloan Research Fellowship.
1
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2 CHRJSTOPHER LIN AND ZHIQIN LU

k : I in our defintion) under certain integral-cunrature conditions on
.D. Since the discrete spectrum are isolated eigenvalues of finite multi-
plicity their result is even better, especially in the physical sense since
the discrete spectrum is composed of energy levels of bound states of a
nonrelativistic parbicle. Our definition of the quantum tube improved
theirs in [2] and we were able to generalize the sa,me existence result
to the quantum tube. The challenges in our attempt at generalization
were mainly geometrical, a.s we sought to replace the necessary geomet-
ric conditions with appropriate higher dimensional analogs so that sim-
ilar variational techniques from [2] ca^n be applied meaningfully. One
notable observation that arised is the sharp contrast between pa.rabolic
and non-parabolic manifolds.

The main result in [5] is as follows:

Theorem L. Let n ) 2 be a natural number. Suppose E C ff+r is a
complete inrmersel, parabolic hypersurface such that the second funda-
mental form A -> 0 at infi,nity. Moreouer, we assume that

(1) Σ μ2た■ (2た)づSれ ι″知b:θ

た=1

υんCrC μ2ん>0/Orた≧lα“PοSづιづυC Cθ叩鶴ιαblC CθttctcηιS′レ/21,s ttθ
づηι"cr pα琵o/2/2,αηご2た,s ttcづηαttccα θηαοmοηん,s鶴げA2ん(■Σ)
bν tんcc鶴割αι鶴貿ιθηsθr 2 o/Σ.五θι α bC a pθsづれυc“αJ ηttπber sucん
流αt d l五| | <働 < 1 / a r  a  Cοn s tαηι島 .1 /Σ づS ηθt t OすαJJν g eθαcsづc ,

tんθη tんc grattηα statc o/流θ gttαηt鶴鶴:ανθr Ω θttsts.

In Юl,We generalized the above results to high codimensiond cttes:

Theorem 2.Lct(二 ∫
*(α

S3)bθ  αη οだ Cr―たgttαηιttm ιttbθ υづ力 陥αれSr

αηごbasc ttαηlルJα Σ O/ごづ鶴θηSづθη n sacんιんαι ttθ sc"ηαルηααttcntα:

/Om θ θCStθ  Zcm atづ 可 電ηづtνO Mθ ttουcち υθ αSS鶴 鶴 θιんαι Σ づs a pα ttbOれ c

mαηψJα,ΣμFμ2p¶『い(2た)づηtCgmbJc,αttα

If E is not totally geodesic, then the ground state of the quantum tube

fumE exi,sts.

By applytng the above result into two dimensional case, we get

( 2 )

０＜
一

Σα２■μ
囲
Σ
Ｈ

√

ノ

Σ

α
ηα

０＜
一

Σα２■ｐμ
囲
Σ
ロ

√
ん
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DISCRETE SPECTRUM OF QUANTUM TUBES 3

Corollary L. Suppose that E is a complete immersed surface of IJ*+L
such that the semnd fundamental torrr, A -- 0. Suppose that the Gauss
curaature is i,ntegrable and suppose that

(3)  e(E) - I^0 .0 ,

where e(E) as the Euler characteristic number of E; )4 i,s the isoperi-
metri,c constant at each end of E, defi,ned as

\: lim 
vol(B-(r))

r+oo Tf-

at each end Ei. Let a be a positiue number such that oll,4ll < Co < L.
IfE is not totally geodesic, then the ground state of the quanturn layer
Q edsts. In particular, i,f e(E) 10, then the ground state ed,sts.

We remark here that in the proof of Theorem 2 (and so as in Theorem
1 and the analogous result in [2]), the asymptotically flat condition on
X ensures that we get a lower bound on the bottom of the essential
spectnrm, while condition 2 (along with parabolicity) enabled us to
show that such a bound is also a strict upper bound for the total spec-
trum. In this way, we were able to conclude that the discrete spectrum
must be non-empty. It seems intuitive that the asymptotically flat
condition on -D is essential for there to be discrete spectra, since only
the "relatively-curved part of X" located in the "interior" of X will
trap a particle. If t is curved more-or-less the same everywhere, then
a particle may be equally likely to be anywhere since the "terrain" is
more-or-less indistinguishable everywhere. The preceding is of course
a physical intuition coming from the interpretation of our problem as
a problem in non-relativistic quantum mechanics, however, it serves to
motivate the idea that other global cunrature assumptions simila,r to
(2) may also provide the ocistence of ground state on quantum tubes.

Flom Corollary 1 (and the result in [2]), it is natural to make the
following

Conjecture. SupposeD is an embeilded asyrnptotically fl,at surface in
Rs which is not totally geodesic and the Gauss curlature is i'ntegrable.
Then the ground state of the quantum layer bui,It from E erists.

We have partial results in this direction [8]:

Theorem 3 (Lu). SupposeD is asyrnptotically fl,at but not totally ge-
od,esic i,n R3. If the Gauss curtsature of E is gtositiue, then the ground
state exists for the quantum layer.

-16-



4 CHRISTOPHER LIN AND ZHIQIN LU

In general, we have the following result:

Theorem   (Lu). SupposeD is asymptotically fl'at but not totally ge-

odesi,c in R3 and suppose the Gauss cuntature is integrable. Let H be

the mean curvature. If there is an e > 0 such that

- 1 l f  I
(4 )  _ l im; l /  HdDl>e '

r-co r lJ BG) |

then the ground state of the quanhtm layer exi,sts.

Let's make some remarks on the above results. By the work of [2],
we only need to prove the conjecture under the assumption that

I  xaz>0.
J E

By a result of Hartman [4], we know that

( 5 ) 鼻二καΣ=C幅)一Σttj・
Thus we have e(E) ) 0, or e(E) > 1. Let 9(E) be the genus of E, we
then know g(E) : 0 and E must be differmorphic to IR2, which is a
very strong topological restriction.

On the other hand, we have the following lemma:

Lemma L. Under the assumption that IDKdE > 0, there is an e > 0
such that

_ 1  f
l im:  I  lH ldD>e.r_6 r J B(r)

Proof. Since E is differmorphic to IR2, by (5)

o .  I  KdE  <2n  <4 t r .
JE,

Thus by a theorem of White [9], we get the conclusion.

!

We believe (4) is true under the same assumption as in the Lerrma.

The above results confirmed the belief that the spectrum of the quan-
tum tube only depends on the geometry of .D, its base manifold. With
rega,rd to the geometry of I (or any complete, noncompact manifold
for that matter), the volume growth (of geodesic balls) is a.n important
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D:SCRETE SPECTRUM OF QUANTUM TUBES

geometric property. Roughly speaking, complete, noncompact mani-
folds can be separated into those with at most quadratic volume growth
and those with faster volume growth. They are termed (very roughly)
parabolic and non-parabolic, respectively. It is the property of parabol-
icity assumed on X that allowed us to prove the existence of discrete
spectra on quantum tubes. However, if one lookS at the hypothesis of
Theorem 2, where X is required to have vanishing curvature at infin-
ity while being immersed in Euclidean space, it is highly likely that X
will not be of at most quadratic volume growth if dim(X) > 2, hence
unlikely to be parabolic. However, one can be sure that the set of base
manifolds satisfying the hypothesis of Theorem 2 is not empty, due to
an exa,mple provided in [5]. Nevertheless, it is clea.r that if one were to
maintain the assumption of asymptotic flatness of X, then one should
begin payrng attention to the situation.when X is non-parabolic.

Although we do not yet have a result specifically for quarrtum tubes
over non-paxabolic manifolds, there is the following preliminary result
for general (possibly non-parabolic) base manifolds (see [fl):
Theorem 5. Suppose E is not totallg geodesic, sati,sfies the aolume
growthV(r) < Cr^, and, whose second, funilamentat form A goes to
zero at infinity and decags tlke r2llAll + 0 as r -t oo. Moreouer,
suppose

( 6 ) 鳳許二。 賀ち
Cπ,StS●θSSづbJν一∞ノαηα Stttct:ν Jcss tんαη―

:σQm2c2,υんctt θlづs
αη eη:づcづt cθηstαnt tんαι αttθηαs θη ιんcαれθηsづθη o/Σ,raαれso/tんc

gzαηtum tabc,αηα ttc tψPcr bθttηα θη ιんcc鶴剛αιurcげΣ。動θη ttC
αづsc“ιθ ψcctttm o/流c9zαηι鶴鶴ιttbc υづ流bαsc ttαη"ιイΣづS ηθη―

Cπ事〕ιν・

The result above is cert五 nly an overkill if Σ is pttlabolic.Thus we

should think of apllying it Only to the case of non―pttabolic」「,where
π >2.The direct apphcation of the volume growth hypothesis a1lows

one to use polynoΠlially declttring test functions to obtain the condition

on(6),田 d in turn obt五n the upper―bound for the bottom ofthe total

spectrum.

Theorem 5 is only a irst step towards generalizing the phenomenon

of localizttion(We meEm this to be the e対 stence of ground sttte)to

quantun■ tubeS OVer nOn―pttabolic lnanifblds with silnilar non―positivy
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6 CHRISTOPHER LIN AND ZHIQIN LU

assumptions on curvatule as the parabolic case. One clearly cites the
technical assumption on the decay Iate of the second fundamental form,
and one would like to remove it. In addition, the negativity condition
on (6) is very strong. We do not yet know if weaker assumptions such
as (2) are applicable to the case where X is non-parabolic.

Acknowledgement. This short note is based on the talk the second
author given at Hayarna Symposi'um on Complex Analysis in Seaeral
Vari,ables 2005 on December 18-21, 2005. He thanks the organizers,
expecially Professor T. Ohsawa for the invitation and hospitality during
the symposium.
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Multiplier Ideals and bFunction

Morihiko Saito, RIMS Kyoto University

Let X be a complex manifold, and D a divisor defined by /. The multiplier ideal
J(X,aD) is defined by the local integrability otlgl'llfl 'o for a > 0,9 € 076, see
[17]. This is also defined by using an embedded resolution of (X, D), and there are
positive rational numbers ar ( . -- I otj ( ... such that t(X,o.D) : J(X,ap)
for o € lai,aiat) and {(X,aiD) 2 J(X,ai+tD), where J(X,asD): Ox with
a0 : -oo, see [12]. These ai (j > 0) are called the jumping coefficients.

Let b1(s) be the Lfunction (i.e. the Bernstein-Sato polynomial) of /, see e.g. [9].
By definition, it is the monic generator of the ideal satisafying the relation

br(r)/" - P|'+t in 2xlf-'lltl,
where P e Dy[s]. Let By be the direct image as ?)-module of the structure shea.f
Ox by the graph embedding i,y : X -. X x C. This is free over Oyl11l with the
carronical generator 6(f -t).M. Kashiwara [10] and B. Malgrange [15] constructed
the V-filtration on 81 arrd proved the canonical isomorphism

DRx(O0., .rGrirB 7) :'rr1Cx[dimX - 1],

suctr that the action of exp(-22'i}fi) on the left-hand side corresponds to that of
the monodromy 7 on the right-hand side, where DR26 denotes the associated de
Rlram comple>r [4]. Here thr : R4*C& with P : Xt - Xo: D a good retraction,
which can be constructed by using an embedded resolution of D, see [5]. It is
well known that /" and s can be identified with d(/ - t) and -Qt respectively so
rhar Dy{slf" is identified with the 226[s]-submodule of 61 generated by d(/ - ,).
This implies the well-known relation between the roots of the bfunction and the
eigenvalues of the Milnor monodromy. BV [3] we have

J(X,aD):VoOx if o is not a jumping coefficient,

where the filtration 7 on Oy is induced by the V-filtration on 81. If o is a jumping
coefficient (or actually, for any a), we have for 0 < e < 1

J(X,aD):Vo+'Ox,  V"0x :  J(X,(a -  e)D) .

The proof can be reduced to the normal crossing case using the theory of bifiltered
direct images. (BV [Z] this is generalized to the case of a,rbitrary subvarieties.)
This gives another proof of a theorem of L. Ein, R. Laaar-sfeld, K.E. Smith, and
D. Va.rolin [7] that any jumping coefficients which are less than 1 are roots of
bf(-"). It is well known that the minimal jumping coefficient a1 coincides with
the minimal root of br(-r), see [ff].

For r € D, we define b1,r@), ay," by repiacing X with a sufficiently small open
neighborhood of z. For a > 0 with 0 <e< 1, the graded pieces a,re defined by

Q(X,aD): J(X,(a- e)D)lJ(X,oD) (: Gri,Oy).

We say that o is a local jumping coefficient of. D at x if Q(X,oD) does not vanish
at z. We have a partial converse of theirrtheorem €rs follows (see [18]):
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( 0。1 )

( 0。2)

2

Theorem L. Let a be a root of by,,(-s) contained in, (0' 1). Assume
(i) €/ : f for a holomorphic uector fi'eld €-
(ii) a < 9y,,,: min{ay,, la * 

" 
is sufficiently near x}.

Then a is a local jumpi,ng cofficient of D at t-

This does not hold if either of the two conditions is not satisfied. Condition (ii) is

satisfied if exp(-2zri,fi isnot an eigenvalue of the Milnor monodromy of / at A * t

for any B e 1o,1,,,a]. By definition, the jumping coefficients have a periodicity so

that a > 0 ig a jumping coefficient if and only if a* 1is. However, the roots of

br(-") do not have such a periodicity and we have to restrict to. (o1,',1)._
" 

As ior the relation with the spectrum ([19], [20])' N. Budur [1] proved that, if

Q(X,aD) is supported on a point n,of. D with a € (0,1), then the coefficient rno

of the spectrum Sp(/, 
") 

:DBmBtp is given by

TrLq: dim g(X, oD)".

Indeed,under theabovehypothesis ,g(x 'aD)( :Gt i ,ov) is ident i f iedwi ththe
Hodge filtration F -r on the ,\-eigenspace Hn-'(Fr,C)r for the Milnor monodromy,
where ): exp(-hricr), n: dimX, and F" denotes the Milnor fiber around r.

Note that the spectrum is defined bY

πα=Σb(-1)J~π
+l dimGrЪル(鳥,C)λ

with p=レーαl,λ=exp(-2πづα),

In the isoltted singulttity case,(0■ )iS C10Sely reltted to ll司 ,11倒 ,p司 ,1221.We

hⅣ e a generahzttion of a result of Mdgrange μ tt aS f01lows(see μ 司 ):

Theorem 2。 動 θ質 づs α  β tttιづθη P θ η ″
π~1(鳥

,C)λ  StabIC bν  ιんθ ttθ ηθご"鶴 り,

cθηtαづηづηg ιんθ∬οむc fJιttιづθη F,αηごんαυづη ιんc力JJθυづηg propcttν: Jλ =

exp(-2π づα)づS ηθι αη cむ θηυα:鶴Cげ tんcル 角Jηοr mθ ηθご"鶴 ν αι ν ≠ ″ SttECづ Cηt:ν

ηcar″ ′ ιんcη α づs α π Юιげ b∫,2(一 S)ゲ αttα θηJν ゲ G嘩 ″
絶~1(鳥

,C)λ ≠ Oυ づιん

p=[η
一 α]οルb“ θυcr tんC鶴 鶴Jι″ :づCttν げ ιんC ttθ t cοづηctαcs υ づιん ιんcdり 質 cげ ιんc

鶴づηづ鶴αI PθJνηθmづα:げ ιんC actづθη げ ιんC mθ ηθαrattν  θη G手 ∬
卜 1(鳥

,C)λ ・

This property of the rOOts of b∫(一s)iS Similtt to the deinition of the spectru]m

(Oe2),replacing P ttith F and the minimal polynomial with the chttacteristic

polynomial.If∫ iS a hOmogeneous polynomial,then P coincides with the pole

order iltration」P deined by using a meromorphic connection on Pπ
~l calculating

″π~1(鳥
,C)λ,See dso Юl.

We ctt give a formula for J(X,α D)if D iS 10CJly conical along a strttiicttion,

i.ec if D is locally deined by a weighted homogeneous function with nonneg就 市e

weights ttd the zero weight part,which is the hmit of the(loCal)c*― action,is

g市en by the strttum passing through the point[181。 ThiS generalizes a formula

of Must鈍嵐卜6]for a hyperplane ttrangement with a reduced equttiono A similar
formula has been known for a function with nOndegenertte Newton boundtty 181.
For a divisor D on a complex manifOld,let αD=min{α∫,π:″∈D}Where D is

locally deined by∫.By a Similar ttgument we hⅣe
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P r o p o s i t i o n  l .ス s s a mθ χ = Cπ  αηα Dづ s tんθ朝 電ηC  Cθηθ O /α αづυづSοr  Zげ d″ “c

αθη P~1。Lct tt bc tんθづごθαJ sんcげげ{0}⊂Cn.7耽cη υcんαυcヵrα<αz

」(χ,αD)=ヱ若 υづιん た=[ごα]-2+1.
L ρarιづcttJαr,J/αづS α Jθεαιルηpづηg cθ蠣 cづθηιげD αιOグη≦J<dα z.

In general αz≦ 1,and αz=l if Z is a reduced diViSOr with normal crossings,
e.g.if D is a generic hyperplane ttrangemente Since dim錆/錆+1=(πttTl),We

coeftients mα ttd mttα ofthe spectrum Sp(∫,0)are(1二1)fOr α=J/α<1。TliS
is the same for hOmogeneous polynomals with isolated singularity。

In the case of generic central hyperplane ttrangements(with reduced equttions),

the b―function is determined by Uo Walther p3](except fOr the multiplicity of the
root-1):

2d-2     。

b∫←)=←+1)2~1耳←+:),
′=2

where α=degノ >η .Here generic central metts thtt it is the cone of a projective

arrangement with normal crossings in Pη
~1. His fbrmula can be reduced to the as―

sertion thtt the roots of b∫(―S)iS Strictly smaller than 2 using the lおove calculttion

of the spectrum,see 118].ミミthert formula shows th乱 ,without restricting to the
inteⅣ」 (0,1),there is no relttion between the spectrum ttd the roots of b∫(―s)

(COntrtty to the case of a homogeneous polynomial with an isolated singularity).
This comes from the diference between the Hodge and pole order iltrations on the

Milnor cohomology in Theorem 2。

Finally,the jumping coemcients and the spectrum of a hyperpltt■e arrttlgement

冨e determined by the combinttorial dtta,as cottectured by Mustatユ [16].
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SOME RESULTS CONCERNING HYPERBOLICITY IN ALMOST COMPLEX

MANIFOLDS

HERVE GAUSSIER

This Note introduces some recent results concerning a geometric study of almost complor man-
ifolds. Our main focus, a,round hyperbolicity, is to e:<hibit some properties which particularize
nonintegrable structures from complex structures. Most of the results were obtained in joint works
with A.Sukhov [6, 7] and with J.Byun-K.H.Lee [3]. The corresponding references are stated before
each corresponding result.

We recall that an almost complex manifold is a pair (M, J) where M is a real manifold and "I is
a (continuous) (1,1) tensor J on M, satisfying J2 : -1d,.

The local existence of pseudoholomorphic curves was proved by A.Nijenhuis-W.WooH [14] for
Hrilderian structures :

Theorem L. Let (M,J) be an almost cornpler manifold, where J is Hdkleri,an uith etponent a
( 0 < a < | ) . T h e n f o r e u e r y p e M t h e r e i , s a n e i g h b o r h o o d ' U o f ( p ' o ) i n T M s u c h t h a t

V(q, u) e U,3f : (A, J"1) - (M,J), /(0) : q, df (O)(0/0r) : p.

This statement deserves some comments.
(i) The condition ".f , (A, J"t) - (M,J)" means that J is a pseudoholomorphic disc in M, i.e.

satisfying d,f o Js: J o d/. Here d1 denotes the standard complex structure on C, and more
generallly on Ca, n) I.

(ii) Flom classical elliptic theory, every pseudoholomorphic disc is of class gk*r,a whenever J is
of class Ch,o, k€ N\{0}, 0 < a < 1.

(zii) A.Nijenhuis-W.Woolf also proved the persistence of "small" pseudoholomorphic discs under
deformation of the structure : if J/ is an almost complex structure on M such that llJt -J lla. (( L,
then there exists // :'(A, J"t) - (M,J') such that ll/' - /ll- << 1.

Thanks to the local o<istence of pseudoholomorphic discs one may define the Kobayashi-Royden
pseudonorm K(u,t) in, (M,J) for a Hdlderian structure J :

Definition 2. For eaery p e M and for eaery p e TpM, we set :

K(u,t) :: inf{a > 0 / 3f : (A, J"r) - (M,J),/(0) : p, df(0)(010x) : p1.

The upper semi continuity of K1u,t1, proved by H.L.Royden [17] in complo< menifolds, relies
on the persistence of pseudoholomorphic discs under perturbation of the para^rneters p a.nd u. This
stability result is proved in the almost complor setting by B.Kruglikov [10] for smooth CF structures
and by S.Ivashkovich-J.P.Rosay [9] for C1'' structures. Finally the upper semi continuity fails for
Hcilderian structures; S.Ivashkovich-S.Pinchuk-J.P.Rosay [8] gave an exa,mple of a disc that cannot
be deformed.

Fbom now on we will only consider smooth Cr'o almost complex structures.

Dαtc:2006‐2-6.
1991 Mattcmatづcs ttι″cCt αass炉“tづοπ. Prilnary: 32V40。  SeCondary 32V25,32H02,32H40,32V10.

1
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2 HERVEGAUSSIER

By analogr with complex manifolds, the Kobayashi pseudodistance may be defined by integration
of the KobayashiRoyden pseudonorm :

Definition 3. (i) For eaery r,y e M the Kobayashi, pseud,od,istance between a and, g is gi'uen bg

ilg,4@,u) : t"f {li Kg,4(t(t),1(t))dt}, wherz the i.nfimum is taken oaer all CL paths joining

r and y.
(ii) (M,J) is (Kobayashi) hyperbolic i,f d,g,t) is a distance (thls wi,Il iniluce the usual topology

on M)
(i,ii) (M,J) is complete hyperbolic if the metric space (M,d'g,4) is complete.

Our first result (Corollary f. in [6]) concerns the local hyperbolicity of almost complex manifolds :

Theorem 4. Euery point i,n (M,J) adrni,ts a basis of complete hyperbolic neighborhoods.

This result is classical in complen manifolds. The Kobayashi pseudodistance and the Poincar6
metric being equal on Euclidean balls, such balls are therefore complete hyperbolic and they provide

the desired basis of neighborhoods.
The natural approach in the almost complex setting consists in viewing a nonintegrable structure

on sufficiently small balls, imbedded in Ct, 6 a deformation of the standard integrable structure.
For suctr small deformations, Euclidean balls are defined by a strictly plurisubharmonic function.
The problem relies consequently on estimating the Kobayashi-Roydeu pseudonorm ea 2, dspain
D: {p < 0} where p is strictly J-plurisubharmonic. This is given by Theorem 1 in [6], firstly by
proving a,n attraction property for pseudoholomorphic discs whose center is close to a bounday point
of D and secondly by using a blow-up technique. This scaling method, initiated by S.Pinchuk [15]
in C', has a new feature in the almost complex setting since this involves a deformation both of
the domain and of the almost comploc structure.

The scaling process reflects the local geometry of the domain D and emphasizes the osculation of
0D by spheres. The most striking fact is the convergence of the associated dilated almost complor
structures to "model structures", owing pa,rticular properties. To present them we first realize
the almost complex structure as a Cl'a almost complex deformation of .,Lr on the unit ball IB" in
C', with a special choice of complor coordinates (fitted to the geometry of p). For a positive

real number r let A" be the dilation map defined on C'by lt"('z,zn): (7-t/z'",r-L"n), where
( ' r , rn )  e  C ' -1xC.  I f  J " : : (A" ) * (J ) : l {oJo(4" ) -1  onA"(18 ,n) then l im" -eJr :Jo ,un i fo rmly
on compact subsets of C', where J9 is an alrnost complex structure defined on Cn by the matricial
representatiou :

(0.1) Js(z) = J,, * L('2,0).

Here  L( ' z r0 )  i s  amat r ix  w i th  Z ; r r ' :0  fo r  ib :1 ,  . . . )n -L ,  i :L r . . . r f l ,  Lnn :Oand Ln i (2 ,0 )  a , re
real linear forms in tz for j - l, . . . ,n - \.

Intuitively the scaling process reduces the local study of (D,J) to the global study of (H,Jo),
where IHI is the Siegel half space.

The main properties of the "model almost complex ma.nifold" (lHI, Jo), studied in [7] and by
K.H.Lee in [12], are summerized in the following proposition :

Proposition 5. (iii) Nonintqmble shv,chtres define an open d,ense subset in the space of alrnost
complec strwctures ilefind, by (0.1),

@ fhe model almost compler rnanifold (H, Jo) is hyperboli,c anil stri,ctly pseud,oanuex,
(ii) Thn autornorphisrn group o/ (lHI, Je) i,s tmnsitiue.
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SOME RESULTS CONCERNING HYPERBOLICITY IN ALIMOST COMPLEX MANIFOLDS

We recall that a domain D in an almost complen manifold (M,J) is strictly pseudoconvex if
every point inAD has a neighborhood U (imbedded in C") such that DnU: {z e U: p(z) <O},
where the Lvi form -d(J*d,p) of p is positive on T(D n U). Finally, a-n automorphism of an almost
complex manifold (M,J) is a diffeomorphism of M satisfying d,f o J : J o df .

Proposition 5 cancels the Wong-Rosay Theorem in almost complex manifolds. In complex man-
ifolds this is stated as follows (see [18, 16, 15, 5] :

Theorem 6. Let D be a d,omain in a compler mani,fokl of d,imension n. Assume that there is a
po in tpeAD,  apo in tqeD and,au tomorph ismsg"  o f  D suchtha tbm, - *p" (q ) :p .  I f  D  is
strictly pseudoconuer at p, then D is biholomorphic to the unit boIIB in C.

Consider a nonintegrable structure J6 by Statement (i) of Proposition 5. This prevents from
the existence of a biholomorphism between (lHI, Jo) and (lE, J"t). By Statement (ii), H is strictly
pseudoconvex at the orig:n and by Statement (iii) there is an orbit of the automorphism group
Aut(nn,"I6) which accumulates at the origin in EIHI.

This new phenomenon may be enplaiued by viewing model nonintegrable almost complex man-
ifolds as degenerate in the following sense. The Cayley transform ('",rn) = (2'zf (zn-t),(r"+
L)lk" - 1)) transforms ffiu {m} biholomorphically onto B. This is a particula,rity of the standard
complex structure. One can indeed prove the following [3] :

Proposition 7. If the mod,el structurc Js is not intqrable therc is no strongly pseud,oconuer rela-
tiaely conryact ilomain D (possi,bly ui,th a singularity) in an almost cornplen mani,fold (M,J) such
that (D, J) is biholomorphic to (lHI, "/6).

As a corollary of Proposition 7 we have the following version of the Wong-Rosay Theorem, stated
as a generic compactness phenomenon for the automorphism group ef s.lmesf complex manifolds [3] :

Theorem 8. Let D be a strictly pseuilorcnuer, rulatiaely urnpact ilamain in an almost compler
mani,fold (M, J). If (D, J) is not biholomorphic to (lE, ..fs) then th,e automorph'i,srn group Aut(D., J)
h compact.

To prove Theorem 8 we first establish that if an orbit of the automorphism group accumulates
at a strictly pseudoconvex point in the bounda.ry of a domain, then this domain is biholomorphic
to a model almost complex manifold (see [7, 12]). Then we may apply Proposition 7.

Several articles deal with the persistence either of hyperbolicity or, on the opposite, of folia-
tions by entire pseudoholomorphic curves under deformation of the almost complor structure. For
instance, J.Duval proved an almost complerc version of a theorem by M.Green, stating that the
complement of five lines in geueral position in an almost comploc projective space is hyperbolic.
On the opposite, the stability of generic foliation by entire pseudoholomorphic curves in a complex
torus was obtained by J.Moser [13] for small deformation of a complex standard structure. The
non hyperbolicity of such a torus, equipped with an almost complor structure tamed by a standa,rd
symplectic form, was proved by V.Bangert [U.

We recall that an almost complex manifold (M, J) is Brody-hyperbolic if this does not contain
any nontrivial entire curve, namely a map .f t (C, J"t) - (M,J). Every (Kobayashi) hyperbolic
manifold is clearly Brody-hyperbolic, since the Kobayashi pseudodistance vanishes identically on
(C, J*) and decreases under the action of pseudoholomorphic maps. The converse, for compact
manifolds, is due to Brody [2] in complor manifolds and can be carried out to almost complex
manifolds. This was pointed out by B.Kruglikov-M.Overholt [11] and it implies the following
stability result :
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4 HERV6 GAUSSIER

Propositioa 9. Let (M,J) be a ompact lryperbolic almost compler manifolil. If Jt is wt' almost
complex strtlcturz on M satisfyins llJ' - Jlle,.@1<<1, then (M,J') is hyperbolic

For convenience we give a sketch of the proof.

Assume by contradiction that there is a sequence (J")" of. almost complex structures on M such
that llJ/ - Jlld,.1tt1Jy-oo 0 and such that (M,Jr) is not hyperbolic. Consider for every z a

nonconstaat entire pseudoholomorphic a:rve f " , (C, J"r) -- (M,Jr). Since J, is of class Cl'o, /'
is at lea.st of class C2. Let g be any Riemannian metric on M aud let ll.ll be the associated norm.
We can assume that lld/"(0) @ lAr)ll is different from zero for every z and so, by isotropic dilations,
that lfd/"(0)@/An)ll -> m when v -+ @. Let A, :: {,\ € C : l)l < lldf"(q@lflr)ll/z} and let
g' : (Lr, Jrt) - (M, J") be the Jr-holomorphic map defined by :

g,(l) =r"Gffi)
Then g" satisfies, for ,\ € A, :

( llas'Q)(alar)ll : 1
I
1 .. , lldf,(e@laef2
I tas" 0)(a tar)| s W;ffiiiffi

This inequality is the key point in the Brody repara,rnetrization Lemma [2].
By the classical Ascoli theorem we extract from the sequeuce (g"), a subsequence, still denoted

by (g"), that converges uniformly on compact subsets of C to a map g z C, + M. It follows from
the Cr'o convergence of J, to J and from the quasi-ellipticity of J, that g is a J-holomorphic
curve. Moreover the maps g" converge to g, uniformly with their first derivatives, by "elliptic
bootstrapping". This contradicts the hyperbolicity of (M,J) since lld9"(0)@/Aa)ll = 1. tr

As an application of the proofs of Theorem 4 a.nd of Proposition 9 we have ([3]) :

Proposition LO. Let D be a relati,aely compact strcngly pseud,ounam domain in an alrnost oompler
rnanifolil (M , J) . If (D , J) is hyperbolic, then (D, J') is umplete hyperbolic for euery ahnost cornpler
strachrrc Jt satisfuing llJ' - Jllcr,.(D) << l.

We point out that the assumptions in Propositiou 10 a,re not redundant. Indeed, in contrast with
the complex case, there enist non hyperbolic strongly pseudoconvex d66ains in almost complex
manifolds (see [9]).

Acknowledgrnents. This Note was written while I was in delegation at the CNRS, Institut de
Math6matiques de Jussieu. I would like to thank this institution for its hospitality.
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Or surfaces of class VIIil with a cycle of rational

curves Application to bihermitian surfaces

Georges Dloussky
Hayarna Symposium - December ?005

1 Introduction

We want to report on non-kdhlerian part of Kodairats classification of compact
complex surfaces. More precisely wq are interested in the following situation:
A minimal compact complex surface.9 is said to be of the class VII9 of Kodaira
if the first Betti nrunbei satisfies b1(S) : 1. A surface ,9 is of class VIIf, if
moreover n :: bz(S) > 0; these surfaces admit no nonconstant meromorphic
functions.
The major problem in classification of non-kdhlerian surfaces is to achieve the
classification of surfaces ,S of class Vllf . AU known surfaces of this class contain
Global Spherical Shells (GSS), i.e. admit a biholomorphic map 9 : U "- V from
a neighbourhood U c A2 \ {0} of the sphere ,93 : 0F2 onto an open set V such
that E : p(S3) does not disconnect S. For exa,mple Hopf surfaces or blown-up
Hopf surfaces contain GSS. But many minimal examples may obtained: For
instance the following surface .9 with b(S) : 3 (the second Betti number b2(,9)
equals the number of rational curves), where fIi, i :0, 1,2 a,re blowing-ups and
o is a biholomorphic map onto its image.

ln'

Unit Ball
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A, copies of A, i e Z

Aj

%=~α

スJ+1

Universal covering space - L) Ai

Another example with 14 curves:

α(0=(り,c″(422)

Are there other surfaces?

2 Surfaces with GSS and foliations

All surfaces with GSS S ttmit at least one(sttgul肛)ho10morphic folittion.
W e  d e n o t e′b y  η= b 2 ( S ) t h e  SёC O n d  B e t t i  n u m b e r , D = D O +… ・+D . l  t h e

maximal reduced di宙sor,by ν (S)the intersection mttr破ofthe curves and by

%(S)=― ΣttDr the oppOSite sum ofsel■ intersections。

T h e o r e m  2 . 1 ( 1 4 , 1 0 , 9 1 ) f / % ( S ) < 3 2 ,ι んcη ιんcπ づs  α t tπt g a c / oれαιづοπ

αヴπca bν a cJοsca twづsted J“α死ォんmづcゴー/om ω ∈I° (S,Ω
l(Lο

gD)Θ メ ),υんCπ

Lた∈∬1 ( S , C★
)笙 C★ づS  α βαιJれC  t tηαl c  wづιんた=ん ( S ) = y l d e t y ( s ) | + 1∈

N★.yο πουθFた(S)=1 ゲ απα οηJνヴσπ(S)=22。

」J % ( S )〓 3η μ. c o  S  t S  a  Lοt t c―肌 r Z C b t t cんs a r / a cり, tんC r C  a t t  θ"αc t Jν ιυ0

ルIづαれοπS dげnCa by tυづsted J“αtttんπづcI―」0爾ns.

It is an open questbn to know r a swhce of class ⅥIまadmitting a bhatbn
contains a GSS,however,if the folil就ion isinduced by a non―trivial vector ield,

it is the case bl.     ´

3 Results and cOttectures in the general case

Dennition 3.2 Zct S bθ  a cοηPact cOη ρJθ″sarracc aπα π αηづπι″cr π ≧ 0。

爾c saν ttαt S αごπづts a ηttπcttcaJり π―απιづ“ποπづ“J醐悦sοr iN鴨 五σ流悦Sοリ ゲ

ιんc“ “"sts a βαιιれθ bttηごIc F∈″1(S,C★
)SuCん ιんαι″0(S,一πζsO F)≠ 0。

α(S)=(42522 222 71222
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Tbe following implications a,re known, it is conjectured that all these couditions
are equivalent.

π=b2(S)

casy

GSS:Global Spherical Shell

NmAc:Numerically m-anticanonical

by construction D 2 =。。rν( S ) n c g . d e量

- - -

l-* I luutl
I or, | | n ration.t ,u*r, I- -

The main problem is to show the e対 stence of curvese A cwve(7 gives a line

bundle lθl and a line bundle L gives a Chern class cl(L)∈ ∬2(s,z)・ The idea

is to try to do the converse:

By index theorem,bF=b2(S),then a theorem of Donaldson Fi giVes a Z―
b a S e ( 島 ) O f ∬

2 ( s , z ) / T O r s i O n , s u c h  t h a t 島
島

=―
場 ・I t  i S  k n o w n  t h a t  p g =

ん2(s,ο)=O hence the exponential exact sequence implies thtt theSe cohOmoト
ogy classes can be represented by line bundles Lがuch that 45Lづ =ん :=-10
hdeed,these hne bundles generalize exceptional curves of the irst ldnd,and

since S is minilnal,they have no sectione()ver the versal deformation S―→B

of S these line bundles form families£づ。We propose the fo1lowing cotteCture
which can be easily checked for surfaces with GSS:

COtteCture■ :Let S be a surface in class VIIま 狙 dS→ B be the versal

dёformation of S tt SO over the ba1l of dimensionん 1(S,O).Then there exists

%∈ △,鶴 ≠ 0 , a n d  n a t  l i n e  b u n d l e s  t t  s u c h  t h就〃0 (島
, Lづ,鶴Θ 民 )≠ O  f O r

づ= 0 ,… . ,π- 1 .

We have

Theorem 3。3五ct S be a sarraccづπ clαss Wオαπd S→Bづts υersaJ dc」or―
παιづοη.1/ι んere cttsts鶴 ∈ B α πごβat JれC bttπαJes鳥 ∈ ″

1(S,C★
)Sacん 流at

″0∈九,Lぅ,%Θ民)≠0/arづ=o,…。,π-1,ιんcπ ιんcπづs a ποπ c爾孵tν ttιttsλづ
o p e n  s c t  y⊂ B  s a cんιんαιルr  a J J鶴∈ び,島 づs a b :ουπ―Ψ  I o P / s u r r a c c . L

pa琵づcttJαЪ Sづs a degenematづοπ oJ bJουπtttψ IOpr surraccs.
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If a surface is a degeneration of blown―up Hopf surfaces,the fundamental group

of a iber is isomorphic to Z× Z:,hence tahng a inite covering,once obtains

a surface obtained by degeneration of blown―up primtty Hopf surfaceso Notice

that a inite quotient of a surface of dass VIIまcont五ning a GSS still contains
a GSS i3].

COtteCture 2:Let S be a surface of class Ⅵ Iま.If S iS a degenerttion of

blown―up prilnary Hopf surfaces,then S cont〔uns a cycle of rational curvese

A surface adⅡlitting a Nn■AC)divisor,contains a cycle of ratio五al cwves。

Theorem 3。 4 Lct S be a sarrace a/cJαsS F式 .」JS αα鶴づtS α Ⅳ‰五θαづυづsοr,

ιんθπ S cοπtaづπs a CSS。

The proof relies on Fle lt iS a weak version of

COtteCture 3(Nahmura[121).Let S be a surface Of Class VHま .If S

cont五ns a cycle(3 of rational curves,S contains a GSS.

The proofis based on thё fact that,if″1(σ,Z)=″ 1(S,Z),a curVe is equi‐―

lent in″2(s,z)tO a class ofth9 form Lづ―Σゴ∈I島,With」≠.0。Intuiti“ly Lづ
represents an exceptional curve of the irst kind and(7 is then equivalent to an

exceptional curve of the nrst hnd blown―up several times(Card(I)timeS)・ It

explains why curves haК sel■intersection<-2。 We recover a characterizttion

of lnou←Hirzebruch surfaces by Ottekla鵬,Toma&Za■ an ll司:

T h e o r e m  3。 5五 c t  S  b c  a  s a r」a c c  a r  C JαS s  y J J o  υづιんb 2 ( S ) > 0 0鶴 Cπ Sづs

α Lο ac―″jrzθbttcん sarraccヴ αnd οηινゲ ιんctt Cttδts tυO βat IれC bttndICS Fl,

F 2 ,ιυO ιυづst e d  υc c tοr  f c Iおθl∈ ∬°
(S ,Θ Θ F l ) ,θ2∈ ″°

(S , O  Θ F 2 ) , S u Cんιんαι

θl∧θ21p)≠O αι αι Jθast οπe pοれιp∈S.

4 Bihermitian surfaces

We apply these results to complete the c12に siication of bihermitian 4-manifblds

ν (See口 l,pl μ司),When bl(M)=l and b2(M)>O A bihermitian swheis a

riemamim oriented connected ttmanifold(M,g)endowed宙 th two integrable

dmost complex structures Jl,J2induCing the same orient就 lon,orthogonal with

respect to g and independent i.ee Jl(π)≠土J2(■)fOr at least one point"∈ν.
Tlis structure depends only on the confornl乏遺class c of go A bihernlitian surface

is strongly bihermithtt if Jl(■)≠土J2(π)fOr every point π∈νo We denote

つ+={π∈ν lJl(π)=J2(π)}, つ一={π∈ν lJl(π)=―J2(π)}, つ=つ+∪つ_.

The key observation is that ulder these assuntptions,(M,島),づ=1,2 admit a

numerically anticanonic」 l di、たsor,more precisely there exists a nat hne bundle

Lt with t∈ R革,Such that∬
0(S,一κ ③ Lt)≠ 00 Remark thtt for an odd

lnoueesurface S,1。eo with one cycle σ of rational curves,一κ tt F=σ ,with

Fo2=0,therefore F=L~l attd S cannot have a bihermitian structure.
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Theorem 4。 6 Lct(ν ,C,Jl,J2)be α  ε鋼 叩 αCt bづんemづ ιづαπ sur/aCC υ づιん οdd

frSt BCttづπ鶴鶴ber.

り J/(■ ご,Q Jl,J2)づ S StrangJν  btんc口漸ガιづαπ μ .むつ =0ノ ,tん Cn tん c cθ,叩 Jtt s鶴←

ル CCS(M,島 )α “ 焼づηづ鶴αJ απd cづιんer a raP/sar」 acc cο υerca bν  α Pttπ αη  Oπc

assOcづαιcα ιο a cοπιttctづOπ F:(C2,0)→ (C210)。 JιんC」Om

F(zl,z2)=(αZl+SZダ,αα
~lz2),

with a,s∈ C,0<lα 12≦α<lαl<1,(am_α
π+1)s=0,

οr cおc(M,島)απ Lttc sarraccs ttρ超高″垢9p999r・
〃 」/(M,C,Jl,J2)づS ηοt StrongJν bjんcmづιづαπ′ιんcπつ んαs at ποst ιυO cOπ―

ηccted cο爾りοπcπts,(M,島),づ=1,2,cοπιαれ θSS απd ιんc鶴づηれαι ηοごCお島

げ(M,島)α“

・sarraccs υttんCSS ο√れtermcごづαιc tνpcゲつんas οπc a9ππcctea c。"叩。πCπι

・ 置ヾ S a r r a c e s  a J  Q P C C づαJιψ c  βe C  μ司 2 . 2ノ, Lο t t c ● αt t bοあり S a t t C e S  οr

Lοttc―働%ebttcんsur/aceSゲつんaS ttο cοπnccted cοηPοηCπtS・

Mottουe■ ιんe bJουπ―ηP POづ電tS bcJοπg ιο ιんc NA(3dづ υづsοrs.

If moreover the metric g is anti―selidual(ASD),we obtain

Corollary 4。7五 ct(ν,C,Jl,J2)bθ α COmpact五"bjん er鴇づιづαπ sar/acC υづ流

οαα frSt BCttづηttπbere lⅣしεη tんcπ づnづ鶴αι mοdclsげ tんc CοηPIcπ surraces

(M,島),づ=1,2,α貿

・置哺 SarraccsげsPcCづαJ ι″c βcc μ釘20の,

・●αrabοJりLοttC SurraCcs οr

●θυCη LttC―島rzebttεんsar/acCS・

Morcο υcЪ ιんc bJουπ―ηp pοづηts bcJοπg ιο ιんc NA(3α づυづsοrs.

Details mtt be found pn Arxiv And宙 ll be published in AIne J.Math

2005

References

lli V.APosToLOV: Bihermitian surね ces with odd irst Betti number.

Mαιん.Z.2θ∂″θθゴノ,555-5δ∂

[21V.APosToLOV,Po GAUDUCHON,G.GRANTCHAROV:Bihermitian

structures on complex surfaceso Prac.五οπαοπ雛Qιん。Sοc. γ9,ィノィーイ2θ

″θθの

pl G.DLOUSSKY:COmplex surfЖ es with Betti Numbers bl=1,b2>0

狙d inite quotients.6bπtemη.″αιん.μMS)2θθ,″θθゴノ,θθ5-θθθ.

…33…



‖

同

G. DtoussKy, K. OELJEKLAUS: Vector fields and foliations on com-
pact surfaces of class VIIo. Ann. Inst. Fourier 49 (1999), 1503-1545.

G. DloussKy, K. OnUnKLAUS, M. Tonae : Surfaces de la classe VII6
admettant un champ de vecteurs, II. Comment. Math. HeIu. 76 (2001)
640-66/,.

G. DloussKy, K. Onl.lBKLAUs, M. Toua : Class VIIs surfaces with
b2 curves. Tohoku Math. J.55 (2003),283-309

S.K. DoNALDSoN : The orientation of Yang-Mills moduli space and
4-manifolds topology. J. Differential Geometry 26 (1987) 397-428.

I. Eloxl : Surfaces of class VIIo with curves. T6hoku Math. J. 33,
(les1), 453-4e2.

C. Envnn Classification of 2-dimensional contracting rigid germs and
Kato surfaces I, J. Math. Pures Appl. 79 (2000), 475-514.

F. KoHLgn Feuilletages holomorphes singuliers sur les surfaces con-
tenant une coquille sph6rique globale.Ann. fnst. Fouri,er 46 (1995) 161-
182, /16 (1996).

K. Opl.tpKLAUS, M. ToMA k D. ZRFRRN: Une caract6risation des

surfaces d'Inoue-Hirzebruch . Ann. fnst. Fouri,er 51, 5 (2001), 1243-

1257.

I. NnxeMURA On surfaces of class V I Io with curves II.Tohoku.Math.

J. 42 (1990), 475-516.

M. PoNtECoRvo : Complex structures on Riemannian four-manifolds.

Math. Ann. 309, 159-177 (1997)

Centre de Math6matiques et d'Informatique
Laboratoire d'Analyse Topologie et Probabilit6s

Universit6 d'Aix-Marseille 1
39, rue F. Joliot-Curie

13453 Marseille Cedex 13
FRANCE

dloussky@ cmi. univ- mrs . fr

同

‖

同

団

μq

μ劉

μ司

- 34 -



Saddle measures for holomorphic endomorphisms of Ctr2

Henry de Th6lin

Let∫be a h010morphic endomorphism of CP2。f algebraic degree d≧2。

J.E.Fornaess and Ne Sibony deined the Green current T of∫。We can obtain it aS

fo1lows.Let tt be a generic project市e line(the genericity means outside an algebraic subset
ofthe dual of CP2).Then∫

~π
(五)iS an algebraic curve of degree dP and we have:

Theoreme βθθ灯,/7/αηごり
動θ“ づs οηJν θηθ Jれづιルrιんθ SθgZθπcc L叫鼎 .動 づSJれづιづstんθσ“θη εzr“ηt T.

The support of this current is exactly the Julia set of∫。

Exa轟 ple.J υ θ εθηSづごθr∫ ([Z:υ :J)=[Z2:υ
2:ι

:]づ η ιんθ εんαrι t≠ Oι んθη 」

T = /『 与 ×到 麒 0+/ P× 醐 戯 0+ル 戯 0

υんctt λ づstん θ ttθ besgttθ  ttθ αS鶴 質 θη [0,2π ]夕 Dι んθ しηづι αづsた づη C α ηご 協
={(Z,り

),Z=

C`iθυ,レ|≧1).

The current:「 has a continuous potential : in particular, we can deine the CIreen

measure μ with the formula μ:=T∧ T(see 171 and 181).

J:―Yo BIriend and J.Duval gave an other construction for this measure μ :

Theorem.βθθ〃
Lθι γ bθ a gθηθrづc Pοづηιげ CP2.動 θη ιんc sθgηθηcθげ P"babづκιづcs tt Σ″毎卜γL

Cθηυθl噺「θS ιθ ιんθ γηθasu“θμ.

In the theorem the genericity means that γ is outside an〔■gebraic subset of CIP2 but
When∫ iS generic the convergence to μ holds for all γ∈CP2。

The dynanlical properties of μ are given by the following result of JoTY.BIriend and J.
Duval:

Theorem.βθθ μノαηα〃
動 θ t tθαs鶴質 μ づS tんθ t tηづg t tθ t tθαS u留 げ 鶴 "づれ αI  Cηιt tβν 2 1 o g (α)α ηJづι,五 νt tθt tηου

θηθηθ")ιS α"θ gttcαιθr οr cl鶴αJ ιο 些寄タコ[.

The second part of the previous theorem means that allnost every point for μ has

two expanding directions and the fact that μ is the unique measure of lnaxilnal entropy
implies that μ is the measure with the richest dynamics for∫ .

In this talk,we will describe the dynanlics ofノOutside the support ofμ.The topological
entropy of∫Outside this support is smaller than log(a)(See 131),so,Our aim is to hⅣe
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measures z of maximal entropy (i.e. log(d)) outside the support of p,, and to evaluate their
Lyapounov exponents.

Let L be a project市e hne of CP2 and S be a hmtt ofthe sequence亀=肩 Σ葛
1鳴

響 ・

We have AS=α S and the intersection of S with the Green current r gives a measure
ν=T∧ S which is inttriant by∫(in fact the limit Of ttc isnt unique,so we may hⅣe a
lot of diferent measures ν).

When/iS hyperbolic,J.E.Fornass and Ne Sibony proved in pl that these measures ν

are saddle(icee they admit a posit市e and a negat市e Lyapounov exponent)and that their

supports are outside the support of the Green measure μ.

The goal ofthis talk is to g市e the dynamics of these measures in the general case(i.e.

for all∫).First of all,we hⅣe(see降l):

Theorelm l.

動θ θηιttpνげνづSg“αιcr οr egttαJ ιθ log(α).

In particular when the support of ν is outside the suppOrt of μ(it happens often)then
ν is a measure of lnaxilnal entropy outside the support of μo So these mettures are the

good 6nes in order to describe the dynamics ofノoitSide the support of μ.It remains to
evaluate their Lyapounov exponents。

In the general case,ν isn't ergodic.In particular,we can't deduce from the Ruelle's

inequality that ν has a positive exponente However,if we use geometric arguments we can

prove lee‖ ):

Theorem 2。

乃r ν αlmθst θυθη Pθれι"′ιんθんづgんθst ttν〔ηθttηθυ θη9θηθηt ar ν αォπづsg“αιcr οr

η鶴翻わ響 ・

Here the highest Lyapounov exponent at the point π is equalto hm2脅10g‖DE∫π‖and
so this theorem means that for allnost every point there is an expanding direction.

The bound of this theoren■ is sharp : to see this take a polynonlial endomorphism

/SuCh that the restriction ofノ on the line L at ininity is a Lattes lnape ln this case

the measure ν is exactly the equilibrium measure of the Lattes lnap and so the highest

Lyapounov expOnent is equal to!堕 考
二】.

For the smallest Lyapounov exponent,we hⅣe the b1lowing theorem(see Fl):

Theore]m3.

S暉 フ′θsc tん αι ν んαs η θ ttα SS θ η α む θb鶴 づC Curυ θs.劉 Lcη ル rν α:鶴 θSt cυ Crν  Pθ づηι π

Ottιsづαθ ιんc sttpO♯ げμ,ιんθ SmaJJθst ttνarpθttηου cη90ηθηιづS ηθη―Pθsづιづυθ・

In particular the measures ν are saddle in a weak sense:we have an expanding and a

non―expanding direction fbr allnost every point outside the support of μ.

The hypothesis on ν(ioee the fact that ν does not put mass on algebraiclcurves)in the

last theorem is generic onノ.〕√OreOver the bound on the smallest exponent is sharpe

ldeas for the proof of the theoreⅡ 1 2:

We will explttun the origin of the dilation。
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First step

We give here the construction of a subdivision of fn(L) into reasonable disks.

Let 1be a generic point in CIF2 and N be a projective line. We can define the projection

zr : CIF2 - {Z} r+ N by using the pencil of lines through the point 7. The restriction of zr

on /c(I) girr.r u ramified covering of degree d' between fo(L) and N (it is the Bezout's

theorem because the degree of fr(L) is d).
The disks in ft(t) will be preimages of squares of N by the map TrVr@).

We take a subdivision of N into squares. If we consider a preimage by zr1yr1;1 of a

square c, we may have a graph (we catl it "good component") or a ramification point (a

"bad component").
We want to show

bad components. But
equal to the number
we have :

that the number of good components is greater than the number of

we know that the number r of bad components is roughly speaking

of ramifications for qf @).So, by the Riemann-Hurwitz's f,ormula,

r+y( f i (L1; :1(N)d

i .e.

r  :Zdd  -  2 .

So the number of good components (which is equal to Card. of the subdivision of N x

t - (2d: - 2)) is greater than the number of bad components and the difference grows up

when the subdivision of N gets smaller.

To simplify we suppose now that we have * good disks (i.e. graphs) A on /i(I) with
radius 1.

Second step

We take the preimages of these d disks by fn which are in .L. We obtain d disks Ai
in Z and the number of Ai with area greater than Cd-i is smaller fhan il lC (because
the area of .L is 1). So, for almost every preimage Ai we have area(Ai) S Cd-i.

Now if we reduce a little the disks A and if we use an estimate of J.-Y. Briend and J.
Duval (see the appendix of [2]), we obtain :

diam(A1)2 ( Karea(Ai) < KCd-i

for almost all preimage of the d' disks of /c(I) in .L.'
By using the Cauchy's formula (and by reducing a little more the disks A), we obtain :

nN/2

llD,foll> e<cP
for z in Ar..

It implies that we have a lot of points r for which :

3
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um l ros 1D- f'1 > 1949
n Tl ,  

-b l l "oJ l l  a 
2

This is the estimate that we expected.

In conclusion, the dilation comes from the fact that the area of .L is equal to 1 and
the area of fd(L) is equal to d (i.e. comes from cohomological reasons).
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Fefferman-Graham metric for even
dimensional conformal structures

Kengo Hirachi

ln the paper,Fefermtt IFl initiated a program of studying locahnvari―

ants of CR manifold of dimension 22-l by using a Ricci―■乱 Lorentz―Ktthler

metric on an η―+l dilnensional complex lnanifbld. This progrtt was later

generalized by Feferman― Grttam lFGl to the Case of conbrmd mttibld

(M「
π,Igl);the associtted Ricci―■at Lorentz metricびis deined on an η+2

dimensional real mmifold.The metricびis nOW Called the αttbづθπι mctttc
Or坤 叩αη―Graんαtt mctttc.The ttbient metric becomes a stattdard tool
in CR and conformal geometries,butin CR and even―dilnensional conformal

cases the construction of the mbient metric is obstruCted tt a inite jet and

thus the mbient metric construction of CR/confOrmal invariants tte not
complete.

In ths note,I describe how to improve the construction of the ambient

metric with the intention to get all conformd inttriants out of the metric.

(See lHI fOr the case of CR geometry.)ThiS is an interim report on a jOint
project with Robin Graham;but l am responsible for alv error in this note.

le Conお rmal invariant◆ Let g=Σ 為=1%(″ )山
づ
αノ be a metric deined

on a neighborhood of O∈ IRπ. We want to write down du confornl〔ily invari―

肛Lt expressions in the g弯(″)and their derivat市es of dl order,。To Start with,

we consider scJtt conformal invarianto Thus a conformal invttiant r(g)is a

pOlynOmial in(det%)~1,狙d the derivatives∂α
%,sttisサing tWO invarittce

properties:

(1)∬(g)iS independent of the choice of the coordintte thtt represent g″
and its derivatives。

(2)There iS a consttmt υ∈R(caned the weight of f)suCh th就∬(c2ノg)=

c2υ∫」(g)br any Sm。。th functionノ.

1
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The■ rst condition sapys that」 (g)iS a Riemttnitt invarittt and the
second sarys that it is covariant under scahng of the lnetrico lt is well―know

that the Weyltensor Ⅳ tルJ,the trace free part ofthe Riemannian curvature,is

a local conform」ly invttiant tensoro Thus any O(2)―inVttiant homogeneous

polynomial of"ら グ晟gives a conformal invttiattto However,it is not easy to

give even one example of conforΠl[■conform〔遺invariant that cont〔un higher

derivatives of the metric。

2.Ambient metric.Let(y,レl)be狙2-dimensional conbrmd mttibld
狙dπ:g={(",t2g(″)):″∈y,t>0}→ χ be the metric bundl%which
admits an R+―action亀(",g)=(″,S2g)On eaCh iber.The tautologica1 2-
tensor 3。on g iS deined by

L(X,y)=g(π *X,π*y)for X,y∈ 殴π,g)g.

The ambient space y of M is狙(η+2)―dimensiond mttifold thtt contains

the metrた bundle g as a hypersurface ttld admits am R+TЖtion extending

that on g.I「he generator ofthe R+―actionおdenOted by X and the inclusion

is denoted by ι:g_)ν .

An〔mbient metric for a conformd structureレl is a Lorentzitt metricび
。n y thtt solves Rcci(勤=0(tO∞ lets a10ng g)such th就

(i)ι
*び=go

(ii)びiSh`Omogeneous of degree 2,thtt is,億び=S23。

Theorem(IFG])。 Jη づS θα4 ιんθ αttbづcηι πctttcび cttSお 鶴ηづgttθJν Ψ  ιθ

R+―θ9鶴づυαttαηι αl」ιοttοηんづSms tんαιメbg.

In odιdilnensions,we can construct all confornl〔■invariant一―see Theo―

rem(IFGl,IBEGl)be10W・ HOwever,if η is even,the e製乱ion for the ambient

metric nlay not haК a smooth solution.We thus consider〔減nbient metrics

with singulttities:An(singul肛)8皿bient metric for a conformJ structure lgI

is a formal solution to Ricci(勤=O a10ng g such th就 :

(i)ι
*び=go

(ii)Let o=す(X,X),thenび壼mitS an expttsion

y=gO十Σメリ0・/2bgoた,
た=1

where each g(ん)has homogeneous degree 2-2た .
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(iii) VxX : X (it means that lRa-orbits are pararnetrized geodesics.)

Note that (iii) implies that Q is a smooth function even thought f is
not. Such / always exits and then Q is shown to be smooth. If n, is odd,
singular ambient metric is shown to be smooth and we get nothing new (The
condition (iii) follows from other ones).

Theorem. If n is euen, the (singular) amb'ient rnetri'c i edsts for ang
conf ormal structure fgl.

In even-dimensions, the ambient metric is not unique (even up to diffeo-
morphisms). However, we ca,n pa,ra,metrize the family of a,mbient metrics for
a fixed [g] bV a two tensor appears in the nl2-iet of g(o).

3. Invariant theory. We now construct conformal invariants by using the
anrbient metric. If n is odd, we define p{d : VpR be the pth iterated
covariant derivative of the curvature of. j. If.n is even, we define R@) to be
that for the smooth pa.rt g(o) of. j. Let i be the volume form of / and set

7o: X-s€'

Then we define scalar valued functions by laking the following complete
contractions (with respect to fl:

contr(Ehr) A ...4 P(nd1,

contr (R@r)  A .  . .A Rh)  I4 ,

contr(E(r') a .. .a R@') O do).

Such a contraction defines an lRa-homogenous function fr o" fr. Since a
metric g e lgl defines a section Sn of. Q - M, the composition 17 ,:fr o Sn
gives a function on M. We call such functions WeyI inuari,ants. If n is odd,
we ca,n shown that W depends polynomially on the jets of the metric and
thus define a conformal invariant of weight D!:r?pi - Z).

Theorem ([FG], IBEGI). If n i,s odd, all Weyl i,nuari,ank are conformal
inuari,ants, and all conforrnal inuariants are giuen as linear cornbinations of
Weyl inaariants.

If n is even, the a,rnbient metric is not unique and thus Weyl invariant
may not determined by the conformal structure. However, there are many
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linear combinations of Weyl invariants that are independent of the choice of
the a,nrbient metric. In fact. we have

Theorem. If n, each conforrnal inuari,ant is written as a linear mmbinati,on
of Weyl inaari,ants and exrepti,onal inuari,ants.

Exceptional invariants are another class of invariants studied by Bailey
and Gover [BG]. They exit only when n is divisible by 4 and weight is -n,
and their construction in terms s14(p) is well-understood.

This theorem does not tell which linear combination of Weyl invariants
gives conformal invariants. It is the main open problem and we only have
some sufficient conditions. For example,

Proposition. Let n be eaen. WeyI inaari,ants of degren, d of weight >
-2(d - l) - n are ennformal inuari,ants.
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THE ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL ON

NON‐ COMIPACT MANIFOLDS

X■ ONAN MA AND GEORGE MARINESCU

Hayama Symposium on Complex Analysis in Several Variables
18-21 December, 2005.

The asymptotic of the Bergman kernel on high tensor powers of a line bundle has

attracted a lot of attention recently.

L e t ( X , O ) b e  a  H e r t t i t i a n  m a n i f o l d  o f  d i m e n s i o n  η,wh e r e  Θ is  t h e ( 1 , 1 ) f O r m  a s s o c i―

ated to a hermitian lnetric on Xo Given Hernlitian holomorphic line bundle L on X,we

consider the space of L2 hdomOrphc sections Iぁ (X,″ )m the tensor powers y=五
〇pe

Let PP(・,″
′
),(・,π

′∈X)be the schwtttz kernel of the orthogond projection Pp ttom

the space L2(x,″)Of L2 seCtions of ν onto∬ゎ)(X,ノ)With respect to the Riemann―
ian volume form α υx(π

′
)aSSOCitted to(X,○ )・ Then by the ellipticity of the Kod」 r針

Laplacitt and Schwartz kernel theorem,we know PP(″,■
′
)iSプ

∞・ChOose tt orthonormd

basis(鍔)た1(ら∈N∪{∞})Of∬わ)(X,ν)e The Bergmtt kernel ctt then be expressed
a s

ら

PP(・,ノ)=ΣE鍔(″)Θ(鍔(ノ))*∈(Lp)=Θ(ノ追′・
二=1

Moreover its restriction on the diagonal has the fbrm

ら

ら0=らし,→=Σぽし)12∈R.
づ=1

We denote by J毎=det(T*は'のX)the canonicd line bundle of X ttd by Rdet the Ricci

curvature of O(i.ee the curvature of ttx induced by O)・ The line bundle L is supposed

to be positive ttd we set

翼 Rtω=丁
】π

We denote byガX the Riemannitt metric associtted to ω and byづthe sc」冨curvature
of』Xo MOreover,let αlく.…くαπ be the eigenvalues of ω with respect to O.The
t o r s i o n  o f  O  i s  d e i n e d  b y  T = [づ(Θ),∂Ol, W h e r eづ(o) i S  t h e  C O n t r a c t i o n  w i t h  O . W e  h a v e

the following resulte
1
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Theorem 1 ([2]). Assume that (X,@) is a complete Hennitian manifold, of dimension
n. Suppose that there uist e > 0, C > 0 such that one of the following assumptions
holds true:

fiPr 2 eo, ,,EPdet

Then the kernel Pr(r,r') has a full off-diagonal asymptotic etpansion unifonnly on con'r-
pact sets of X x X . Especially, there erist cofficients b, e €* (X), r € N, such that for
any conxp&ct set K CX, any k,l € N, there eristsCxl,x )0 suchthat forp € N,

(1)

( 2 )

た一
石
brし》~Tしι“)くQ∴κp~た

~1。

Moreouer,  h:  at .  ' 'an and

bL: Wl,: 
- ro-(rog(o1.. . o,)) * niRr(o,,i,r,,)1,

where {o,,i} i,s an orthonorrnal basis of (TQ,o)X,dlx).

Let us remark that if L: Kx, the first two conditions in (1) are to be replaced by

ん,is induced by tt and ν⊆:lRdet<―εO.

Moreover,if(X,○ )iS Kl瓶ler,the condition on the torsion is tr市ially sttisied.

The proof is based on the Observation thtt the KodairttLaplЖial□ p=D*∂ Жting

on L2(x,″ )has a spectrd gap of the brm

Spec□p⊂{0}∪[22μo―Q,∞)

where μO=infπ∈x αl(π)狙d(乳iS a COnstant which depends on the geometry of L ttd
X.The technitte■om pl apply then and deliver the result.

Theorem l has several applications eog.holomorphic〕√orse inequalitie,on nёn―compact

manifolds(aS the well―known results of Nadel―Tstti 161,see dSO 12,81)or Berezin―Toeplitz

quantizttion(see 141 or the fOthcommimg 131).

We will emphMise in the sequel the Bergman kernel for a singu12r metric. Let X be a

compact complex manifold. Asづ ηgttιαr KaんJcr γ.θt,%6 on X is a closed,strictly positive

(1,1)―Current ω.If the cohomology class of ω  in∬ 2(x,R)is integr」
,there e対 sts a

holomorphic line bundle(L,ん L),endOWed with a singultt Hermitian metric,such th就

ギ RL=ω  in the sense of currentso We c」1(五,ん
L)asづ

り鶴Jar pθJα西んιづοη of ω.

If we change the metric ん L, the curvature of the new lnetric will be in the same

cOhomology class as ω.In this case we speよ of a polarization ofレ]∈ ″2(x,R)。 Our

purpose is to deine an appropriate notion of polarized section ofttβ,possibly by changing

the lnetric of L,and study the associated iBergman kernel.

″ら
１
一プ
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Corollary 2.Lct(X,ω )IC a cθηPact cθηpJθπ ttαηlルJα υづιんαSれgttJar καんJcr mctttc

υづtんれι“%I cθんθttθJりν c lαss . L c t ( L ,ん
L) b C  a  sれ

gt tιαr pθJαtt zαtづθ2o /レ lυづtんStれCt iν

pθsづιづυe c鶴剛αι鶴"c czドtηιんαυづηg sづηgttJar sttpθtt αJθηクα prarCr αηα:νιtc sct Σ. TLcη

tんc Bcη ttαηたθttθJげ ιんθ ttαCC a/Pθ:αttZθα scctづθηs

∬
わ)(X＼

Σ,Lp)={鶴 ∈ 五3'°(X＼ Σ,LP,OP,ん よ):百

Lp鶴
=0}

んαs tんθ αsνttριθιづC Cηαηsづθη αsづn gttθθttmゴルrX＼ Σ,υんc質OP,s a gcηc%:づzcα

Pθれcarご鶴ctれcθη X＼Σ αηαんよづs α ttθαがCα∬Crmづιづαη mctttc θη五.

Using an idea of TttQrama 11,COr。 11田y2gives a proof of the Shifm田
―J卜BonⅣ ero―

TaLarama criterion,about the characterization of Moishezon manifolds by(1,1)pOSitive

currents。

We lnention further the:Berezin―Toeplitz quantizationo For a complex manifold X,
let 4挽st(X)denote the Jgebra of smooth functions of X which are constttt outside a
compact sёto For any∫∈鶴 st(X)We denote br simplicity the operttёr of multiplicttion

WithノStill by∫and COnsider the linear operator

(3) ■,p:L2(x,Lp)一二2(x,3り, 等,お=PpノPp・

The fa,mily (Tt,)o>, is called a Toeplitz operator. The following result generalizes [1] to
non-compact manifolds.

Corollary 3. We ossuTne that (X,O) and (L,h") satisfy the same hypothesis as in
Thenrent, 1. Let f , g € gfr*r(X). The proiluct of the two corresponding Toeplitz opemtori
admits the asymptotic erpansion

Tf ,oTn,o : i n-'U",(t d,e * 0 (P-*)
r:0

where C, are d,ffirentiat operators. More precisely,

CoU,g) :  ,19, Cr(f ,s) -  C{g, f l  :  l11,gy
\ / - L

where the Poisson bracleet is taken with resput to the m,etri,c 2nu. Therefore

lT r *,Tn,rl : p-rT 
;1{1g},p 

* 0 (p-r)

If we wish to consider more general class of functions a^s 6ffi"r(X) we have to impose
some restrictions on the geometry of X at infinify.

Finally, we refer the reader to the contribution of Ma and Zhang [5] for further aspects
of the Bergman kernels.
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1n this talk,we explain our recent rё sults on the asymptotic expansion of the BIerttan

kernel ttd its relttion to the geometric quantizationド].The talk of Mttinescu 17]
gives further aspects of the Bergman kernelo The interested readers lnay ind complete

references in i31,[51,[81,espeCially in the forthcomng book[6].

Let(X,ω )be a COIЩ )aCt Symplectic mmifold of real dimension 22。 Assllme thtt there

elШists a Hernlitian line bundle L over X endowed with a Hernutian connection VL with

the property th乱 ギ RL=ω ,where RL=(▽
L)2 is the curvature ofし

,▽
L)・ Let

(E,ん
E)be a Hermitian vector bundle on X equipped with a Hermitian connection▽ E

and RE denOtes the associated curvature.

Let gTX be a Riemmnian metric on χ.Let J:TX→ TX bethe skew一attoint line肛

map which satisies the relatio■

( 0 。
1 ) w(u,u) - grx (Ju,u)

for u,u e TX. Let J be an almost complex structure such that g'* (Ju, Ju) : g'* (u,r),
w(Ju, Ja) : u(u,a), and that u(., J.) defines a metric on TX. Then J commutes with
J arrd J : J(-J2)-1/2. Let Vrx be the Levi-Civita connection on (?X,g"x) with
curvature Rrx and scalar curvature rx, and V"x induces a natural connection Vdut
on det(?(l'o)X) *ith cunrature -R9"t, and the Clifford connectiott ycutr on the Clif-
ford module A(?-(o't)76) with cunrature Rclift. The spin" Dirac operator Do acts on
Oo''(X, I? I E) : (Eto Oo'q(X, I? A E), the direct sum of spaces of (0, g)-forms with
values h A I E. We denote bV DI the restriction of Do on O0'"'"'(X, U I E).

Let G be a compact connected Lie group with Lie algebra g and dimG - rls. Suppose
that G acts on X and its action on X lifts on L al:Ld E. Moreover, we assume the G-
action preserves the above connections and metrics onTX, L, E and J. Then Ind(Df,) is
a virtual representation of G. Denote by (Ker Do)t ,Ind(DoF)c the G-trivial components
of Ker D,Ind(D[) respectively.

The G-invariant Bergman kernel rs Pf;(r,r') (r,r' e X), the smooth kernel of ry,
the orthogonal projection from (Oo''(X, IP A E), ( )) o" (Ker Dr)G, with respect to the
Riemannian volume form duy(r'). The purpose of this paper is to study the asymptotic
o<pansion of the G-invariant Bergman kernel Pf (r,r') as p * m, and we will relate it
to the asymptotic errpansion of the Bergman kernel on the symplectic reduction X6.

Theorem O.L. For a,ny open G-neighborhood U of P in X, €s ) 0, I,rn € N, there
exists C\,o ) 0 (dripend on (f , es) such 

Y, 
p, p > l, n,o' e X,d(Ga,r') > €s or
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″,"′∈X＼び,

(0。2)

XIAONAN MA AND WEIPING ZHANG

Iイし,ノ)レm≦G,πP司・

υんθ,電 1′
π

づstん θ τ
π ―ηο劉鴨 づηαttcθα bν  V・

L,▽ E′
▽

TX,ん L,ん E,gTX

(0。4)

Assume for silnplicity that(3 acts freely on」P.Let lソbe an open(3-neighbOrhOod of

μ
~1(0)Such that c acts ieely onび

。For any θ―equinriant vector bundle(二 ▽F)。n

y,we denote by FB the bundle onび/G=B induced ntturdly by G―invttiattt sections
of F onび .The connection▽ F induCes canonically a connection▽ F30n FB.Let RFB

be its curvatureo We denote abo μ F(κ
)=▽ 晏

―Lκ ∈End(F)for κ ∈g.Note th乱

イ
∈ (7∞ (び × 仏 priEp O pr,弓 ))GXC,thS Wec狙 宙ewィ に π

′
)aS a smooth section

Of pri(島)B O pr」(弓)30n3× 3。
Let gTB be the Riemamian metric onび /G=B induced by gTX.Let▽

TB be the

Levi― Civita COnnection on(TB,gTB)With Curvature RTBo Let Ⅳ b be the normal bundle

to Xc in B.We identiヶ ハ亀 with the orthogonal complement of TXc in(TBlxc,gT3)0

Let gTXC,gNG be the metrics on TXG,ハ 亀 induced by gTB respectivett Let PTXC,PNG

be the orthogonal projections ttom TBlxG On Txc,比 respectivett Set

(0。3)   ▽
聰 =P恥

(▽
TBlxc)P恥

, ▽
TXC=PTXC(▽ TBlxc)PTXC,

°
▽

TB=▽ TXG ①
▽

NC, ■ =▽ TB― °
▽

T3。

Then▽ NC,°▽
TB tte Euclidean colmections on Aし

,TBlxG° n XG,▽ TXC is the Le宙―

Ci宙ta connection on(TXc,gTXC),and tt iS the associated second fund〔週■ental form.

We denote by vol(G″ )(π ∈び)t卜e VOlume of the Orbit Gπ eqШpped with the metric

induced by gTX.Letん (")be the function on 17 deinёd by

ん(")=(VOl(G″ ))1/2

Thenん reduces to a function on 3。We denote by lcoE the proiectiOn ttom A(T*(0'1)X)Θ

E onto C o E under the decomposition A(T*(0'1)X)ΘE=COEoA>0(T*(° '1)χ
)③E,

and lcoEB the corresponding projection on 3。

In the whole note,for any■0∈ Xc,Z∈ ■。3,We wite Z=ZO+Z⊥ ,with ZO∈

■。Xc,Z⊥ ∈ 蛯 ,3。。Let 7zOZ⊥ ∈ 銑 ,exp奪にり
be the pttanel trttspOrt of Z⊥ with

respect to the connection▽NC along the geodesic in」穐,p,司∋t→exp詐(ιZ°)・For
εO>O small enough,we identtt Z∈ ■。B,IZI<ε o With expttP辞

にり
←レOZ上)∈ B,

then for πO∈ XG,Z,Z′ ∈■。3,IZI,IZ′ |<ε o,the mapp Ψ :TBlxc× TBlxG→ B× 3'

Ψに ,グ)=(expttpttlzol(物OZ→ ,exp舞
奪 修η(ZЮZ′→)

is well deinedo We identi取(」ら)B,z tO(」し)B,.。by using pttallel transport with respect

to▽ (ら)B dong[0,11∋ 鶴→ 鶴Z・ Let πB:TBlxc× TBlxc→ χG be the nttural

projection from the iberwise product of TBlxき on XG Onto XG。 ■om Theorem O。 1,

we 6nly need to understandィ OΨ ,and under our ident五 cttion,ToΨ (Z,Z′)iS a

smooth section ofπb(End(ら )3)=π L(End(A(T*(0'1)X)③ E)3)On TBlxG× TBlxc.Let

l lτπ′(xc)be the τ
π′―norm on τ ∞

(XG,End(A(T*(0'1)X)Θ E)3)induCed by▽ Cli鼈
,
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▽
E B ,ん E  a n d  g T X . T h e  n o r m  l  1 7 m′

( x c ) i n d u c e s  n a t u r a l l y  a  τ

π′
―■or m  a l o n g  X O  o n

τ
∞

(T B l x c× T B l x c ,π L ( E n d ( A ( T * (°
' 1 ) X )Θ E ) 3 ) ) , W e  S t i l l  d e n o t e  i t  b y  l  l′ m′

( x c )・

Let α υxc,α υNc be the Riemannian voluie fOrms on(Xc,gTXC),(ハ 屹 ,gNC)respec―

tivelyo Let κ∈τ∞
(TBlxc,R),With κ=l on XG,be deined by thtt for Z∈■。B,

“0∈ X G ,

(0。5)     α υB(πo,Z)=κ ("o,Z)αυ■。B(Z)=κ ("o,Z)(わxc(πo)αυNc,3。・

The fbuowing result is one of our lnain results.

Theorem O。 2。■ss鶴鶴θιんαι C acts/reclν οη μ
~1(0)α

ηα J=J ο η μ
~1(0).gttCη

 lんθ“

c″づst Qr(Z,Z′)∈End(A(T*(0'1)X)ΘE)B,26(・0∈XG,r∈ N),pθJνηθ鶴づαlsづηZ,Z′υづtん

ιんθ sαmc Pαttιν as r,sacんιんαιゲυθ αθηοιθ bν

(0。6)      =`[)(Z,Z′ )=Qr(Z,Z′ )P(Z,Z′), Qo(Z,Z′ )=IcoEB,

υづιん

(0。7)   P(Z,Z′ )=eXp(― :IZO一
ZЮ12_π百 (亀。Z°,ZЮ))

×2讐exp(一 π(IZ⊥12+lz′
上
12)),

流θη tんθtt θ″づSおσ″>O sucれtんαtルr aηνた,%,π
′
,鶴

〃
∈N,ιんθtt cttsts σ>O sacんιんαι

ルr"b∈ XG′Z,Z′∈■。3,IZI,IZ′|≦むo,

0■ に+√ IZ⊥卜 √IZttDm″
回緊堰鳥|

+讐
σ酪請x4● 澤xの ォ 。Ψに,豹 一

凛
)(vTz,″

》鍵

π鶴

≦ の

~ (ん+ 1 ~π ) / 2 ( 1 + vヮ
I Z O I +ν ワ I Z′

°
| ) 2 ( 2 +ん

+ 2 ) +π
 e X p (一 yび

″
vヮ l z一 Z′| ) +θ ( P ~∞ )・

Lethdenote the restriction to X6r of the function h. Let Aob" a section of End(A(?*(o'1)X)8
E)e on Xs defined by

(0.9) go@o): I h'(r6,Qry o V((cs, Z),(*o,Z))n(rs,,Z)du7,r.(Z).
J zeNe ,lzl<eo

By Theorem 0.1, modulo O(p'*), 9o@o) does not depend on Es, &nd

(0.10) dim(Ker Do)" : [ ft[go@o)]d,u2s.(rs) + 0(p-*).
Jxe

Theorem 0.3. // (X,r) is a compact Kiihler manifold and L,E are holornorphic uector

bundles uith holomorphic Herrnitian connections V', VE , J - J, and G acts freely
on p,-1(0), then for p large enough, go@o) € End(Es),o, and there eri'st O,(cs) e

End(Es),o and, Qs - Ide.= such that

k

(0.11) ln-"+^9n("0) 
- D o,("0) o-'l**, 1 C*,,o,p-k-t.

=  
t v " '
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1ごb"θθυθr

(0。12)

Hc“e rXG づs tんθ

五(111`)Jαcづ(lιη θη XGタ
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Φl(πo)=薪r詐十薪△xcl°gπ+薪屁貯←ぽ,7)・

Rづ θπ αηπづαπ scα Jαr carυ αt鶴“ o/(TXG,gTXC),△ xGづ S ttC β θcんηθr―

αηα{ザレSαη θ付んθηοmtt bαsづsげT(LのXG。

Let i : P .-+ X be the natural injection. Let Ts : €*(P, U&E)c + 6*(Xs, U"&Es)
be the natural identification. Then by a result of. Zhang, for p large enough, the map

rs o i* : €*(X, tf A n)G -+ €*(Xs, Lle I Ee)

induces a natural isomorphism

op: 4ts o i* : H0(X, Lp e E)* -> go(Xc, Lb 6 Ec).

(When E : C, this result was first proved by Guillemin-Sternberg.)
Let duy" be the Riemannian volume form on (Xc, g'*o). Let (, ) t7en" be the metric

on Le.g Ec induced by hLc md hEc. In view of the analytic approach to the geomet-
ric quantization conjecture of Guillemin-Sternberg given in [9], the natrual Hermitian
product on 6*(Xs, L?G &.Es) is the following weighted Hermitian product ( , );:

(rr, s2l|: t (rr, s2) Lp"aE6@o)T,'@o) du*"("').
JXc

Thこ Orem o.4.動 θづsοmο η んづsπ (ン )~讐 %お αη asν“叩 ιθιづCづSοπ ctη /ram(″
0(X,ノ

③

E)C,(,))οηtθ(″°(Xc,4 ΘEc),(,)π)fづ・θ・ゲ{鰐}た1づs αη ο付んοηοrttαJ basづsげ
(″

0(X,ν
③E)G,(,)),ι んθη

(0。13)

(lDe14)

(lDe15)

＼
ｌ
ｉ
／

１

一
Ｐ

／

１

＼

θ＋偽〓一
ん

ｐ

．′
Ｓ

％
，
ｔ
ｔ

Ｓ
％

ｍ
２

一
Ｐ

２

~The basic Philosophy developed in pl,卜
1,Fl is that the spectral garp properties for

the operttors proved in pl,[41 impheS the existencё ofthe asynaptotic expansion for the
corresponding Bergman kernels,by using the analytic localizttion technique insphed by

[1,§1ll・The key Observation here is that the C―i]Ⅳ肛iant Bergman kernel is exactly

smooth kernel of the orthogonal projection onto the zero sipace of a deformation of D:
by the Casimir operator(iee"tO COnsider髯 一

PCaS)WhiCh has a spectrd gapo Thus

the above philosophy applies to the proof of Theoremsイ 0。1,0。2。
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Holomorphic Functions of Slow Growth on
Coverings of Strongly Pseudoconvex Manifolds

Alexander Brudnyi

Department of〕√athematics and Statistics

University of Calgary

l.Introductionヽ

In my talk l consider certain problems for holomorphic funCtions of slow growth

deined on coverings of strongly pseudoconvex ma五 foldso The subject wtt origindly

mot市 ated by the paper of Gromov,Henkin and Shubin IGHS1 6n h01omorphc L2

functions on coverings of pseudoconvex manifoldsc ln turn,in the latter paper the

authors were trying to ind a ne¬w approach to a problem of Shafarevich on the

holomorphic conveiだity of the llniversal covering of a complex projective lnanifbld.

Indeed, according to a CIrauert theorem, any complex projective manifold i√ of

dimension η admits a hobmorphic embedding into a strOngly pseudoconvex manifold

五 of dilnensionれ―+1,with the same fundamental groupo Thus the nl〔 un idea of

[GHSi wtt tO try to develop the complex analysis on coverings L′ of L and then,

taking restrictions of holomorphic functions on L′to the corresponding coverings

ν「′
(⊂L′),tO Study holomorphic functions on ν

′.

In IGHSithe VOn Neummn dimensionwas used to metturethe space ofholomor―

phc L2_funCtions on町 鶴Jαr coverings of a strongly pseudoconvex manifbld iご. In

pttticulEr,it was shown that the space of such functions is ini五te―dimensional.It

was also asked whether the regul[rity of the covering is relevant for the enstence of

many holomorphic L2_funCtions on M′or it is just an tttifact ofthe chosen methods

which reqlllres a use of von Neumani algebras.

In my talk l will show thtt actudly the rogulttity of』ビ
′is hrelevant for the

existence of many holomorphic functions on M'. Moreover, I will also present a
substantial extension of main results of [GHS]. My method of the proof is completely
different and much easier from that used in [GHS] and is based on the.L2-cohomology
techniques, as well as, on the geometric properties of M.

Also in the talk, I will formulate some results related to several interesting
problems posed in the paper [GHS]: theorems on peak points for holomorphie L2-
functions on M', Hartogs type theorems for holomorphic firnctions of exponential
(:: slow) growth defined in certain infinite domains on M', some interpolation the-
orerns for holomorphic functions of slow growth on Mt etc.

Concerning the Shafarevich problem, the results of [Br1]-[Br5] and [GHS] don't
imply directly any new results in this area. However, one obtains a rich complex
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firnction theory on coverings of strongly pseudoconvex manifolds L' (re above). Thus

there is a hope that together with some additional ideas and methods it could give

an information about holomorphic functions on M'(C.L'). For now, the strongest

result in this area is due to Eyssidieux [E]. It states that the regular covering of a

complex projective manifold M corresponding to the kernel of all representations

rr(M) + GL^(C), with a fixed n, is holomorphically convex. I also mention another

interesting result in this area proved independently by Campana [Ca] and by myself

[816] which states that the universal covering of a complex projective manifold with

a residually solvable fundamental group is holomorphically convex.

2. Formulation of Main Results

2.L. In order to formulate our main results we first introduce some notation and
basic definitions.

Let M cC -Atr be a domain with smooth boundary bM n an n-dimensional
complex mimifold N, specifically,

where p is a real-valued function of class C'(A) in a neighbourhood O of the compact
setM :: M UbM such that

d ,p (z )10  fo ra l l  z€bM.  (2 .2 )

Let 21, -..,2n be complex local coordinates in N near z e bM. Then the tangent
space T,N at z is identified with C'. By fi(bM) C T,N we denote 16s 6smplex
tangent space to bM at z, i.e.,

( 2 。
1 )

写,(bノИ)={υ = ,りπ)∈2(Ⅳ ): =0}

The Leui, form of. p at z e bM is a hermitian form on Ti@M) defined
coordinates bv the formula

吻Ｚ
∂ρ
一％

π
Σ

戸
(2。3)

in local

(2。4)

€bMandw€
z € bM and all

L"(w,o) :3 
o 'P '  \

.Lr:, arJa_n\z ),txiup" .,

The manifold, M is called ps'eud,oconuer rt L,(w,a) > 0 for all z
f:@M). It is called strongly pseudoconuer if. L.(w,a) > 0 for all
w+0,weT!(bM).

Equivalently, strongly pseudoconvex manifolds can be described as the ones
which locally, in a neighbourhood of any boundary point, can be presented as strictly
convex domains in C'. It is also known (see [C], [R]) that any strongly pseudocon-
vex manifold admits a proper holomorphic map with connected fibres onto a normal
Stein space. In particular, if. M is a strongly pseudoconvex non-Stein manifold of
complex dimension n ) 2, then the union Cu of all compac6 semplex subvarieties
of M of complex dimension ) 1 is a compact complex subvariety of M.
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Without loss of generality we mary ttd will assume that πl(ν)=π l(Ⅳ)おrν

as aboveo Let r:Ⅳ′→ Ⅳ be an unbranched covering of Ⅳ.By ν′:=r~1げИ)
we denote the corresponding covering of ν.Also,by by′ :=r~1(b」И)andフ

ア:=

]ご′∪bl√′we denote the boundtty and the closure ofス イ′inハ√′.

Let αy訪′be the Riemannian volume form onノ И′obtained by a Riemannian

metric pulled back from Ⅳ.Let ψ :Ⅳ′→ R+be such th乱 logψ is unifOrmly
continuous with respect to the path metric induced by this Riemannian metrico By

弓 (M′)We denote the Hilbert space of holomorphic functions g on M′with norm

ヽ

ｌ

′

ノ

Ｚ‰
α

ＺψＺｇ

Ｍ∈

ノ

ん

／

１

１

＼
(2.5)

For r/ : 1, we write H'(M') instead of n!(U').
Let X be a subspace of the space O(M') of all holomorphic firnctions on M'.
Apoint z ebMt iscalled apeakpointforX if thereexistsafunction/ e Xsuch

that / is unbounded on M' b:ut bounded outside U a M' for any neighbourhood U
of z in N'.

The Oka-Grauert theorem [G] implies that if M is strongly pseudoconvex and
bM is not empty then every z e bM is a peak point for Hz(M). In general it is
not known whether a similar statement is true for boundary points of an infinite
covering M' of. M.

Let us introduce the Hilbert space 12,,1,,,(M') of functions g on r' :: ,-'(*),
r e M. with norm

lg12,ψ,3:=

Let花,1≦ づ≦鶴,be distinct po

ヽ

、

‐

′

ノ

的
　
％

Ｏ
　
Ｍ

Ｌ
Ⅳ

　

　

　

ｎ

ｍ

(2。6)

Theorem 2。lJν 「づS Stranglν Psc%αοcοηυθ″,流θπ

何 乃r αηνん ∈J2,ψ,zぅ,1≦ づ≦鶴,tんθ“ θπづsts F∈弓 (M′)Sucんιんαι FIィ=洗 ;
1≦ づ≦鶴メ

`bノJψづS SaCんtんatlogψづs bθttηαθα Jram bθ:ου οηハ″,tんθη θαcんpθづntづηby′づs
a peαたPοづηιルr弓(Mり・

Example 2。 2 Let a be the ptth metric onノ И′induced by a Riemttnian metric

pulled back ttom Ⅳ.For a point ο∈ν′we set α。(・):=α(ο,π),“∈M′。Then tt a

function ψ one cttL take,e.g"eCdO with c∈R in Thёorem 2.1(a)and with c≧ O in

Theorem 2.1(b)。

Theorem 2。l gives a substantial extension of one of the m五n results of[GHSi

(see lGHS,Theorem 021)。 Similtt results are ηlid for cert」n weighted ttP spaces

of holomorphic functions on M′.It iS WOrth noting that results lnudh stronger than

Theorem 2.l can be obtained if i√ is a strongly pseud6convex Stein manifbld,see

[Brll,lBr21 for an expOsition.
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2.2. Ttre Hartogs firpe theorem presented in this section is related to one of the
problems formulated in [GHS].

We retain the notation of the previous section. Consider a domain D c M' with
a connected piecewise smooth boundary bD such that

r(D) cc M. (2.7)

Next, for a fixed o e D we set d"(z):= d,(o,z), z e M'. Also, by D c M'we denote
the closure of D and by 0(D) the space of holomorphic functions on D. Now, recall
that a continuous function f onbD is called CRif for every smooth (n,n- 2)-form
a on M'with compact support one has

t  f  .6w :0.
JbD

If / and bD arc smooth this is equivalent to / being a solution of the tangential
C-R-equations: D6l: 0 (see, e.g., [KR]).

Suppose that / e C(bD) is a CB-function satisfying for some positive mrmbers
c, d the following conditions

(1)

lf (r)l 1 sd"(z) for all z € bD;

(2) for arr! 21, zz € bD with d,(z1, rr) a 6

I f ("r) - f (rr)l < 
"cmax{do1z1)'d'"(zz)l 

4(zt, zz) .

Theorem 2.3 There is a constantd:d(c,6) > 0 such that for any CR-function f
onbD satisfying cond,it'ions (1) and (2) there edsts f eO@)nC(D) suchthat

iluo : f and lf Q)l < 
"ta'"Q) 

for au z € D.

Remark 2.4 (A) If, in addition, bD rs smooth of class Cr, L < k < oo, and
f e C"(bD), 1 < s <-k, then the extension f beloogs to 0(D)IC"(D). This
follows from [HL, Theorem 5.1].
(B) Condition (2) means that / is locally Lipschitz with local Lipschitz constants
growing exponentially. For instance, from the Cauchy integral formula it follows
that this is true if / is the restriction to bD of. a holomorphic function of exponential
grovrth defined in a neighbourhood of. bD whose width decreases exponentially.
(C) Flom Theorem 2.L it follows that holomorphic functions of exponential growth
on M'separate points on Mt\Ctel where C',a :: r-'(Cu).Thus there are sufficiently
many C8-functions "f onbD satisfying conditions (t) and (Z).
(D) Results much stronger than Theorem 2.3 can be obtained if M is a strongly
pseudoconvex Stein manifold, see [Br2], [Br3].

2.3. In this section we present one of the interpolation theorems for holomorphic
functions on coverings of strongly pseudoconvex manifslds.
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Let Y be a closed complex submanifold of some neighbourhood of M. We set
X ::Y n M and assume that

X∩ 仇「=0. (2.8)

For a covering r:ν′→ ν of M as above weset X′:=r~1(X)・Nextおr a function

ψ:Ⅳ′→ R+such that logψ  is unifOrmly continuous with respect to the path metric
induced by a Riemannian metric pulled back fromハ r we deine the Banach space

π2,ψ(X′)Of funCtiOnsノ ho10mOrphic on X′ with norm

l∫1為:=Sup l∫12,ψ,3
2∈X

where卜 12,ψ,3 is deined by(2。6)。Similttly one deines π2ψ(M′)・

Theorem 2。5 fbrθυθηルηctづοη∫∈究2,ψ(X′),ιんθ“θ″づSts αルηCtづθη F∈π2,ψ(■√
′
)

sucんιんαι F=∫ οη X′。

Analogous results hold for ttaces ofholomorphc functions γP,ψ(χ
′
)and ttP,ψ(M′),

1≦P≦ ∞,deined Silnilarly in case r:■√′―→]ごis a regular covering of i√。

3. Method ofthe P)roof

3。1。 The case of coverings of pseudoconvex domains in Stein lnanifblds is considered
in IBr司―lBr司0 0ur method of the proofis based on the theory of coherent BttЖh

sheⅣes together with Ctttan's vmishing cohomology theore鵬,see,eog"[Ld for an
exposition。
3。2.In the case of coverings of strongly pseudoconvex(nOn_stein)mmif01ds y we

proceed as fo1lows.F士st,we construct a complete Kttler metric on l√′
＼Ctt fOr

a covering r:■√′→ ■√. Then we denne a specinc HerⅡ litian vector bundle on■√
′

whose space of holomorphic L2 SeCtions can be identiied with the required space

of holomorphic L2 funCtions on■ √′。Finantt we apply standttd(Oomplex Analy―

sis techniques based on the」じ2 Kodtta― Nakano vanishing theorett br cohomology

groups,see lDl,iOl,tO get the desired results。
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REMOVABLE SINGULARITY THEOREM FOR

PSEUDO‐ HOLOMORPHIC MAPS

JABCHEON JOO

The primary goal concerns a removable singularity theorem for pseude
holomorphic mappings between manifolds with non-integrable almost
complex structures:

Theorem 1 ([1]). Let A be a thin subset of an almost complu man-
ifold X and let M be a compact Kobayashi hyperbolic almost complex
mani fo ld .  Theneueryholomorphicrnap f  ,  X \A 'M utendsa
holornoryhic rnap on X into M.

Let D be the unit disc in the complex plane C. We call a smooth
map g ftom Dd-L x D into an almost complex manifold X of dimension
2d a local foliation of X bg pseudo-holomorphic discs around p, if.

(i) 9 is a diffeomorphism onto a neighborhood V of. p,
(ii) 9(0,0) : p, and
(ili) gQ',.) , D --+ X is a pseudo-holomorphic embedding for every

z, e Dd-l.

A closed subset A of. X is called a thin subset if there exists a local
foliation g : gp of X by pseudo-holomorphic discs around p, for every
p e A which satisfies the following properties:

(A)  There isaposi t iveconstantr  < I  suchthat  A" , :  {w e D:
g(z',w) € A) is a finite point set contained in the r-disc D, :

{tr e C ' ltll < r} for every z' e Dd-r.
(B) There exist sequences {ri} and {s1} of real numbers less than 1

suclr that rj - 0 and the cylinder {("',r): ltol : ri, lz'l < si}
does not intersect g-'(A) for every j : I,2,... .

As an exa,rrple, every analytic subvariety of a complex manifold is a
thin subset.

The study pertaining to removable singularity theorems shows an
impressive history. Among all the significant contributions, we have
been influenced by [2], [3], [4], [5], [6].

Our starting point is to describe a pseudo'holomorphic curve / from
a Riemann surface ̂ 9 to an almost gomplex manifold M as a harmonic
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map. This can be achieved if one chooses an appropriate attne con―

nection for the tangent bundle of the target lnanifold:

Proposition lo Lct(ν ,J)bC α η αI胤θSt cθηplcπ ttαηlルJα αηごIct S

bc α Rづθttαηη Sar/aCC υづtんαεθψmα:鶴Ctrづco Suppθsc tんαι▽,s αη

げ ηC  CθηηC C tづθη げ ν υんづCん sαιづJ C S  t ん θ/ o : J θυづり Cθηごづιづθηs r

(Cl)▽ づSJ―lれcar,づ.c.▽J=0.

( C 2 )乃 r cυCη  P∈ ν  αηα」or CυCη  Ξ ∈ Ъ y,7 (Ξ ,JΞ)=Oυ んC“

γづstんc tθrsづθη tcnsθr o/▽.

動 cη α P s c t tαθ
―んθJθttθηんづC m t t Pれg∫ :S→ ν  S a tづ巧βcs  tんcんar t tθηづc

mtt cgttα ιづθη υづtん 宅 甲 cct tθ ιんc cθη2CCtづ θη ▽ ′熙 gαttJessげ ιんCCん θづcc

げtんC Cθn」armαI Stttcι鶴貿 οη S。

A connection onハイwhich sttisies the conditions(Cl)鍼ld(C2)is

said to be cθ η ραιづblC υ づιん ιんθ αJttθst cθ η PIC″ Stttct鶴 質 Jげ ν o lf

z="1+ν =Iπ2 is a 10cal complex coordintte of S and if(νl,…,νπ)
is a smooth locttl coordinate system of A√ , then the harmonic map

equation has a following local expressions:

△ノ+Σ弓たい錐等=0

brづ=1, "̈ηo Her%△=(静 )2+(非)2狙d弓たぉthe ch五stottl
symbol of the connection that we choose。

To prove TheOrem l, we irst consider pseudo― holomorphi9 curves

with discrete singularities,that is,we consider a pseudo二holomorphic

mappノdeined on D*=D＼{0}・The e対Stence of continuous extensions
ctt be proved by the method used in Ю10 0ne of the cruci」pttt is
狙 〔rea estilnate from below for pseudo―holomorphic curves,which is

dready known as Gromovゝmonotonicity lemma。(See Fi brinstttce.)
The conformd property of∫implies th就∫is indeed a weak httmonic
map on D if

L(ノ(σr))―→0

as r→ O where L is the length function of curves induced by a hermit―

ian lnetric on A√and

^={Z∈ C:IZI=r}.

By the hyperbolic property,there iS a const〔Πlt(3 such that

L ( S )≦σ Lκ
°b(s )

for every piecewise smooth curve s in A√,where_Lκ
°b represents the

length function induced by the Kobayashi metrico By the decreasing

property of the Kobayashi metric,
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REMOnBLE SINGULARITY THEOREM FOR PSEUDO― HOLOMORPHIC MAP8

L(f(o,)) . c L*'u(f(o,)) S cLK'b7o,1: $ - o
l logr l

a.s r + 0. Therefore, / is a weak harmonic map defined on the entire
disc D and the regularity theorem for continuous weak harmonic maps
ensures the smoothness of the pseudo-holomorphic curve.

Next, we consider the higher dimensional cases. The condition (A)
for thin subsets and the l-dimensional extension theorem enable us
to use the normal family theorem for pseudo-holomorphic curves (See

[7].) to prove the continuity of the pseudo-holomorphic mappings with
singularities contained in a thin subset. Since the Riemann exten-
sion theorem and the Cauchy integral formula are not available for
the pseudo-holomorphic ma,ps between non-integrable almost complex
manifolds, we exploit a scheme of the Implicit F\rnetion Theorem to
prove the smoothness:

Forp € A, choose alocalfoliation g: Da-txD + X aroundpwhich
satisfies the conditions (A) and (B). By the continuity of / up to A, we
may assume that / o g maps Dd into a single coordinate neighborhood
U of f (d with coordinates (3rr, ...,U"). Let f,: f o g(2,') : D + U
and let a,: f,lan.We define a non-linear functional Q : C2'^(D,R') x
C2,^(AD,R') * C0'^(D,R) t C2'^(AD,R") by

g (h ,u )_ Σ
中

, hla,
i :L r . . . r r t

where Cb'^(D,R') and Cv,^(AD,R") are spaces of R"-valued (k,,\)-
Hcilder functions on D and ED, respectively. (In fact, 9 is.defined only
on aneighborhood of (.f0, uo).) By Proposition L, g(f 

",a,) 
: 0 for every

z e Dd-t. We denote by L : Ag lAh, the linearization of I in direction
of h at (.f0, oo). If we repara,metrize g by the dilation (",r) + (tz,tw)
for I > 0, it can be shown that L becomes invertible if t is sufficiently
small. It is achieved by the unique solvability and the Holder estimates
of the Dirichlet problem of the Poisson equation. Applyrng the Implicit
F\rnction Theorem, we can prove that / is smooth neax p if we choose
the reparametrizing constant t by ri in the condition (B).
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STRONGLY PSEUDOCONVEX HOMOGENEOUS DOMAINS

IN ALMOST COMPLEX MANIFOLDS

KANG― HYURK LEE

ABsTRACTo Main result of author's Ph.D.thesis[61 is the Classincation of strongly pseudoconvex

homogeneous donlalns in allnost complex manifolds. The origin of this work is in the Wong-lRosaly

theorem.In this a」 巨cle,we introduce the Wong― Rosay theorem in〔 ■most complex lnanifblds and

we give a brief process of the classincation.

1.THE WONG― ]RosAY THEOREM IN ALMOST COMPLEX MANIFOLDS

A strongly pseudoconvex homogeneous domain in a complex manifbld has to be biholomorphic

to the unit ball in the complex Euclidean space. It can be obtained by the Wong― Rosaly theorem

(see p,8,q)which salys that

ス αοttαJηれ α cοηPIcπ ttα囃 OJα υれCんααπjts αη αatOποηんづsm οrbづι αcca鶴鶴Jαιづπg

αι α strong′ν Psc鶴ごοCθηυこπ bοttηααry pοづηιんαs tο be bづんοJοποτPんづc tο tんc ttηづt bαιι.

The most general version of the Wong― Rosay theorem for complex manifolds(see 121)has been

obtained by the scaling method whch was initialized by Pinchuk Fl・ In pl,Gttussier and Sukhov

modned the scaling lnethod to generalize the Wong― ]Rosaly th∞rem to the rea1 4-dilnensional allnost

complex manifbldso But fbr higher dilnensional cases,it turns out that there ttre ininitely many

domains in almost complex manifolds which sttistt the COndition of the Wong―Rosay theorem but

whose structures are non―integrablee

Deanition l.Let Q=(Qゴ ,屁)bea Ⅳ ×Ⅳ positive deinite hermiti〔m mttr破 狙dB=(Bゴ ,た)be a

Ⅳ ×N skew―symmetric complex matr破 e We can a pair(GQ,JB)a ttο dCI dοttαれ where

(1)GQ iS the dOmain in CN+l deined by GQ={z∈ CN+1:RezN+1+Q(z′ ,Z′)<0}Where

、Z′=(Zl,。 …,ZN)and Q(ノ ,υ
′
)=Σ 飢 =lQゴ ,1竹萄たiS the hermititt inner product on CN,

(2)JB is the almost complei structure of CN+l denned by

■
％

／

ｆ

ｌ

＼

ぬ =づ
5万

十 LゞBムが毎
∂豹+l andぬ (」与)=巧 島

+コ Bゴ海
=≒

(weca l l th iss t ruc tu reamode ls t ruc tu re) .Here ,we le tB j ' , r :0 fo r r :N+1ork :N*1
for convenience.

It can be easily verified that the domain Gq is strongly JB-pseudoconvelc at the origin and the

dilation A" which is defined by A"(z) : (fr2t,. ..,frrw,rzN+r), is an automorphism of (Gq, Js)

for z ) 0. The point -1 : (0,. . . ,0, -1) always belongs to Gq and the automorphism orbit A"(-l)

tends to the origin as 7 -f 0. Since the matrix B represents the Nijenhuis tensor of Js (a torsion
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for an integrability of an almost complex structure), the model structure "Is is non-integrable if

B + 0. Now we have infinitely many examples which show that the classical Wong-Rosay theorem

does not hold in the almost complex case.

2. Scx,lNc METHoD

We introduce the scaling method for the Wong-Rosay theorem and the modification of this

method by Gaussier and Sukhov [3, 4]

2.1. The complex case. Let O be a domain of a complex manifold M which admits an automor-

, phism orbit g"Qt) accumulating at a strongly pseudoconvex boundary point q. The scaling method

is to follow the next steps:

(1) Forsomecoordinateneighborhood U of q,onemayassumethatOfl UisadomaininCN+l

defined by

OnU :  
{z  

eU :  Rezp11 tQ(z ' ,  z ' )  +  o ( l r r * r l  +  l r '1 ' z )  <  O}

for some Q > 0. Choose a point pi e 0A fl U such that

dist(P"'Pi): dist(P,, AQ) : r"

where Pu : P" (P). ,
(2) Choose a complex rigid motion L' so that

L" (pi ,)  -  0, L'  (p") -  (0, .  .  . ,A, -rr)  and

(3) For each r, ) 0, let Iv" (r) : Lr, r for each t/ :

Now we consider the scaling sequence defined by

ToL" (OCI n U) - {Re zN+t - 0} .

L r 2 , o ' "

F ' : I l ' o L ' o g u .

Analyzing the boundary of A"o L"(QnU), we have that the sequence of sets L oLv(QnU)

converges to Gq in the sense of local Hausdorff set convergence. Moreover F" is a uormal fa,mily

and its subsequential limit is a biholomorphism F : O -*+ GC. By the Cayley transform, we have

Gq - lBiv+r. Therefore the Wong-Rosay theorem is obtained.

2.2. T}lie almost complex case. Let O be a domain in au almost complex manifold (M, J) and

gu be a sequence of automorpisms of (Q, J) which generates an automorphism orbit accumulating

at a strongly J-pseudoconvo< boundary point g. Then we can also construct a scaling sequence

F' as we introduced. In the limittng process, we must consider not only a sequence of domains

Ir" o L"(Q n U) but also a sequence of almost complex structures which is generated by F" in the

sense of

J " : d F " o J o ( d , F " ) - r .

It can be verified that the sequence J/ converges to a model structure Js for some B. Consequently,

we can obtain a subsequence of F'which converges to a ("/, Js)-biholomorpism F: O * GQ.
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Theorem 2([4,51).五 ct(M,J)bC α tt αιποst cοηPIcπ ttα雨 oJα θgttzppθα υづιんιんc αιποst cοπPIcπ

stract鶴“Jo/1σιαer clαss θl,α.SΨpοsc tんαι α αοttαづηΩれν
r aα

mats απ α鶴ォοttοηんづStt οrわづι

αCC包鶴 包ιαれ町 αι α stranglν  J―Pscuα οcοπυcπ bOttπααη "れ す。動 θη (Ω,J)'Sbづ んοιοttο中 んづcサο α ttοdcI

αοttαづη(GQ,JB)力 rSοmc Q αηごB.

As a result,all model domains are stongly pseudoconvex and homogeneouso Hence the classin―

cation of lnodel domains is the same as the clttI〕s五cation of strongly pseudoconvex homogeneous

domains in allnost complex manifblds.

3.BASIC PROPERTIES OF MODEL DOMAINS

In this section,we introduce an automorphism group and a biholomorphis equivalence of model

domalns    ・

3.1.The automorphism groups.Let(GQ,JB)be a model domain.For any point ξ=(ξ′
,α「+1),

ξ=(ξ′
,ξⅣ+1)∈CN+1,We deine a binIIy operation*(Q,B)by

←Qtt ξ=←輸報+缶報二鴫のす:hЩ→ 。
耳ere,B(ξ

′
,ξ

′
)=Σ 焦 =l BJ,たoξた。Then the boundary∂ GQ is dosed under this operatiOn sO that

∬(Q,助
=(∂ θQ,*(Q,助 )iS a Lie group.Note that ttQ,の iS the usud Heisenberg group.

It can be verined that for each ξ∈∂GQ,the mapping

Ψた,B)=ξ*(Q,B)Z

b e 1 0五g S  t O  A u t ( G Q , J B )・S i n c e  Ψた,助
oΨ

れ,助〒
Ψ
iとT)ξ, t h 9  g r o u p■Q ,助c a n  b e  i d e t t i n e d  t t  a

subgroup of Aut(GQ,JB)・

Theorem 3.動c attιοmοηんづstt graΨげποごcl αοmaづη cαη be dccοttοsCa bν

A u t ( G Q , J B ) = A u t _ . ( G Q , J B ) o ' o致 Q,助

υんc"θ         :

(1)Aut_■ (GQ,JB)={Φ ∈Aut(GQ,JB):Φ (…■)=-1)α ・'SοtroPy suむ raΨ ,

(2)つ={Aτ:τ>0}.

It is ettiけve五ned that the actbn by'o致Q,助iS transitive.

Corollary 4. ゴ И
「
οdcJ αοttαづπs α“cんο鶴9gencοus.

3.2。 Biholomorphic equivalenceo Since lnodel domains are homogeneous,the equiwalence prob‐

lem oflnodel domains is the same as the existence of a biholomorphsm which leaves the common

point -1■ xede Concerning possible difk)rentials of biholomorphisms at -1, it is successful to

obtain
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Lemma 5. Two pseud,o-Siegel d,omains (GC,Je) and, (G6,J6) are bi,holomorphically equiualent iJ

and only if

atqZ:Q ant l  A1B.A:6

f o r s o m e A e G L ( N , C ) .

If (Gq, Js) a.nd (G6, Js) are biholomorphic, then the biholomorphism can be realized by O(z) :

(A("'),2ry.r-1) for A as in the lemma.

When Q : /, the domain Gq is the Siegel half plane H : {z €gN+l ' Rezry-'1 +lr'12 < 0}. For

each Q, it is possible to choose ,4 e GL(N, C) with AICIA: -[. Therefore the set of model domains

can be reduced by the set of model domains whose underlying domain is H-

Corollary 6. Two mod,el domoin (H, "/e) and (H, J6) are biholomorically equi,aalent il arul only if

B: AIEA for sorne U(N).

In Theorem 3, there is no information for the isotropy subgroup of the model domain. Using

Cartan's uniqueness theorem and Lemma 5, we have

Corollary 7. For any rnod,el ilomain (H,"Ie), Aut-1(H, Js) = {A € U(N) : AIBA:B}.

4. ClesstpIcATIoN

Let Sk(N) be the space of lV x .l/ complex skew-symmetric matrices. Due to Corolla,ry 6 and 7,

it is natural to consider the following unitary action &/ on Sk(N):

1/: U(N) x Sk(N) -+ Sk(l'r)

(A, B) '.-* AtBA.

Flom now on, we concentrate on

Modified Problems: Compute the quotient space Sk(N) fU, and, the isotropy sub-

sroupUB,: {A e U(N) :  U(A,e1:gy.

Given B € Sk(N), we denote by An:r(B) the annihilator of B, defined by

Ann(B) :  {u € CN: B(o, u):0 for any u € CN} .

The the orthogonal decomposition CN : Ann(B) O Ann(B)r is an inva,riant under l,/ in the sense

that

Proposition 8. Let B, B' € Sk(N). II A|BA: BI for sorne A 6 GL(N, C), then A(Ann(B')) :

Ann(B) and A(Ann(B')r) : Ann(B)r.

Since B : 0 on Anu(B), it sufrces to consider the restriction of B on Ann(B)a. On Ann(B)' (of

complex even dimension), B defines a non-degenerate skew-symmetric bilinear form (usually call

complea symplentic Ionn). Hence we frst consider the non-degenerate case.
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4.1. The non-degenerate case. Let B be a complex symplectic form on C2t and denote by
Sp(B) : {A e GL(2n,C) : AIBA: B}. Then the isotropy subgroup of B is

u e : U ( 2 n )  n S p ( B ) .

Our problems a^re closely related with 
,he^diTnsion 

of the intersection of U(2rz) and Sp(B). The

manimal case is well-known. l,"t Q : { 
u- '^ 

I U" the standard symplectic form.
\ - 1  0 /

Proposition 9. The symplectic aroup Sp(n,C) : Sp(A) i,s a non-cotnpact Lie group and, the
symplectic e.ornpact group Sp(n):Ua is a rno,xi,nal compact subgroup o/Sp(n,C).

Since Sp(B) - Sp(n, C) for any complex symplectic form B, an isotropy subgroup Ze : Sp(B) n
U(zn) is also isomorphic to a compact subgroup of Sp(n, C). Therefore it follows that

dimnUa < dimeSp(n) .

The maximal case can be characterized by ths sempatibility of a symplectic form and the standard

hermitian inner product h.

Definition L0. We call a real linea,r transformation J : C2n --+ Q2n a quaternion strwcture if J is

antlcomplex linear and defines another complor structure on C2', i.e. Ji : -iJ and J2 : -Id. A
pair (8, h) is called compatible if there is a quaternion structure J such that

B(Ju, Jtu) : EIu, t ) , h(Ju,Ju) : h66 and h(u,Jw): -B(u, to)

for arry u,w €V.

Then we have

Proposition LL. .4 symplettic forrnB is compotible with h if and, only i.f B e U(A).

In an analogy way to find a comple:< structure which is compatible with a real symplectic form

(see [1]), we have

Lemma L2. For any compler symplectic forrnB, there eni,st a cornpler symplectic forrtB' , pos'i,tiae

real numbers Ir ) ... ) )1, ) 0, positiue interges lclr...rku and an or-thogonal d,ecompositi,on

C2n : Vr e . - .@V1", uniquely so that

(1) B' is cornpati,ble with h,
(2) dimaV,:k, ,
(3 )  B :  A ,B '  onV, .

For B/ as in Lemma 12, there is A e U(2n) such lhat AIBA: Q by Proposition 11. By the

condition (2) and (3), we can choose a suitable A so that

λ
／

１

‐

‐

ｌ

＼

〓Ｄｄ
ｎａ

ヽ
ヽ

１

‥

ノ

ノ

Ｄ

０
０
Ｊ

／

１

‐

１

＼

〓五Ｂ五
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where each ,\/ appeaxs in /c, times. Moreover

t /s -  Sp(&1) @ " 'o Sp(kp) .

4.2. Tbie general case. For any B e Sk(N), let

a':€9*gs
k 2 n

Since B is a complex symplectic form on Ann(B)4, we can apply Lemma 12. Then

Theorem L3. There ed,st positiue real nurnbers )1 ) . - ' ) \, and pos'i,tiue integers h* " '*kp :

2n uniquely such that for some unitary rnatri,r A e U(N),

lo o o\ /x' \r r r l
A 'BA:10  0  D l  and  D: l  II

\o -D ol \ xuJ
where each ),, appears in ku t'i,mes' Moreouer

uB -  v (k )e  Sp(k1)  o . . .  @ Sp(hp)  .

This solves our problems in the front of this section. So it is successfirl to classify strongly
pseudoconvex homogeneous domains in almost complex manifolds.
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Recent Progress in the Theory of Holomorphic Curves

Junjiro Noguchi
Hayama Symposium on Complex Analysis

in Several Variables 2005

We will discuss some new results in the Nevanlinna theory of holomorphic curves into algebraic varieties.
The central problem is the following conjecture, strengthened from the original of Griffiths (1g72):

Griffi,ths Corujecture 1 (L972). Let f : C -+ M be an algebraically non-degenerate holomorphic curve
into a complex projective manifold M. I'et D be an effective reduced divisor of simple normal crossings.
Then we have

(001)

( 1 0 1 )

( 1。2)

ηにL(D))+ηにκM)≦蝸に∫
*D)+Cη

(r)|lc, ∀C>0.

Here -l[(r;/*D) sta^nds for the counting function truncated to level one.
Vojta formulated an analogue of this conjecture in Diophantine approximation theory with the non-

truncated counting function N(r;f-D) and proposed Vojta's dictionary, which has brought interesbing
obsernations and motivations in the both theories.

Griffiths Conjecture 1 implies
Griffiths Conjectwe 2 (1972). Let X be a (complex) algebraic variety of log general type. Then every

holomorphic curve / : C -+ X is algebraically degenerate.

1 Order function.

We need to define the order function of J in a more general form than those already known (cf., e.g.,
Stoll [21], Noguchi-Ochiai [8]).

In what follows X is a compact complex reduced space and a subspace is a closed one. Let Ox denote
the structure sheaf of local holomorphic functions over X. Let Y be a subspace of X, not necessarily
reduced, and let I c Ox be the defining coherent ideal sheaf of Y. Here one may begin with taking
a coherent ideal sheaf X c Ox and take a subspace Y defined by X. ln any case, there are a finite
open covering X : UUt of. X and holomorphic functiors o11,... ,oltr on [/r such that at every point
r € Us their germs o^r,,.. . to\rxa generate the fiber I, of.I at r. Take relatively compact open covering
Vs G Us,X : U 7.r. We ta^ke px e Cf;(U1) with prly, = L and set

。αyし)=みし)=Σρ入し)
λ

ヽ

１

‐

′

ノ

π
σ

み
▼
ん
知

／

′

‐

ｌ

＼

π ∈ Ⅳ

(cf. [11] Chap. 2 $3, [25] $2, [16]). Another finite open covering and another local generators ofZy yield
a function il" by the same construction as above. Then there is a constant C > 0 such that

The function dy(o) stands for "a sort of the distance" between r and the subspace Y. We call

6v(r) : 6z(r) : -logdy(r), r e X

the WeiI function or the prodrnity (approximation) potenti,alof Y.
For aholomorphic curve f :C -+ X with f(C) ( SuppYwedefine

llog dy(r) - los di@)l < C, r e X.

wy,f : u)r,f: - dd"Qv(r) - -*a6hv(z)

:  dd," '  
1  

T.Log 
dy o f (z) '

(1。3)
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which is a smooth (1,1)-form on C. The order function of / for Y or Z is defined by

(1.4) T(r;ay,y):T(r;uz,i:  lr '+ I,o.rrt,r.

When Z defines a Ca,rtier divisor D on M, we see that

T (r; u7,y) : 4 (r; L(D)) + O(r),

where \@; L(D)) is the order function defined by the Chern class of f (cf. [A]).
Similarly taking a hermitian metric form ar on X,u6, we define an order function of / with respect to

u b y

r7@) :r(r;f-w): f + [ f*,.
J t  L  J  l z l < t

Then in general we have 
T@;a7,1): O(Tilr)).

T}re proxi,mitg function (or approximation function) of / for Y is defiued by

(1 .5)  m1@,Y):mt( r ,T) :  l , - ,_-Or" f@#.J lzl:r

It follows from (1.1) that the integral is finite, a,nd from (1.2) that m1(r,Y) is well-defined up to O(1)-
term.

Let Y, X: U[l and o^lt...,d]tr be as above. Suppose that /(() € Ur. Then oyo f(z) are local
holomorphic functions in a neighborhood of ( ranishing at ( with multiplicity multg oli o /. We define
the intersection multiplic$ of .f with Y by

mult6/*Y: min{multeo^j o f;L < i < l.r},

which is independent of the choice of local generators ory. The counting function with truncation level
k ( m is defined by

Np(r; f*Y): trfi(r; f*x) : [' + ,min{mult6/ 
*Y,kl.,  Jr  r l f r ,

We set N(r; f.Y): l[(r; f*I) : N*(r; f.Y).

Theorem I-.6 ([25], ll7l) Let f : C -+ X a,nd,I, be as aboae. Then we haae the followi'ng:

(i) (First Main Theorem) T(r;u7,y): N(r; f*q + my(r;T) - mt$;Q.

( i i )  LetL ( i :1,2)becoherent idealsheauesof Ox and, let$bethesubspacei lef inei lbyTa. I fLcIz
or equ'i,aalently Yt ) Y2, then

m1(r;Y2) Smr(r;Yi  + O(1).

(iii) Let Q, Xt -+ X2 be a holomorphic mapp'i,ngs between compact e.omplex manifolds. LetXz C Oy" be
a coherent iileal sheaf.ond letTl C 01g, be the rcherent i,iJeal sheaf generated, by S*72. Then

my(r;\) : rnOof (r;I2) + O1t;.

(iv) Let It, i '- !,2, be two coherent ideat sheaues of Ox. Suppose that f (C) I Supp (Ox Ft 6 fz).
Then we haue

T(r;a7,67r;) -- T(r;aa,;) + T(r;wa,,l) + O(t).

(v) A holomoryhic curve f : C -+ X is arational curue if and only if \(r): O(logr), prortidedthat
X is algebraic.

2
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Here we recall the dttsical result for a holomorphic curveノ:C→ Pπ(C)intO the complex prttectiVe      l
s p a c e  o f  d i m e n s i o n  ηo  W e  s e t  η( r ) = T ( r ;Ω) W i t h  F u b i n i―S t u d y  m e t r i c  f o r m  Ω。

Theorem l.7(Nennlinn}Cartan)LCt∫ :C→ Pπ(C)bC α JづπθarJν ηοη―ごりθηθttteんOJθmοηんづc carυc,

づ.Cり∫(C)づS ποι Cοηιαれcaれ αん叩cηttnce Lct{I」・}J=l bθん″ CηJαηcsげ Pη(C)れ クθηCmJ Pοsづιづοπ.

7Lcn

に・鋤    僣 一時1)η∈)≦Σ凡∈,ノ*り+000g→+000gη∈))‖,
ゴ=1

υんctt ιんe syπ bοJ ll"StandS」 Or tte cstづπαte tο んοJご/or r>o otttsづ ごθ α Bο ttJ sabsctげ fηづιC tοιαJ

Lcbesgし e,鴨cas包"θ。

2  Min Ru's result.

In the Diophantine approximttion theortt P.CorⅦ ja and U.Zttnier μ l generalized Schmidt's SubSpace
Theorem to the case of hypersurfaces in the projective space Pπ,and then J。―Ho Evertse and RoGo Feretti

pl,降 l generalLed it to the ctte of subspЖe ν ⊂Pπ.

Min Ru μ司,μtt fOund their祖Jogue to be‐lid in the theory of holomorphic curves ttd proved the
follo¬ring:

Theorem 2。1五ct』√⊂PN(c)be a Sm。。ιんsubυαttcty o/αづπθnsづοπ π.Zθι Dづ,1≦づ≦g beん″ersur―

racesげαり“edづづη PN(C)υ んづCんareれ gcncmJ pοsづιづοηれνメづ。c.,

M∩ Dづ1∩…・∩Dぅ.+1=0

/Or aJJ l≦ じ1<。 ・̀<づ π+1≦ g.五 etノ :C→ M be α η αむθb%づCaJJν ποη―ごりθπcmteん θJθποηんづc cttηe。

7Lcη

い ‐ Jttα 朝
ゼ 島町 劉 L VC200

1n the proof the fbllowing approxllnation th∞rem due to]H.Cartan is one key:

Theorem 2。 2五 ct ttJ,ゴ∈o={1,… 0,9}be ttncarヵ 電nS οη Pπ(C)れ gencmJ pο sづιづοπ.五 etノ :C→

Pπ(C)bC α れπcarly πθ2-α"θηeratcんοJοttοηんづc cattce ttLcη

41=rTttbg鵠裂絆弊≦い1+鵜にοに)川た,

叩pけ翼ryem胤胤鳳∬:r盤謂脳麗麗[盤器鳥碁童咸畷二TれI町

3 D)ethlo[Lu's result.

Theorem 3.1(Log Bloch― OchiJ(Ne 77-'81,N.― Winkelmann 11朗 ))LCt X be α  zαttsλづ叩cn sabsct ar

a cοηpact καんJcrれ αⅢルJα X Sucん 焼αι ιんcJり づ爾η ttJαttιν σ(X)>dimc x。 鶴 cη ποんοJοποηんづc cattc

∫: C→ Xん αS  α Z a t t sλづJ c n s eれ “ cれ X。

Prabιc仇.Whtt happens in the case of σ(X)=dimc x?
A holomorphic curve∫:C→ M intO a compact hermitian manifold M is called a BrOdy curve if the

nOrm‖∫
′
(Z)|1 0f the diferentid of∫iS bOunded on C。

As for Grimths cotteCture 2 G.Dethlo■ald So Lu 121 dealt With Brody cuⅣes into algebraic surfaces.

3
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Theorem 3.2 Let X be a smooth algebraic swface of log geneml type with log irregulari'tg QV) :2, and,
tet* be a smooth compacfficationwiths.n.c. 0X:N\ X. Theneuery Brod,y curae f : C -+ X cX is
al g ebr ai cal Iy deg e n erat e.

Proposition 3.3 Let X be an algebraic surface with n(X) : 1 anil lio|*) :2. Assume that the quasi-
Albanese Tnap crx: X -+ Ax is proper (a bi,t rnore general assumption works). Then euery holornorphic
curue J: C -+ X is algebraically degenerate.

By Kawamata's theorem this is easily reduced to the case of dimX : 4(X): rc(X) : 1, and then
little Picard's theorem is applied.

They gave an interesting example.

R.emark 3.4 There is an algebraic surtace X with R(X) : I and Q(X) : 2 which adm'i,ts an algebraicn'Ily
non-d,egenerate f :C -+ X.

. On the other hand, J. Winkelmann gave another interesting example:

Remark 3.5 There is a e,ompact projectiae threefold X such that

( i )  rc(x) :0 ani l  a(X) :3,

(ii) the Kobayashi hyperbolic pseudoilistance d,y = 0,

(n\ there is a holomorphic curve f : C -+ X luith the d,ense irnage in the sense of the differential
topologg,

(iv) there is a proper subuari,ety Z c X satislying that for euery Brody g:C -+ X, g(C) c Z-

4 Semi-abelian varieties.

Let f :C -+ Abeaholomorphic curveand let JxU),C -+ J1,(A) denotethe k-jet lift of / intothe lc-jet
space Js(,A) over -A. Let Xp(f) denote the Za.riski closure of the image of Jn(f)-

Theorem 4.1 (N.-Winkelmann-Yama,noi [16]) Let A be a semi-abeli,an uari,ety. Let f : C -+ A be a
holomorphic curve with Zarislci d,ense i,mage.

(i) Let Z be an algebraic reiluced subaariety oI Xx(f) (e > 0). Then there esi,sts a compact'ffication
Xx(f) of xx(f) such that

(4.2) T(r;w2,1n1s ) < N1(r; J*(l). Z) + dTy(r)lfi, Ve ) 0,

where Z is the closure of Z in *xU).

(11) Moreoaer, i/codim xu6)Z ) 2, then

(4.3) 
'  

T(r ;w2,41r) S €"r(r)11.,  Ve > 0.

(iii) In the case when lc : 0 and Z is an effecti,ae di,ni,sor D on A, the compctificotion A of A can
be chosen as smooth, equiaari,ant wi,th respect to the A-act'i,on, and ind,epenilent of f ; furthennore,
(4.2) takes the torm

(4.4) T1@;L(D)) <Nr(r;  f*D)+eTy@;L(D))11,,  Ve >0.

Note that in the above estimate (4.2), (4.3) or ( .a) the error term "eT1(r)" cannot be replaced by
"O(logr) + O(logTy(r))" (r"" [1.5] Exa^rnple (5.36)).

Remark 4.5 (i) In N.-Winkelmann-Ya^rnanoi [15] we proved (a. ) with a higher level truncated count-
ing function N1@; f* D). In the case of abelian A (4.4) with truncation level one was obtained by
Yamanoi [26].

(ii) Theorem 4.1 is considered as the a,nalogue of abc-Conjecture over semi-abelian varieties. Cf. Vojta

[24] for a result without order truncation.

4
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5 Applicatlon and cOttecture.

As applications for Grimths cotteCture 2 we hⅣe the following(see 1171).

Theorem 5。 l Zct X bc a cοηPIcπ αむcb%づC υαrづθιν απα Jct π:X→ 五 bc aル づιθ ποrpんづsm οηιο α
s c m夕αb c Jづαπ υαt t c t y■。Zθι∫: C→ X  bθ απ a r bづt %η θn tづ留 んοJοπθηんづc  c t tηc e  f rん( X ) > o ,流 θη∫づS

αむθb知づCalむJ"Cnetttc。
Mθ“ουcЪ ttc nοttαJづzatづοπげ流θ ZαttsλづcJοsureげノ(C)づS a sc鶴づ―αbcJづαη υαttctν υんづcれsaル づte

びιαJc cουer ar α ιttπsJαteげα praPcr seπづ‐αbcιづαπ sabυαttθオνo/ス.

cOronary 5.2Zむ t X be a cο πρJcπ αむcb電 づC υαttctν υんοsθ gttαs夕五Jbαπesc mapづ s α proPcr map.■ ssattθ

流αιえ( X ) > O  α πα σ( X )≧ d i m  X O鶴 C n  cυcη cηιづr cんοJοt tοηんづc c鶴印cノ : C→ Xづ sαむc b鶴づCαJ Jν

αcgenerate.

Theorem 5.3 Lct島 ,1≦ づ≦ g,be smο ο流 ん"ersur」 acesげ ιんC CοηpJCπ PttcCtづ υθ ψ α“ Pπ (C)OJ
αれ θηsづοπ π s a cんιんαι E =Σ 島 づSα αづυづsοT  o J  sづ1叩Jθ ηοmα J  c r o s sれg s .■s s t tπθ t tαι

( i ) g≧2+ 1 0

( i i ) d e g  E≧π+2。

動 cη θυcη んοJοποηんづc caηθ∫:C→ Pπ(C)ヽ EづSaむθbraづCaJむα"むηθ%te.

R e m a r k  5。4 1 n  T h e o r e m  5 . 3  t h e  c a s e  w h e n  η=2 , Eづ ,づ=1 , 2 , a r e  l i n e s  a m d  E 3  i S  a  q u a d r i c  w a s  a

COtteCture of M.Green 151。                  。

Let“4 be a seΠli―abehan vttriety and let」D be an erective reduced divisor on■ 。 Assume that the

s t t t i l i z e r {α∈スα+D = D }° = { 0 }・T h e n  t h e r e  i s  t t  e q u i t t r i a n t  c o m p∝t i n c乱1。n 4。 f■ s u c h  t h t t  t h e

c l o s u r e  D  o f  D  i n  4  c o n t五n s  n o五―or b i t ( 1 2 4 1 , [ 1 6 1 ) . L e t∂五 =ス ＼五 de n O t e  t h e  b o u n d a r y  d i v i s o r , w h i c h

htt only silnple normal crossingse

σοttCCta“.Let∫:C→ 五be an algebrdcally non―degenertte holomorphic cuⅣee Then we htte

(5。5)    π ∫にD)+π∫(r;0ス)≦ηにL(∂D))+0(10g r)+0(10g場(r))||・

Whenノ(C)∩∂五=0,(5.5)was prOVed in「司.

6  Analogue in]Dlophantine approxilnation.

We■ rst recall

五bc―σοttcctu“.Let a,b,c∈Z be co―prime numbers sttisサing

( 6。1)                      α  t t  b = C・

Th e n  f o r  t t  a r b i t r a r y  c > O  t h e r e  i s  a  n u m b e r  C c > O  s u c h  t h a t

m猟{ld,1倒,ld卜Q Π  Pl+Ce
prime pl(abC)

Notice thtt the order of abC tt every primep is counted only by“1+c"(trunCttiOn)when it iS positive.
As in§l We put π =[α ,司 ∈Pl(Q)・ Atter Vojta's notttional dictiontty([221),thiS iS equittlent to

( 6。2 )         ( 1 - c )ん ( " )≦Ⅳl ( " ; 0 ) +耳1 (π;∞) +蝸 (“; 1 ) + C c

for π∈Pl(Q)(Ci 171,[231 for Pπ)・ThiS iS quite analogous to(1。8).Here We f。110w the notttion in Vbjta

1221 for number theory ald Noguchi-Ochiai 181 for the Nevanlinna theory in particular,

h(") - the height of r.

.AIr (r; *) : the counting function at * truncated to level 1

(see below)

5
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Motivated by the results in sections 3 and 4, we formulate an a,nalogue of abc-Conjecture over semi-

abelian varieties. Let k be an algebraic number field and let S C Mx be an a^rbitrarily fixed finite subset

of places of k containing all infinite places. Let A be a semi-abelian variety_over k, let D be a reduced

divisor on A, let A be a^n equivariant compactification of A such that DlC e) contains no A-orbit, and

let o6 be a regular section of the line bundle .f (D) defining the divisor D.

Abc.Conjecture oaer semi-abelian aari,etg. For an a^rbitrary e ) 0, there exits a constant C. > 0 such

that for all c e A(fr) \ D

(1-C)んL(D)(π)≦Ⅳl(π;S,D)+C=

Here hplpy(r) denotes the height function with respect to L(D) and N1(r, D; S) denotes the S-counting

function truncated to level one:

(6.3)

(6。4)

10g凡 /Q(pυ).

υ∈Mた Sヽ
ord,υσぅ(■)≧1

Remark. Cf. [14] for the analogue over algebraic function fields.
It may be interesting to specialize the above conjecture in dimension one.

Abc-Conjecture for S-units. We assume that a and b a,re ,9-units in (6.1); that is, r in (6.2) is a'n S-unit.
Then for arbitrary e ) 0, there exists C. > 0 such that

(1 -  e)h(r)  < l r1 (r ;5,1) + C,.

蝸は鋼=高

(1-C)ん(υ)≦d鴫(υ;S,∞)十Q

=レ:q υJ、s bg凡/QO+α
0

ord,υσ∞(υ)≧■

Abc-Conjecture lor eltipti,c cun)es. Let C be an elliptic curve defined as a closure of an a,ffine curve'

u2 : 13 * crx * co, ci e le*.

In a neighborhood of a.€ C, o*: r/U gives a,n affine parameter with o-(m) :0. Then for every e > 0
there is a constant C, ) 0 such that for w e C(le)
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(1)

EXTENSION OF CR STRUCTURES ON THREE DIMENSIONAL

COMPACT PSEUDOCONVEX CR MANIFOLDS

D. C.mlw aNo Sntcuvutt CHo
Punoun UxrypRstrv, U.S.A.

SoceNc UNrvsRsnv. KOREA

Let (M,S) be an abstract smoothly bounded orientable CB-manifold of dimen-
sion2n- l with CR-dimension equal ton- 1 (i.e., d,imcE:n- 1). Since M
is orientable, there exist a smooth real nonvanishing l-form 4 and a smooth real
vector field X6 on M so that q(X):0 for all X e S and a(Xs):1. Define the
Levi-form of E on M bv

づη(IL′,π
′′
1),L′,五

′′
∈S.

Definition 1. We say (M,E) is strictly pseudoanaex (resp. pseudoconuea) if the
Leai-forrn defined, in (1) is stri,ctly positiue defini,te (resp. non-negatiue definite).

Then we have the following celebrating local embedding theorem by Kuranishi.

Theorem K. (Kuranishi 81') If (M,E) i,s strictly pseud,oconues and d,impM :
2n - I ) 9, then (M,E) e,an be locally embeld,ed, as a real hypersurfae in Cn.

Theorem (K) has been improved by Akahori and Webster(Theorem A and W)
in 1985. They showed that (M,S) can be locally embedded as a real hypersurface
in C' provided (M,S) is strictly pseudoconvex and d;i,mwM ) 7. In Theorem
(K,A,W), they used solvability and estimates of d6 equation, the tangential Cauchy
Riemantr equation.

In 1994, Catlin proposed another Approach : Extend the given CR structure
to an integrable almost complex structure by deforming the given almost complex
structure [1,2].

Theorem C. (Catlin 9/r') : If (M,S) has either 3 posi,tiue eigenualues or (n-1)-
negatiue eigenualues, then there is a tubular neighborhood dl so that M c bQ and
{l is an integrable complen manifold.

Typeset by婦 写
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De CATLIN AND S.CHO

Corollary. If (M,E) is pseud,oconuefi neor zo and, has 3 + eigenualues, then M :
b{1, where dl is a complex manifold

Corollary . : If (M, S) is strongly pseudoconuer and dimpM ) 7, then M can be
embedded, i,n C as a real hypersurface type. Same conclution holds i,f M has three
positiue eigenualues and three negatiue eigenualues.

For weakly pseudoconvex CR manifold (M,S) of finite type, the second author
proved some series of extension problems [3,4].
Theorem ChL. (Cho, S. g7') Let (M,5) be a smooth compact pseud,oconuex CR
manifold of finite tgpe wi,th dimnM :3. Then there exi,sts a tubular neighborhood
dl on the concaue side of M so that M c bdl, and {l is an integrable complen
manifold. That is, there edsts an integmble alntost complen structure L on {l such
that for all t € M, Lp,oy 1CTM - S".

Corollary. If M is the boundary (or a portion of the boundard of a mmpler
manifold D with dimsD : 2 and &ssurne that M is of finite type. Then the
compler structurz of D extends smoothly beyond M. That is, there is a umplex
manifold Q, dims{r:2, such that D U M c O.

Theorem Ch2. (Cho, 5.,2003 ) Let (M,,5) be a smooth pseudoconuer CR man-
ifold of fini,te type with di,mnM : 2n - L, and, the Leui-fonn of M has at least
(n - 2)-positiue eigenualues- Then there erists a tubular neighborhooil Q on the
conco,ae side of M so that M C bO, and dl is an integrable complex manifold.
That is, there ed,sts an integrable almost umplea stracture L on Q such that for
a l l n€M,Lp ,o11CTM-5 ' .

Theorem Ch3. (Cho, 5.,2002 ) Let (M,.S) 6e a smooth pseudoconuex CR man-
ifold of fini,te tgpe uith dimnM : 2n - L, and the Leui-fonn of M has at least
(" - z)-posi,tiue eigenualues. Then there esists a tubular neighborhooil dl on the
connen side of M so that M c bQ, and Q is an intqmble complm mani,fold. That
is, therc exists an integrable almost complex structure L on Q such that for all
r e M, L@,o) 1CTM - S'.

Corollary. Let M be as in Thurern ChZ. Then M can be locally embe.dd,ed as a
real hypersurface in C.

We note that dimnM : 5 case is still open.
Let us study the extension problem of compact pseudoconvex CR manifold

of dimsM :3. Let (M,,S) be a smooth compact orientable pseudoconvex CR
marrifold. Using the vector field Xo, we can define a projection fI0'1 of CTM onto
5. tf y e CTM,we can uniquely write Y : Yt +Ytt tcXs, where Y' e S, Y" e3.
Define fl0,1y :Y".In terms of this projection, we can define the Hessian Hx of.
a smooth function ^. If. LL, L2 are sections of .S, define

夏λ(Ll,E2)=Ll=2λ ~[五1,=2]′
′λ・(2)
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and set

Then it follows that

EXTENSION OF σ R STRUCTURES

In general, this Hessia,n depends on the choice of X6. However, note that if Z1

*ri L, are both in the nutl space of the Levi-form at a point P € M, then lL1,T'21
is in the span of 5 and S at p so that H2'(L1,7) is independent of the choice of

Xs.

Definition 2. We say ), is strictty subharrnonic near the set W of weoklg pseu-

d,orcnaes points if H^(L, L) > 0, L e Eo where L is a nonzeno aector i'n E and p

is any point inW.

Set

O : { (2 , r ) ; r €M, -La taU ,

O-  -  
{ ( * , r )€  C t  ;  - 1  <  t  <  0 } ,

and for a sufrciently small e ) 0, let

f ) .  - { ( " , r ) e  Mx  ( - 1 ,1 )  ;  - e< r<€ }

Ωよ={(",r);π∈M,0≦γ<c}.

∂凛 ⊃=:傾μ,コ・

Assume that if .\ is strictly subharmonic near the set W C M of weakly pseu-

doconvex points. Then we can affange so that ,\ is strictly plurisubharmonic for
Sortr€ €9 > 0 on Q.o.

Let P.. : Oj --- M be the projection map. Then our main results are asi follows
(Catlin, Cho).

Theorem (C,Ch). Let M be a smooth compact ori,entable pseudoconuex CR
manitold, of real dimension three with a giuen CR structure E and assume that
there is a smooth function A uhich is stri,ctlg subharmonic near the set W of
weolcly pseudoconuer points. Then there exist a small positiue number e ) 0
and, a smooth integrable almost cnmpler structure L on Q! such that for all
r € M, L@,o)nCTM: S'. Futherrnore, i f  Jc; TQ, - T{1. is the map
associated ttth tn" complu stracture L, then dr(Jc(Xo)) < 0 at all points of
Ms - { ( " , 0 ) ;  r eM} .

Note that we are extending the given CR structure on M to the concave side
(instead of convex side) of M. Theorem (C,Ch), in general, does not imply that
the given CR structur"l.*, be locally embedded in C, [6](cf. the example of nou-
solvable elliptic PDE of Nirenberg). When M is compact strictly pseudoconvex of
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real dimension three and has the property that the range of d6 is closed, then the
results of Kohn and Burns imply that M can be embedded in CN, for some N.
The finite type a^nalog of this result is due to Christ. If the CR structure already
extends to the pseudoconvex side, then one can embed M in a manifold of the
sa,rne dimension:

Corollary 3, Let D be a compact pseudoconuer complex mani,fold with smooth
boundary and dimsD : 2. Suppose that the umpler stntcture on D ertends
smoothly up to the boundaru,bD of D, anil that there is a smooth function ),
which is strictly subharmonic near the set ry of weakly pseudoconuex points of
bD. Then there edsts a complm manilold D, dims D :2, such thatD can be
holomorphically embeilded, into D.

Also, as an application of Theorem (C,Ch), we have the following local extension
theorem.

Theorem 4, Let M be a CR manifold of rcal dimension three and assume that
M i,s pseudoconuffi in a neighborhood, U of zs e M. Then there edst e ) 0 and, a
neighborhood, V C U of zs e M such that the gi,aen CR stracture Ely on M can
be extended to an integmble almost omplex stracture L onVr+ : Pll(V).

Corollary 5. Let D be a compler manifold with smooth bound,ary and, d,imaD :2.
Suppose that the associ,ated almost complex stracture on D estends srnoothly up
the boundary bD of D, andbD is pseudoconue.n near zo € bD. Then there is a
neighborhood, V ol A such that D can be embedded in a larger complm manifold
D so thatV nUO lies in the interi,or of b as a real hypersurface.

Sketch of the Proof

Se tO:  M x  ( -1 ,1 ) .  Ex tend  L t , . . . , Ln - r  €  E ,  so tha t i t doesno tdependon
t. For a real vector field Xo with 4(Xs) : 1, we set

L":O/Ot - i 'Xo,

and set L : span{Lr, . . . , L'-}. Then (A, L) is an almost complex manifold. By
recursive process, we first prove that there exists (O,40) such that tf Lr, L2 € Ls,
and ur e A1'0, then u(Bt,Tzl): 0 to infinite order along M. That is, ^Cs is
integrable up to infinite order along M.

Fo rq :0 ,  1 , . . . , t ? , se t
pe -1 (o ,e )64 .

If {L1,... ,L".} is a local fra,me and {arl, . . .ran} is i ts dual fra,rre, then each
A e fl can be written as

五 = 4J・,た(″)面
ん。Lル

π

Σ

脚
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where五ゴ,た肛e smooth functionso Similarltt every B∈「g can be wri崚9n as:

B=Σ ΣB多帥」・助0
ι=1  1 J I = g

Therefore,we ctt deine norms for B∈ 「9(σた―norms,Sobolev― norms,etc.)on Ω

by using component functions of B and by using a partition of unity on lQ。

Note that if五 ∈「1,thenス is a C―linear bundle homomorphism from£ to£ .

Thtt is if π=Σl=lbん=た∈Z,then

五F)=ΣスグルbんLゴ∈£。
ゴ,た=1

1f tt」,たis suttcientlyもmdl,we set

ね (五)=五 十 五(L) = L A ,

and set

Eス ={ね (万):E∈ E}0               0

Then£ ス is a deformttion(or a perturbttion)of£・Set ω■=ω ―五*ω
,where

■*:Al,0→ AO,l is glven by

(■
*ω

)(L)=ω (■(五)),E∈ 万,ω ∈Al'°。

Then ωスis a dual of£ス.Thl就 is,

ω4(Z4)=0,五 五∈£ス・

Ql:Find五(10e。,a deformation of£)so that(Ωま,ん4)iS integralle・

Thtt is,ind■so thtt for etth ω4∈AЙ°,狙d for dl Ll,L2∈£,

(3)        ω ■(I∬L(πl),L(=2)])

≡ (ω
―ス

*ω
)([Zl+ス(Zl),五2十五(L2)1)≡00

Deine a non―linett operttor Φ:「1-→ F2by:

Φ(■)(π
′
,E′

′
,ω)=ω ■(I′資(Ll),Pl(五2))・
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So our question is reduced to:

(Q2)Find五 ∈Al so that Φ (■)=0。

Note th航 (3)〔md hence(Q2)肛 e non―linear problemso We use the Nash―Moser
implicit function theorem.Up to second order term of五(1.e・,by linearizing),(3)
becomes:

(4)  ω(Fl,■(万2)])+ω(Iス(πl),=2)~五
*ω
(Fl,E21)=~ω(Fl,Iうl).

F o r五 ∈C■ ,le t五=五 ′
+五

′′
,whe r e  L′∈£z an d五

′′
∈万ze D e i nさ

(D2■ )(πl,E2)=[万 1,■(=2)l′
~Fら ,ス(万1)]′

一五(Fl,=2]″ )・

Then D2■ ∈「2,ald(4)is equinlent to

D2■ =~二

where F∈「2 satiSies F(=1,=2)=[El,=21′,WhiCh measures the extend to which
fails to be integrable.

Let電 :「1→ Fg be the bШdle isomorphism deined by

?lG(万 1,000,19,Ω )=G(II(Ll),… 0,」民生(L9),のス(Ω))。

Then it turns out that

( 5 ) Φ′(■)=2λDチ(21)~1+ο(Φ(■)■)・

Set Ao - 0. By induction, we set

(6)     dム =フiたO(D3)*O AlたO(フiん)~1(一Φ(■た))

where鴫 たis the Neumam operttor with respect to the structure£
Aたwith weight

c一tλ,t≧ ■ ,fOr sOme■ depending onた 。

Using weighted D3 eStimttes and the carehlinspection ofthe p肛田leters c ttd
t,we see that

(7)         |lα免||た,tS‖Φ(■)||た,t+C~た
21五

|ん+111Φ(■)|lo,t

十C~た
2tた

‖Φ(■)|lo,t,                、
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and

(8)       ‖ Φ64)+Φ
′
14)(dl)||んだC~12_た

_10tた+3c音.

・‖Φ(■)||た+311Φ(■)|13(1+|五|ん+1)・

If we set五 ん+1=五 ん十 助たαAた,Where助 たα五たiS a smoothing operttor,then by

combining(5)― (8),we see th乱

Φ(■た+1)=Φ (■た)十Φ
′
(■た)αスた十C9(lαAた12) = 0 ( lαAた12) ,

that is,Φ14ん+1)VaniShes second order in d■ た,or in second order in the right hand

side of(7).

(7)狙 d(8)鍼 e called the Tame estimates,which tte necessary in the ttrittt

of Nash―Moser iterttion process.Using the vttiant of Nash―Moser theoremレl,we
obtain our lnain theorem.
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THE DIMENSION OF THE AUTOMORPHIC FORMS OF N‐ BALL

LU HONGWENl'ホ AND ZHU XIAOLINl'2,*

ABsTRACT. In this paper,we get the classincation of conJugacy classes in the group of auto―

morphisms on 3-dimensional ball.The cOntributions from the cottug〔Кy classes of the regualr

elliptic elements ald some hyperelliptic elements in the dimension formula are obtained.

As a well-known result, B,o is a classical domain of type I and .9U(n, 1) is group of automorphisms

which act transitively on B" (cf. [2], [3],and[ ] ).
Let f be an arithmetric subgroup of ,5U(n,1). We say a holomorphic function f on Bn

an automorphic form of weight m for | 1f j(l,z)^f\z) : lQ) for all 7 € | arrd z € Bn.

Here j(7,2) denotes the jacobian of the mapping 1 e SU(n,I) aI z € Bn which is given by

j 0 , z ) - ( c t z * d ) - n - t  f o r T :  [ *  
* ) * h " r " d e R .  

L e t
\c dl

(1.1) k(z,w):  (1 -  
" t51-n-r

which is the Bergaman kernel function of .B,, (cf. [2], [3] ,and[a]). Then the volume element d,V (w) :

k(w,w)ilw(where by d,w we denote the Euclidean volume element) is invariant under SU(n,L).

A funda^rnental domain of f acting on B"(i.e. a measurable set of orbit representations) is

denoted by .F . For the automorphic forms "fr and /2 of weight m for T, we set

(1.2) (h,fz): [ 7rp1ffits(z,z)-^itV(z),
J F

which is called the Petersson inner product. It is easy to prove that the integral in (1.2) is

independent of the selection of the funda^rnental domain.

*Supported by National NJ;ural Science Found:前 ion of China(10471104,10511140543).
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L e t  i m (「)d e n O t e  t h e  s p a c e  o f  a u t o m o r p h i c  f o r m s  o f  w e i g h t  m  f o r  r  w h i c h  h a v e  t h e  p r o p e r t y

thatた (z,z)~号バZ)iS bOunded On a fundamental domain F(iee.a measurable set of orbit repre―

sentations)of r acting on 3.,we also call them cusp formso lt is ob宙 ous that any cuSp form

∫

T五 :す 曹 lt T I 二 hれ

btteCt市e biholomorphic transformation of a Sie〔

D n - { ( r , u ) € C x

onto the n-dimensional ball Bn.

Let / be an automorphic form of weight rrl

Cn-L12Imut - utu > 0].

for r on Bπ . It is easy to prove that

Цa=μ xム am z∈ %ズ ム幼 =づ

i s  a n  a u t o m o r p h i c  f o r m  o f  w e i g h t  m  f o r五
~ 1「

■ onつ π,i . e。, F  i s  a n a l y t i c  i nつπ a n d  s a t i s i e s  t h e

functional equation F(μZ)ゴ(μ,Z)m=F(Z)for any μ ∈ス
~1「

スand Z∈ つπ.As shown ini51,

F has a Fourier―Jacobi expansion of the fbrnl:

Fし,o=Σgrし)eXppπづrO,
r:0

Which is called the Fourier-Jacobi expansion of /, where gr Ne theta functions on Cn

Theorem L.1. An automorphic form f (z) onB' is a cusp form if and only if the first coefficient

gs of its Fourier-Jacobi expansion (1.a) is 0.

2. Kpnnpl FUNCTION.

Let rn> 2. For (r,r) e Bn x Bn define

( 1。3)

( 1 . 4 )

Proposition 2。1.

( 2 . 1 )

where

a(m) :  n
_η「((2+1)(π

-1)+2)

「((η+1)(m-1))'

and /c(*, *) is the Bergman kernel functional defined by (1.1). Then one has:

(a)For any u e .B,, the series on the right hand side of (2.l)-considered as a series of functions

in z-is normally convergent on every compact subset of H x C.

(b)K(z,u) is the reproducing kernel function for A*(f) with repect to the Petersson inner

product, i.e.:

( i ) K ( 2 , . ) : @ ;

(ii)for any w e Bn, the function K(*,w) is a cusp form in Ar"(T);

κ(Z,υ)=α(鶴)】Eん(γZ,υ)mプ(γ,Z)π,
γ∈「
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(iii)fOr any υ∈Bn and any cusp formノ∈スm(「),One has

<∫,κ(*,υ>=ノ(υ)。

Theorem 2。2。For 7η≧2,one has

20   dm■mc)=α(π)二悪始ろ?π力'aπ
たレ,→―παyレ).

3。 CoNTRIBUTION FROM THE CONJUGACY CLASS OF A REGULAR ELLIPTIC ELEMENT

The matr破 島,l determines a Hermitian form(,)on Cη
+1× Cη+l by the(π

,ν)=tσ 島,lχ.

Our group Sy(2,1)Can then characterized as the group of matrices g∈ SL(η +1,C)such that

(gπ,gν)=(π ,ν)fOr all",υ ∈ Cπ+10 We saly thtt the nonzero vector"∈ Cπ+l is positive,

isotropic or negative according as(π,π)iS pOSitive,zero or negative.

Deinition 3。 1.An element g∈ Sび (η,1)With g≠ l iS regular elliptic if g htt a positive

eigenvector and has no isotropic eigenvectort

Proposition 3。 2。 For,m)≧ 2 and a regular elliptic eleltttent g,we have:

0 1 .た 。 為 Z F力 ,→
れ

たレ ,0 ~協 αy Oお C O n V e r g e軋

(il)the contribution from elements in「which tte cottugate in F to g in the dimension formula

O幼呻КnけЩの=品 んル 獨し→%にのWO・
To calculate the inte.・ral,we obtain:

Theorem 3.3。 For η2≧ 2,          ′

Щの=

Remark 3。 4.If η =1,one has N(g)=    ,WhiCh is well known in the theory of trace

b r m u l , b r  m o d d t t  b r m s  o f o n e  n五ab b o  l f  η=2 ,Ⅳ し)二 画 需 鍼 卜 萄
青hCh  h t t  b e e n

calcultted by Cohnill.

In addition to elliptic elements,we will generalize Cohn's(cfelll)methOd and calcultte contri―

butions缶om other cottuaCy classes in Sび(3,1)。Since the btteCtiVe biholomorphic trttsform針

tionス
~l map Bn tOつ

η,it follows thtt we discuss the Siegel domainつ30

4◆ THE GROUP OF AUTOMORPHISMS AND ITS SUBGROUPS ON lD3

We can easily get the group of automorphisms which act transiti"ly onつ 3:

G=t~lSび (3,1)t={g∈SL(4,θ)ltJ」Ц2,2g=島,2),
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where t∈ SL(4,Z[づI)iS

■ :つ3→ B3 , a n d耳 2, 2

LU HONGWENI'* AND ZHU XIAOLINI,2'*

the transformation matrix of the bijective biholomorphic transformation

( i \
: f  - Iz I

\-,; t
groupf :GnSL(A,Zl i l ) .

arabolic) subgroup P of. G to be the group of upper triangular matrices

get that unipotent radical Pu of. P is the set of matrices of the form

We take our discrete

we now deine the(p

belongs to Go Then we

γ

７め

／
ｆ
‐
‐
ｌ
＼

√
弁+

Σ
[γl,:レlテ∩「

I  百 万
η
ф+s露: ф

"€(rg) 
-zr)

曇=φム讐聟警
万万nф

( 4 . 1 ) +"1T0 t ( ri,-uo...rF
hlr:fu11n(rg) -zi+o' h6-1e (r!l) -zr)

+

ニ    ザ
Wehavethemultiplicationrule [o,ir][9,izl:lo'*p,iftiz-Imar6r-I^ozhl,where a: (aya2)

and g: (h,bz). We also define the subgroupr I'P : inP and f-: f nPr. It is easy to

show that f*: {[r, t ]  e Pli , I I , ' ' tz e (1+ i.)Zfi loYh,' . I2 e ( l+i)Zl i l*1,r € Z] and fP :

{ i "dh," l l [ r , r ]  €  f - ,  e  eZ,n e Z]  = l -  x  Z l@)x Z l@),where go:d iag{ i , -1 ,1, i }  e  F.
'Then we get the following conclusions which are generalizations of Cohn[1](ppl3-27).

Conclusion 4.L. fff : tit-l, and Gq1r1 :f pen, and if 4rn € Z and m) 2, then

a(m)*L dimA- (f ) : c(m,f)u ot @')

?€f-(rg) uzv)

=C(m,「 )υοI(F)+

“

d?6-1e(r!3 -zr)ズ暫   れ
Hereろ おtle center ofF,狙dc彎 ,⊃ =γ

ニ
カ 'pア 'Where po=0,Qの F■ ,and昴 ,0=

( づ( 壺
一

υ
) 一

鶴
t ラ

) ~ 4  f o r  a n y  p = ( り , 鶴 ) , 9 = ( π , υ ) ∈
つ 3 ; ф

= た
( P , p ) α

υ α鶴 l α 鶴 2 ; r  i S  a  d i s c r e t e  g r o u p

o f  G ,狙 d F  i s  a  f u n d a m e n t a l  d o m a i n  i nつ3 f O r  r ; Gγ is  t h e  c e n t r a l i z e r  o f  γ in ( 7 ;「γ
=θ γ∩F

is the centralizer of γ in F;and鳥=∪δ∈F/Fγδ
~lr is a fundamental domain inつ

3 br Fγ.

Remttk 4。2。We shtt denote by為け→the itter」
ム 讐矧 警

万 7れ の 行 ∈F,S≧の。we

write島屁(γ)fOr ttn(γ;0)・
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Conclusion 4.3. Every primitive isotropic vector u € | can be embedded in a basis {r,Ar,Uz,u'}
of  i  wi th o'  isotropic,  (ut ,u):  i ,  (Ai ,A) -  -1,  (yt ,Az):0 and Ui lu,ut.

Remark 4.4. Depending on conclusion 4.3 and Lemma 6.2, we easily get Gqn:f PeUl.

5. Clessu'tc.trloN oF coNJUcAcy cLASsEs rN THE GRoup oF AuToMoRpglsus G

In addition to the regular elliptic element, when rz : 3, we obtain the follorving definition of
classification of the other conjugacy classes in G referring to [1].

Definition 5.1. If g e G and g is not in the center of G, we say g is hyperelliptic if there

exists a hypebolic plane W c C4(i.e. a two-dimensional non-degenerate subspace containing an
isotropic vector) such that glW is multiplication by a scalar (of absolute value 1); hyperbolic if
g is not hyperelliptic and has linearly independent isotropic vector 11 and x2 in Ca such that

g(n) :'yri(i :1,2) with \ € C,)r t' \2; or parabolic if 9 has an isotropic eigenvector a^nd is

neither hyperelliptic nor hyperbolic.

Theorem 5.2. For any g e G and g is not in the center of G, then g belongs to one of the

regula,r elliptic elements of conjugacy classes or the above types of conjugacy classes.

Remark 5.3. FYom the above theorem, we get the following results(Let g(ui: \iui(j <  ))t

(i). The element g is regular elliptic, if. Ca : 6 
"or,with 

ur positive,ul(j : 2,3,4) negative,
j=l

λl≠λゴ(ゴ=2,3,4).

(il)。The element g is hyperelliptic,if θ
4 or ,\1 - ,\a, with

u1 Positive, ui(i :2,3,4) negative.

(iii). The element g is hyperbolic, if Ca - Cut@ Cu2@ (Cus* Cua), with u1 and u2 negative,

u3 a,nd u4 isotropic,\s * \+. If g has only three eigenspaces V^, = Cu1,Vy" : Caz and

V^" : Cas, with ur negative, u2 and u3 isotropic , a! L w(: Cuz * Cus), \z # \s, then g

is also hyperbolic.

(iv). The element g is pa,rapolic, if 9 has only three eigenspaces [r1: Cai,i : L,2,3),

with u1 and u2 negative, u3 isotropic, uL,uz,us pairwise orthogonal. If g has only two

eigeuspaces V), : Co1 and V^2: Cu2,with tll negative, u2 isotropic, ul I u2, then I is

also parapolic. In addition, if g has no positive or negative eigenvectors, then g is still

parapolic as it must have at least one eigenvector which must be isotropic.

6. Hvppnpr,l,lprrc coNJUGAcy cLASsEs

Suppose that 7 e F is hyperelliptic and that l@) : \i"iU : !,2,3,4) with ol positive, u2,ug
4

and, u4 negative, ailap(j + k),1^jl2: l,fl )j : 1, )r : )a.
J - -

ヽ
ハ〓

λ０ヽ
ハ〓

λｄ
ｎａ％θ４

①
戸

〓
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Lemma 6。 1. γ belongs to one of the fbllowing three types:

( i ) 0 (λl ,λ2 ,λ3 ,λ4 ) =づ
ε
(1 , - 1 , - 1 , 1 ) ; ( 1 1 )・(λl ,入2●3 ,入4 ) =づ

ε
(づ, - 1 , 1 ,づ) ; ( i l i )・(入1 ,λ2 ,λ3 ,入4 ) =

をε(1,ρ,ρ
2,1)。Here(ε=0,1,2 or 3;ρ=exp(2πづ/3))。

Now,we will devote to computing the contributions from the cottugaCy Classes of the hyper―

elliptic elёments of type(ii)・By means of the conclusion 4。3 in section 4,we get the following

lemmas.

Lemma 6.2.If γ∈F is hyperelliptic 6f type(i)and type(il),then hiF∩P≠ φ0

Remark 6。 3.By the茄 ove Lemma 6.2 and Cohni司 ,eVery hyperelliptic F―cottugacy Class iγlテ

of the type il)has a representative in「y=F∩ P.But if γ,ダ∈Fy are hyperelliptic and

COttugate in F,they are cottugate in「1)e

Remark 6.4. By Lenllna 6。 l and Lemma 6.3,it is easy to show that there are the follo▼ ring

F_cottugacy Classes of hyperelliptic elements of type ii):づ
ε
(go)η,づ

εδl(go)η(δl)~1,づ
εδ2(g。)η(あ)~1,

づε71gO(■ )~1,づ
ε72(gO)3(72)~1,づε73gO(■ )~1:づ

ε74(g。)3(74)~1,づ
ε
Ъgo(75)~1,づ

ε76(gO)3(76)~10 Here

η=1,or 3,δl=[(1,0),01,あ=[(0,二1),01,■=[(―ザ,り),01,72=[(≒井,一≒≠),01,・=

[(―ザ,≒ヂ),Ol,74=[(≒井,一=デリ,Ol,Ъ〒l(―ザ ,り),01,76=[(ザ,―ザ),O10

By means of Cohn[ll(p31),let rl=F(gO)η:「
~(go)η

ハρ
-lFρ

l,T2=[G(g。)・∩ρ
~lFρ

卜 F~(go)η∩

ρ
~1「~ρ

]fOrη二1,3ρ=JJ・(ブ=1,2),or η=1,ρ=η′(ブ
′=1,3,5);or η=3,ρ=η′(ゴ

′=2,4,6),

we hⅣe thtt the contribution of the cottugaCy dasses of ρ(gO)ηρ
・l iS giVen by島海(ρ(go)ηρ

~1)=

号塩 (lgO)η)・We also hM that為oε(go)η)=づ
4επ

為 (lgo)η)・

Theorem 6.5。為 ((go)η)=黒 ぃ _⇒“m二。け切二⇒0~ηL←1ン)i・
e.

ЩttЮ=島    μ
叶助綺=り嶋
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HARMONIC AND PLURIHARMONIC BEREZIN TRANSFORMS

MrRosr,ev Eucr,r5

AssrR-Acr. We show that, perhaps surprisingly, the as3rmptotic behaviour of the
Berezin transform as well as aome properties of Toeplitz operators on a variety of
weighted ha,rmonic and plurihanmonic Bergman spaces seem to be the sa,rne as in the

holomorphic case.

Let Ω be a bounded domain in Cπ ,Ll。1(Ω)⊂ L2(Ω)the Bergmtt space of all
square―integrable holomorphic functions on Ω,and κ (",ν)itS reproducing ke=nel,
i.ee the]Bergman kernel. Thus

∫(→=二∫し)K(・,O αν=げ,鳥), 亀=κ(ち→,

for」1ノ∈Ll。l and"∈Ω.ROcall that
with symbol φ is deined by

Ъ :Lid→ Liヴ,

fOr φ∈五∞(Ω),the Toeplitz operttor Ъ

Ъ∫:=P(φ∫),

where P:L2→ Lid iS the orthogond projection(the Bergmm projection)。The

Berezin symhol of a(bOunded line霊)Operttor T on Llol iS,by deinition,the
inction f on Ω deined by

わ=犠子=ケ占,占〉
Berezin tralsform of∫∈L°°iS,by defhition,the Berezin symbol ofFinally9 the

the Toeplitz operator Tft

Bf(") -Tr(")

It is immediate that the mapping ?'+ f it Urr""", 7: L, (".)- : f, llfll." < ll"ll,
and f is a real-analytic function on O; similarly for / r+ B/. Since the function
(TK,,I(,), being holomorphic in z md 9, is uniquely determined by its restriction
to the diagonal t : A, it also follows that both mappings T ,+ fr and / r+ B/ are
one-to-one - a fact which is of crucial importance for some applications.

.ReSeaFCh Supported by GA AV CR grant noo A1019304 and by AV CR IRP no.AVOZ10190503。

ναν”κν
∫
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Ω
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MIROSLAV ENGLIS

There are also the weighted analogues of all the above objects: namely9 for any

continuous,positive weight function υ on Ω,the subspace Lld(Ω,υ)Of all h01)
morphic角 lnctions in L2(Ω,υ)iS C10sed and possesses a reproducing kernel X「υ(",ν)

一theweightedBergman kerneL and One may deine the Toeplitz operators 40,
Berezin symbols f(υ)and Berezin transform B(υ)in the same waly as before.

Consider now a strictly plurisubharmonic hnction O on lQ. Then gづフ
==

deines a Ktthler metric on Ω ,with the associtted volume element dμ (z)=detlgJ]α Z

(αZ being the Lebesgue measure)O For anyん >0,we then hⅣ e,in pttticul肛 ,

the weighted Bergman spaces Lid(Ω,C~Φ/んの )=:Lid,ん ,and the corresponding

reproduchg hrnds Lし ,0,TOeメ 比Z Operators 7手り,attd Berezm transbrms Bんノ.

It turns out that the fbllo¬wing theorem holds.

T h e o r e m。 ([ E司,l B M S I ) A s s u m e  t h a t  Ω i s  s mοοthケ bO u n d e d  t t d  s t t C t F y p s e u dο―

co n v e x 9  a n d  c ~Φお a d e f l l i n g  F u l l c t i o l l  f o r  Ω.T h e n器 ん＼ 0,

( 1 )

( 2 )

( 3 )

κん(・,″)%CΦ
(π)/んん

―π ″
∞
Σ

却

b J・(・) ;

Bん∫% のゴ∫;  ald

4°■°%Σ″喧し,の (m叩働t"・Orm),
ゴ=0

ん

∞
Σ

却

for some」蹴lctions場∈σ∞
(Ω),SOme dittrentiJ operatorsのヵwtth Oo=J ttd

01=g′
Za∂

ゴ,the Ltt」ace―Bdtrami operatδr wlth respect to the metlc gげ;n'nd
some bidi顧針entiJ opαtttors(乃,where a。(∫,g)=∫ g λnd σl(∫,g)一θl(g,∫)=

募{∫,g}(山C PοiSSOll bracket of∫田dg)0

The proof ofthe theorem makes use of the domain

O:={(",t)∈Ω×C:lι12<c―
Φ(2)}

which by the hypotheses is smoothly bounded and strictly pseudoconvex,and ad―

mit s  r ( " , t ) : = l t 1 2 _ c―Φ(π)as  a  d e i n i n g  h m c t i o n . I t s  b o u n d a r y  χ=∂ Ω is  a

compact mmifold,and α =Im∂ r is a contact form on χ̀ (ioe・α∧(αα)π
~l iS a non―

聡nishing volume element).Let〃 2(χ
)be the Hardy subspЖ e of all functions in

五2(χ
)thtt extend holomorphicJly to Ω .According to a formula of Forelli,Rudin

and Ligocka,the reproducing kernel κχ of 12に)_the SZegё kernel一sttisies

κχ((・,1),(ν,S))= Σ](汚)んK1/(ん+π+1)(■,ν)0
た=0

On the other hand, by results of Fefferman, Boutet de Monvel and Sjiistrand,

κχ ldiagOnd tt rπ+1+b bgЪ α,b∈σ∞6).

・
一卿
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Employing the usual Cauchy estimttes for the functionん(t百):=κχ((・,t),(",S))
of one complex variable on the disc lt百1<C~Φ (2),the expansion(1)fO110WS(Where

ん=1/(ん+η+1),た→∞)・In faCt,this even gives a similtt expttsion for κん(・,ν)
fOr(π,ν)∈ Ω X Ω C10se to the diagond,and(2)then f0110ws by an application

of the stationtty phase method.Finally9(3)can be proved using the Boutet de

Monvel―Guillemin theory of generalized Toeplitz operttors(With pseudodittrential

symbols).    ‐

A completely analogOus result also holds for an arbitrary Ktthler lnanifbld(l such

thtt the second cohomology class lω]Ofthe Ktthler form ω is integral:namelェthere

exists then an HerΠlitian line bundle£over(2 with cottpatible connection V such

thtt curv▽=ω .Forた =1,2,… 。,cOnSider,inStead ofthe spaces Ll。1(Ω,C~ん
Φ αμ),

the subspaces of all h。lomorphic squtte―integrable sections of theた―th power∠;*③た

ofthe dual bundle∠)*.Taking the unit disc bundle Ω⊂∠;*inだ:*in the place ofthe

domain 10 1卜om the preceding paragraph,a totally parallel argument again shows

that(1)狙 d(2)hold,and the Guillemin― Boutet de Monvel theory of generalized

Toeplitz operttors again yields also(3)(cf.[BMSl,[Zell)・

The last theoreⅡl has an elegant application to quantizatio12 011』(ah」er maniblds.

RecJl that the traditional problem of quantization consists in looking for a map

∫いの∫士Om σ∞(Ω)int0 0perttors on some l■xed)Hilbert spЖe which is line田,
COttugttiOn―preseⅣing,o.=∬ ,and as the Pl狙ck consttttん＼0,

(4) [の,,0」π昇9{∫,g}・

(The Spectrum of Or iS then interpreted as the possible outcomes of measuring the
observable r in an experiment;and(4)amountS tO a correct semiclttsicaHimit。)
Our last theorem implies th就(4)holdS br O∫=弓°,the Toёplitz operttors
on the Berttm spЖ es Lid,ん(Or on the spaces of holomorphic L2_seCtions of the

bundles£ *③1/ん
).ThiS is the so―called Ber"in―Toepltz quどmtization。

There is also another approЖh to quantization,discarding the operators(Э∫but

rtther looking for a nonCommutat市e associ乱市e product*on θ∞(Ω),depending
onん,such thtt asんゝ 0,

f ,r g -> f g, {∫,g}・

Such products are called a stttr―products,and〔re the subject of deformation quan―

tttation.Thё relationship to Bergman spaces is the following:in view of the ittec―

tivity of the map T卜)`「from operators to their]Berezin symbols,we can deine

for two bounded operators T,1/7。n Ll。1,んa“product"of their symbols by

f i* t  r : fu.

This gives a noncommutative associative product on

{T:r a bOunded operttor on Ll。1,ん}⊂σω(Ω)・

づ
一蹄

↓
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It can be shown from pttt(2)of the last theorem(1。 eO from the asymptotics of Bん )

thtt ifんis m灘e to ttry9 these prOducts can be glued into a st鉦―product on σ
∞
(Ω).

This is the so―called iBerezin quatttiレatioll.

From the point of宙 ew of these applicttions,theweighted Bergmanspaces Lid,ん

(Or their analogues Lld(£
*Θた

)fOr manifolds)hⅣ e an obvious disadvtttage in th乱

their very deinition requires a holomorphic structure(henCe,in particular,they can

make sense only on Ktthler manifolds)。On the other hand,the other ingredients―

the operator symbols,the Toeplitz operators and the]Berezin transform一
―make

sensenot only for Lid,but fOr any subspace of L2 with a reproducing kemel.Hence

it seems very natural to investigate whether any such spaces other than weighted

Bergman spaces can be used for quantization.

For instttcQ Onesuch cttdidtte might be the harmonic BcЩ man spaces Llarm

of all haHnonic functions in.L2。 As in the holomorphic case,these possess a re―

pr o d u c i n g  k e r n e l , t h e  h m o n i c  B e r g m t t  k e r n e I∬(3 ,ν); i n  c o n t r a s t  t o  t h e  u s u a l

Bergmtt kernel,∬(■,ν)iS reJ―輸lued ttd symmetric,I(■,ν)=∬ (ν,π)∈ R.

Similarltt one has plrih″monic Bergmtt spaces L:h(狙d pluriharmonic Berg―

man kemels).

Still another candidtte tte Sobdey spaces of holomorphic Functiolls(SObOlev―

Bergman spaces),iOeo the subspaces Ⅳkl of all holomorphic functions in the(pOSSi―
bly weighted)SobOlev spttes Ⅵ FS,s∈ R.In fact,one cttL ShOW thtt in the situttion

from the last theorem(i・ee when c~Φ is a deaning hnction),the weighted Bergman

spaces Ll。 1,ん,fOrん
=1/m,COincide(as setS)With Ⅳ

迅 1(Ω )Where s=里
土

歩
里

≦ 00

1t is also possible to combine these two approaches and look at Sobolev spaces

Of(pluri)harmonic functionse

ln this talk,we discuss in more detail the situation for the httmonic and pluri―

harmonic Bergman spttes。

Unfortunttely,it turns out th乱――缶om the point of view of the qu〔mtizttion

applications at least一―bad things happen.First of all,recall that fbr the Berezin―

Toeplitz quantization we needed thtt the Toeplitz operttors sttisfy

l叫°,可→lπ鼻Ⅲ2} 器ん＼00

However,for Toeplitz operttors on Llarm,thiS fails even on Ω =D,the unit disc

in C,with the hyperbolic met五c(given by Ktthler potential Φ(z)=10g l置才 )

and∫ (Z)=Z,g(Z)=7e second,recdl that the Berezin qu〔 mtization(the st田―

products)waS based on the fact thtt the correspondence T tt T between operttors
and their symbols was one―to―oneo However,this fails on any harmonic]Bergman

sp“α if∫,g tte any two linettly independent elements in Liarm,then the operator
T=(・ ,∫)g―(。,フ)∫iS easily seen to sttisfy(T島,夏π)=∫ (・)g(")=g(・)∫(・)=0∀ ";

hence T≡ 0,while app:rently T≠ 0。ThuS,there is no hope to perform the

quttLtiZ乱lon.(See lE21 for the details。)
In view of these failures,it would be only natural tb expect that乏■so the other

assertions of our theorem(e.g・the aSymptotics of the Berezin transform,or the
itteCtiVity of the mapp∫吟 B∫)breょdown.The following results therefore came

as some surprise for the authOr。
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Recall that a domain Ω⊂Cn is called complete Reinhardt if"∈ Ω Endl坊 |≦

|"ゴI Ⅵlimply ν∈Ω.In particular,such domains are invariant under the rotttions

(5)    z吟 (zl Caθ
l;z2Cttθ2,.…

,zπCjθ
・
),  ∀θl,.…,θπ∈R。

Theorem l. Let Ω ⊂Cn be complete ReL山 どdt ttd』et ν be ally fnite measure

on Ω mフ田 田t undσ the rotations(5).動en Oll L:h(Ω,αν),

η=0→ η =0 (ゴ・e・B∫=0=⇒ ∫=0).

Thus,although the Berezin symbol map T→ T is not ittectiVe On dl operttors,
it tt ittect市e On Toeplitz operttors.

Theoren1 2。 ConJder the fo」owhg s汚uations,

Liarm(D,午睾(1-IZ12)1/ん),
二̀h(Cπ,ん

~πc~IZ12/ん)

(1・eO the hamonic Bergmtt spaces oll the ttc Ⅵだth respect to the usuJ Ⅳ熱 惚 and

the pFu二置正狙Inonic Fock spaces oll Cπ),and ttο the p』面 hamollic anJogues ofthe

staldard we」ighted Bergm2狙 spaces on bounded symmd洒 c domans h Cη .Thell

the assodated Berttin transforms possess the asymptotic expttJoll(2);ゴ .eO there

exist dittrelltiJ operatorsの ゴsuch that∀ ∫∈σ∞、∩L∞ ,

Bん∫(")= 器ん＼00

In fact,these are the stte cJ aS h the holomorphic case.

Theorem 3。  TheどI]s″tioll οf the last theorem ttο■olds for

五lam(Rπ ,ん
~π/2c一|"12/ん

)

(the httmollic Fock space on R・),爾th OJ=(△/4)ゴ.

The proofs of these theorems go by expliCit calculations of the reproducing ker―
nels in question(WhiCh are possible owing to the rot乱 lonal symmetry of the do―

mains and measures)狙d the method ofstttiontty pttase;See lE31e(For Theorem 3,
one also needs the properties of certain spheric」harmonics IABRl,田 ld an interest―

ing special function‐― one ofthe hypergeOmetric functions of Horn― plけs a role.)

In a wary,these theorems r」 se more questions than they answer.First of alli

it is not clear whether the results are anomalies whose validity stems from the

abundant syΠ IInetries of the donl〔遺ns,or whether they hold in more general set―

tings. For instance,does irheorem l hold for the Toephtz operators on the pluri―

harmonic iBergman space on a general smoothly bounded strictly pseudoconvex
domain in Cπ ? C)r does Theorem 2 hold for the plurihttmonic analogues of the

spЖes Lid(Ω,C~Φ/んdμ)■Om the traditional BereZin ttd Berezin―Toeplitz quan‐

tizations? Fbr Theorem 3,it even mattes sense to study the problem not only for

π∫のん
∞
Σ

ロ
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pseudoconvex domains in Cπ ,which tte the natural arena for holomorphic func―

tions,but for arny open set in Rπ .(Currently,it is even unknown whether an

analogu9 of Theorem 3 holds for the unit ba1l of Rπ .)

We r e m t t k  t h t t  i n  t h e  h o l o m o r p h i c  c a s e , t h e  a s y m p t o t i c s  o f  t h e  w e i g h t e d  B e r g―

man kernels, of the Berezin transform and of the Toeplitz operators were de―

rived froΠl the boundary behaviour of the Szegё  kernel of the “in■ated" domain

O={(・ ,t)∈Ω×C:lt12<c― Φ
},using the formula of Forelli―Rudin―Ligocka ttd

the Feferman―Boutet de Monvel―助ёStrand theorem.It should be noted thtt the
Forelli―Rudin―Ligocka fbrmula h01ds also in the pluriharmonic case:if we denote by

髯h(χ),χ=∂0,the subspace in五2(χ
)。f all functions that have a plurihttmonic

extensbn hsde Ω,then the reprodudng hrnd oftth(χ)おJVen by

κオ((・,t),(ν,S))= (Sτ)‖κ義け卜π+⇒(″,ν),

where zレ]:=′が'。rフ~J according asゴ:≧00rくく0,ahd κ二λπ(″,ν)iS the reproducing
kernel of L:h(Ω,C~πΦ中)O Thus h principle we can algain get the ttymptotics of
Kサ∴,狙d Of the plurihttmonic Berezin transform,缶om the boundtty singulttity
ofζオ.UnbrtunatelL whtt is missing is the plurihttmonic狙」ogue ofthe Fefeト
man-lBoutet de Monvel― sjёstrand theorem, 1.e. the description of the boundary

singularity of the plurihttmonic Szegё or Bergman kernels.

Similarly it seems unknown whtt is the boundary singularity of the httmonic

Bergm狙 (or SZegё)keinel of a domain in Rπ.(There e対 st optimd estimttes for

the boundary growth,though;see lKK]。 )HoWever,in this case there is no analogue
of the Forelli―Rudin―Ligocha fbrmula.
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The Logarithmic Singularities of
the Bergman Kernels for model domains

HANJIN LEE

1. Statement of theorem
A domain Q e M if and only if

O:  { (zo,  z)  eC x C' :  $( ro)  > P(" ) }

F : real analybic strictly plurisubharmonic function on C' such that

1.  F(0)  :  VF(0)  :0

2. F(eiqr21,".  ,eiq^zn):  F(2r," '  , "n) for any g; e lR.

3. There are small positive numbers c and e such that F(r) > clzl' for sufficiently
large lzl ': (Itr l"il')'/'.

Theorem L. Suppose n :2. Let Q be a d,omain that belongs to the class M. Then
Q is biholomorphic to the ball if, and onlg if, its Bergman kemel functi,on d,oes not
haue logari,tlwnic singulari,ty at the bound,ary.

2. Background of theorem

Theorem 2 (Fefferman). Let G C Cn, bounded strictly pseudounuex d,omain, 0G
is srnooth and G - {r > 0} for smooth ilefining function r then,

n":#*gbgr

where g,1b e C*(G)

Expansions of. g,$ ;

g - I grrrk mod o(r"*'), 4) '^', t ,lrn k

,b:0 ,k:0

where 6n, rbx e C9(G)
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Fefferman's program
Choose r : rF which satisfies certain trsnsformation rule under biholomorphism.

Then pt, ,lrx ue cR invaria.nts, that is, polynomials in Moser's normal form co-

efficients satisfying certain transformation rule with weight k and n * t * k. By

Chern-Moser theory, Moser's normal form coefficients are expressed in terms of CR

curvature tensors. It implies that certain conditions on singularities g1r,ty'1' decide

the geometry of domains.

Theorem 3 (Burns / Gralam). LetG cC2. Thebound,arv of G i,slocally CR

equ'i,ualent to the sphere if ,b : O(r').

Our theorem is an attempt to generalize Burns-Graham's theorem for higher

dimension. For 2 dimensional case, with additional assumption of complete Rein-

hardtness it is known that the va^nishing of log term implies that G is equivalent to

the batl (Boichu a^nd Coeur6, Naftazawa). For general dimension, if the domains axe

ellipsoids close to the ball,then vanishing of log term implies that the domain is the

ball (Hirachi).

3. Proofoftheorem
We use basically ideas and methods in Kamimoto's work (2004).

Part 1. Formula of log singularities

Haslingerts formula

鶏(C2)={g∈0(Cn)

K(・;τ):Bergman kernel for」時 (Cπ)

BΩ (Zo,Z)= c-2S(zO)τK(z;τ)τατ

κは→=滋轟
where lz12α=lzl12αl...1為12α

れ
,狙 d

"o(r )2
lz12α c-2τ

F(z)αy(z)

:二
π lg12c-2τ

Fαy<∞ }

∞ｒ
九

１
一幼

=Jl
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Singularity formula

Щれ 項  ≒島昼 刺 Fa
where

物レ)=Σ C偽回+π+1-ルFα
α∈Z阜

ちレ)=Σ C%回+π+2+p ld2α
α∈Z阜

F( z ) =Σ
E I竹1 2 +Σ P I ( I Z l 1 2 ,…。,I Zπ1 2 )

J=1      :≧ 2

where

島ωL…"ν→=Σり)νβ
lβl=ι  ‐

Set S+={ν∈R隼:νl+…・十νπ=1}・αμ iS surface measure on S.and dμα=νααμ

Cα,lαl+p+π+2 == ブ:+Plαl・p+η+3 αμα

+ 二
+Plα

l・p+π+2P2dμ α十
二 IPlα

l・p+π+2αμα
 J:十

P2αμα

+ 二
十
Plαl単p+η+l P3 dμα+二

+Plα
l■p+π+lαμα J[+P3α

μα

+ 二

+Plal+p+π
+lJザ dμα+/1Plα l十p+π+l P2 αμα

J{十
P2dμ α

十 /1Plαl・pttπ+ldμαJ4+P2αμα J:+P2αμα
+  … ・

lαl+p+π+2

+ Σ Σ 兎+弓
l αμα…・1オαμα

た=1    11+・ +̈:た ゛
=lαl+P+・+2

where each terHL haS proper constants,but we didn't consider them heree
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Part 2

We consider the case n=2.(Most Of key lemmas still hold for general dimension,

but some ttguments depend on the partition of η )

Theorem 4.Ψ =Σ
二 o≒ 井 ち レ)(SZoソ =0((SZo胸 づ叩 κCS島 =0ル r dJ

た> 2。

Fron■the observation

C % 0 =  Σ 畔
+π+°

BrL… "島 )十 poサno面 』 (弔
+π+幼

,… 9F))

lβl=ι+π+3

we can conslder

Cα,( lαl+ p = J ) = Cα,lαl■p+π+2 =ι+π+2 = 0 ,   lα l≦: ι =0 , 1 ,…・

as system of polynomial equations                          さ

可
→(島,…,P2)=0, ブ=1,一,2た た=2,3。…

W e  m a r y  a s s u m e  P 2≠0  0 r  P 3≠O  b e C a u s e  i f  P 2 = P 3 = 0 , W e  c a n  s h o w  t h a t島= 0

f o r  a l lた。

(A)We asSume P2≠ 00

Lemma l.鶴 θυんθlc sνstcm rれノact,fπづtC S鶴わSystemノ0/Cgttαιづθηsづs“αacca t。

可幼(P2)=0,   ブ=1,2,3

4'(P3,P2)=0,  J■1,2,3,4
απαれ Par tづct t Jαr P 2 = P 3 = 0 0

Key idea fbr lenllna is to■nd smallest tt sudh that

η2+… ・+ηL≧ (2 + 1 ) + ( 3 + 1 ) +。 …+( L + 1 )。

Fo rた>5

2ん={3/∫(ilT)16 1::=送_
Since we have redundant terms whenた≧17,we replace nたwith免た=(わ +1)+2

forた≧17,then五 =26 is smallest number such that

η2+… °+η16+元17+…・+元L≧ (2+1)+(3+1)+… ・+(L+1)・
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Then

1。oet

loo.t

f O r  p =た+2,…。,πん

ん

五I S =Σ B (ル 十 た一
ブ, J×巧

°
|←)

グ=0

/鳥二ν:+ルαμ tt p二1/島-lν:→
p dμ+Lat

f o r  p =た+2 ,… .,πん

Equations for P2

(た,鶴)represents∫島弓屁αμ,and→means reductione
( 2 6 , 2 1 )→ ( 2 5 , 2 2 )→ ( 2 4 , 2 3 )→ ( 2 3 , 2 4 )→ 。…

( 2 5 , 2 1 )→ ( 2 4 , 2 2 )→ ( 2 3 , 2 3 )→ 。…

( 2 5 , 2 0 )→ ( 2 4 , 2 1 )→ ( 2 3 , 2 2 )→ 。…

(2 4 , 2 0 )→ ( 2 3 , 2 1 )→ .…

＋
　
　
　
＋

切
　
　
勧

協
　
　
　
η
・

２均
　
　
　
”

＞
一一　
　
中

ザ

　

タ

＞
　
　
島

＜
＊

　

ノ

ノ
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(25,20),(25,21),(26,21)formS a tail

Od(P2)=0,α=44,45,46⇒P2=00

(B)CaSe P2=0,P3≠0
F(z)=Σた>3島(IZl12,_,lzπ12)and

Z+. Apply previous arguments to

in the whole system. Full reduction +

€a,(lol+r) (Pz - o) : 0 f o r a l l o  e  Z T , p  €

FC(z)=CP2(IZl12,… ,lzπ12)+F(z)

Where P21S十 三 1

Cα,(降|+勁(FC)= chl+P+4+。
…+c(Plal卸 +4+…

°+Ch:た ≧ 3))十 terms without P2

= C(Plαl十p+4+…
°+(FL:た≧3)+0(c))

ｒ

ｉ

ｌ

ｌ

く

ｌ

ｌ

ｌ

ｋ

知〒%澗F舅瞥
|ぽ坂霧オ認 回=Ql

能,lal=Cα,(向+p=幼
=(P6)+(P4P3)+0(C), lα l=0,1,2

範,降|=C%(降 |+p=0=(P7)+(P5P3)+(罐 )+ο (C); lαl=0,1,2,3

( P 3 2 ) =γl +ο ( C )

lP5維`あ1電78ご
ｒ

ｉ

ｌ

く

ｌ

ｌ

ｋ

⇒

= 1 , 2

ゴ=1,2,3

ｒ
ｉ
ｌ
く
ｌ
ｌ
ｋ

⇒

η3~ ( 3 + 1 ) = - 3 ,

η4 ~ ( 4 + 1 ) = - 2 ,

2 5 ~ ( 5 + 1 ) = - 1 ,

=+ Finite system with lol + p S 42
=+ (Reduction) Overdetermined system for P3

+ P S - : Q

Fudan University, Shanghai.
hxl@postech.ac.kr
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HEARING THE TYPE OF A DOMAIN IN C2

WITH THE aNEUMANN LAPLACIAN

SIQI FU

1. INrRooucrroN

Motivated by Mark Kac's famous question [Kac66] "Can one hear the shape of a drum?",
we study the interplays between the geometry of a bounded domain in Cn and the spectrum
of the D-Neumann Laplacian. Since the work of Kohn [Ko63l, it has been discovered that
regularity of the D-Neumann Laplacian is intimately connected to the boundary geometry.
(See, for o<ample, the surveys [BSt99, Ch99, DK99, FS01].) It is then natural to expect that
one can "hear" more about the geometry of a bounded domain in Cn with the D-Neumann
Laplacia^n than with the usual Dirichlet or Neumann Laplacia.n.

For bounded domains in Cn, it follows from Hiirmander's .L2-estimates of the E-operator

[H65] that pseudoconvexity implies positivity of the spectrum of the D-Neumann Laplacian
on all (0, q)-forms, L 1 q < n - 1. The converse is also true (under the assumption that the
interior of the closure of the domain is the domain itself). This is a consequence of the sheaf
cohomolory theory dated back to Oka and H. Cartan (see [Se53, L66, O88]). (See [Fu05] for
a discussion and proofs of this and the analogous result for the Kohn Laplacian without the
shea,f cohomology theory.) Therefore, in Kac's language, we can "hea,r" pseudoconvexity
via the D-Neumann Laplacian.

Regularity and spectral theories of the D-Neuma'''' Laplacia^n closely intertwine. For
example, on the one hand, by a classical theorem of Hilbert in general operator theory
compactness of the D-Neumann operator is equivalbnt to emptiness of the essential spec-
trum of the O-Neumann Laplacian. On the other hand, by a result of Kohn and Niren-
berg [KN65], compactness of the ENeumann operator implies ocact global regularity of the
D-Neumann Laplacian on -L2-Sobolev spaces. It was shown in [FS98] that for a bounded
convex domain in C', the D-Neumann operator on (0, q)-forms is compact if and only if the
boundary contains no g-dimensional complo< va,rieties. (It is noteworthy that the proof of
the necessity of this result is based on the Ohsawa-Takegoshi extension theorem [OT84.)
However, such characterization does not hold even for complete pseudoconve;< Ha,rtogs do-
mains in C2 ([Ma97], see also [FS01]). It was observed in [FS02] that compactness of the
D-Neumann operator on complete Hartogs domains in C2 is intimately related to diamag-
netism and paramagnetism for certain Schrodinger operators with infinitely degenerating
magnetic fields. The desired par:arnagnetic property (in semiclassical limits) was finally es-
tablished in [CF05]. As a consequence, for smooth bounded pseudoconvex Hartogs domains
in C2, compactness of the 

-0-Neumann 
operator on (0,l)-forms implies that the boundary

contains no pluripotentials (more precisely it satisfies property (P) in the sense of Catlin

[Ca8 b] or equivalently is B-regular in the sense of Sibony [Si84). This, together with an
earlier result of Catlin [Ca8 b] (compare [St94), shows that one can determine whether or

This is the lecture notes at the 2005 Haya.rna conference in Japan. It is based on the paper [F\r05a].
Research supported in part by a grant from the NSF and an AMS Centennial Research Fellowship.

I
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not the boundary of a lla,rtogs domain in C2 contains pluripotentials via the spectrum of

the D-Neumann Laplacian.
The main purpose of this note is to sketch the proof of the following theorem. We refer

the reader to [F\r05a] for the detail.
Theorem l.L. Let dt be a smooth bound,ed d,omain i,n c2. Let N(\) be the number

e,igenualues of the 1-Neurnann Laplaci,an that are less thon or equal to \. Then bQ
pseudoconaex of finite type if and onlg i,I N(x) has at most polynomial growth.

Recall that the type of a smooth boundary bΩ ⊂C2(in the Sense of Kohn iKo721)is_the

maximal order of contact of a(regular)complex variety with bΩ 。(See lKo79,D82,Ca84a,

D931 for mOre informttion on this and other notions of inite type.)

We divide the proof of Theorenl l.l into two partso Fbr the sumciency,we establish the

following resulte

Theorem l.2。 五θι Ω⊂C2bc smθοιんbοttndcd Pscadοcοπυcπ dοπαれ o/メπづtC t″C2鶴 .

7Lcηメ√(入)κ λ
π+10

The Weyltype asymptotic formula for″V(λ)fOr strictly pseudoconvex domains in Cn was
established in IMeell by Meti宙er via an analysis of the spectral kernel of the∂―Neumann

Laplacian.The heat kernel ofthe ιttNeumann Laplacian on strictly pseudoconvex domains,
as well as that of the Kohn Laplacian on the boundary9 were studied extensively in a
series of papers by Stanton,Beals―Greiner―Stanton,Stanton―Tartakoft BealS―Stanton,and

others(see IS84,BGS84,ST84,BeS87,BeS881)。 Met市 iers formula was recovered as a

cOnsequence. Recently,the heat kernel of the Kohn Laplacian on■ ゴte type boundaries

in c2 waS Studied by Nagel and Stein INS011,from which one could dso deduce a result

silnilar to irheorenl l。2 1br the Kohn Laplacian on the boundtty。

We fo1low Metivier's approach in pro宙 ng Theorem l。 2 by studying the spectral kernel。

We tte also motittted by the work on the Bergman kemel by Cttlin iCa8q,Nalgel et

」 [NRSW8q and McNeJ IMc8釧 as well as reltted work of Christ iCh8司 and Fererman

and Kohn iFeK88].SinCe the spectral kernel does not transform well under biholomor―

phic mappings,insteal of(loCally)rescaling the domain to unit scale and studying the

∂―Neumann Laplacian on the rescaled domain as in the lBerl要 nan kernel case,we rescale

both the domain ttnd the a―Neumttn La・plxian as in lMe811。In dOing so,we tte led to

study anisotropic bidiscs that have larger rad五 in the complex normal direction..Roughly

speaking,at a bOundary point oftype 2η 2,the quotient of the rad五 in the complex tangen―

tial and nornlal directions ibr the bidiscs used here is τ :τm while in the]Bergman kernel

case it is τ:τ2π (τ>O iS Sma11)。TO establish desirable propertiёs,such as doubling and

enguhg properties,for these〔 肛usotropic bidiscs,we employ both pseudoconvexity and the

inite type condition.Note that only the inite type condition was used in estabhshing these

properties for the sm〔 組ler bidiscs used in the lBergman kernel caseo Here in our analysis

of these bidiscs,we make essential use of an obser、蹴 ion by Fornass ttd Sibony lFoS8劇。

Also  c r u c i a l  t o  o u r  a n d y s i s  i s  a  u n i f o r m  K o h n  t y p e  G t t d i n gヽine q u a l i t y  o n  t h e  r e s c a l e d

∂LNeumann Laplaciane

By carefully■乱te五ng the bolmdary,we then reduce the problem to estimtting eigen―

湘 ues of auxlliarry operators on the half―space,which ultimately boils down to estilnating

eigenttues of ceFt五 n Schrёdinger operators with initely degenerating magnetic ields.

Fbr the necessity9 we prove the fbllowing slightly more general result.

Theorem l.3.Lct Ω  bθ α sttοοιんbοttηdcα pscttαοcοπυcC αOttαづ西 π Cn.LctWЪ (λ)bC tんC

πttπber ar eなeπυαJttes o/流θ∂―Ⅳθttπαππ LapJαcづαπ οπ(0,9)―/Oms tλat att lcss ιんαπ οr

げ

お
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equa,l to ). #&(,\) has at most polynomial growth for some e, L I q < n - L, then be is
of finite Dn-1-type.

Recall that the D"r-r-type of bQ is the ma>rimal order of contact of (n - l)-dimensional
(regular) complex varieties with bo. It was observed by D'Angelo [Dsl that the Dn-r
type is identical to the second entry in Catlin's multitype. An ingredient in the proof
of Theorem 1.3 is a wavelet construction of Lemari6 and Meyer [LM86]. A result sim-
ilar to Theorem 1,3 for the Kohn Laplacian on the boundaries in C2 is also known to
M. Christ [Ch].

2. Pnoor oF NEcEssrry

In this section, we sketch the proof of Theorem 1.3.

I. Let Q@,u) - (6u,6u) + (Tu, TQ be the quadratic form associated with the E-
Neumann Laplacian lo on (0, g) forms. By the min-ma:< principle, ^i 2 j, implies that
there exist at most 5l many orthogonal zrc € Dom(Q) such that

0(鶴た,鶴た)κブ
ε
llした|12。

Therebre,it sumces to prove that if bΩ is Ofinanite Dπ_1-type,then there e対st≫j many
such鶴 ん。

II.It is not possible to construct many orthogonal鶴 ん
's without further symmetry as―

suttptions on Ω .To overcome this dimculty,we use the following varittion of the min― max

principle.

Lemma 2.1(Min― Max)。 Sη pθSC ttαιした∈ Dom(o),1≦ た ≦ ゴ,satづJCS tん C/0::ουれg
Rづcsz ι″ c cοηごづιづοη

‖ΣCん鶴ん‖≧(Σにたげ/2。      (aCSa
た=1        た =1

Tんcη

為≧Jε⇒長優.C(鶴た'鶴ん)≧ゴ
ε

一 ―′

IIIo To construct the鶴 たin the above lemma,we use the fb1lowing wavelet lemlna due to

Len■arle and Meyere

Lemma 2.2(R、 、let)。LCt b(t)bC a smЮοtんcat―げ ルπCtづοπ SΨ PοttCれ ηルゴ/2,ゴ ノ′≡ 1

οηた ち″猜αηα b2(t)+b2(t_1)≡l οη μ〃′ゴノ・助Cη{b(t)e2πたtv何|た∈z}αtt πttιttαJJレ
θ琵ん9クθttαJ.

IV.We will also need the fbllolwing well― known normalized lemlna:

Lemma2。 3(Normalization)。 」JιんC Dπ_1‐ιFc o/bΩ づS≧ 2π αι 4,ιんCη ψ CrJοcaJcんαπgc

げCοο配づηαιes,bΩづs dttηCごπCar 4=O bν

T (ζ) = R e為 十 ノ(ノ) + ( I m為 )θ( Z′) + 0 ( I I m為 1 2 ) ,

υんθ“|ノ(Z′)|≦IZ′12π,lg(Z′)l κ lZ′lm.
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V.It follows fronl the KohnttMorrey formula and the usual Πlin-lnax principle that λ9,J≦

λ9+1,.ルThus,it sumces to work on(0,η -1)―fOrms.

Ⅵo To construct the(0,電-1)―fOrms thtt sttistt the cOndition in Lemma 2.1,we irst

extend the Lemari6-Meyer wⅣ e10t b(t)frOm R tO C:Let

B(υ)=(b(t)一づb′(t)S―b″(t)S2/2)χ(s/(1+lt12))

where υ=s+づ t and χ is a cut―of ttmction≡l on卜1,11・Then 3(0,t)=b(t)and

lB・l κ lS12。
Now let

/J・,た(Z)=た16(m+π
-1)Jα

(16Jz′)3(16可為)c~2π
た216m為

for anyブ ∈ N and 2電
'~1≦

た ≦ 2可 ,where a(z′ )iS a・
ny Smooth cut― of負 圧 ction in z′ .Let

ωl,000,ωη be an orthonormal basis for(1,0)―fOrms near the origin with ωπ=∂r/1∂rlo Let

_      町 ,た=力,た面1∧・◆・7耽_1。

Then itis not dimcJt to shOW th乱 鶴J,たSttiSnes the uniform Riesz condition in Lemma 2.1:

‖ΣCたし∴た‖2≧Σ降たF
た              た

hthermore,it ibllows froΠ l direct computations that

O(崎,た,鶴ゴ,た)｀16町。

Thus,by Lemma 2。1,∃た0∈pⅢ
…1,2可

l such that

O(町,た。,町,たo)≧(2町)ε.

Therefore,2π≦16/εo We thus condude the proof of Theorem l。3.

3.PR00F OF SUFFICIENCY

We sketch the proof of TheoreΠ l l。2 in this section.

I.Let～ be the eigenvalues of the aNeu興 田ln Lalplacian□ on(0,1)― fOrms.Let 9ゴ be

the normalized eigenforms(I;sociated with λ J. lrhroughOut this section,we assume that[コ
has purely discrete spectrum.In this case,the spectral resolution E(λ )Of□ iS giVen by

EO)∫=Σ げ,9ルナ
′:λJ≦λ

Let c(λ ;Z,Z′)be the kernel of E(λ )(in the sense of Schwtttz)e Then

照局=ル《λt tαK本
H . W e  n o w  r e c a l l  t h e  w e l卜k n o w n  s e t u p  b r  i n i t e  t y p e  d o m五n s i n  C 2。L e t  Ω= { Z∈ C 2 1

r(Z)<0}and let z′∈bΩ.Let L=rz2Ql~rz122°Fbrブった≧1,let

Linodr('')- ry W ffir(L,T)(r').

For any・2<:く 【2%n,le・
           ′

~

じ          l times I

し-l time

ムレリ=(Σ rブん∂∂rレリF)1/2。
J+た≦ι
ゴ,た>0
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For any τ >0,let
2%n

δレ′,→=Σ均げンJ・
J=2

1t is evident that bΩ is of inite type 2鶴→ δ(z′,7)≧τ2m uniformly for all z′∈bΩ and
δ(4,7)κ τ2m for Some z6∈bΩ・

IHo We now recJlthe special coordi五乱esintroduced by Fornaess amd Sibony:∃ξ=Φz′(Z)
such thtt Φz′(鴫′∩Ω)={Re c+ん(ξl,Im O)<0},Whereん((1,Im c)has the form of

Σ =バ(1)+(Im C)】Eの た((1)+0(|(112m+1+IIm o‖Glπ
+1+IIm O121GI).

た=2                  た =2

1t is easy to see that

Xノ,→鐸Σ‖鳥‖∞τた,
た

W蹴

‖fIlil)二WIIttkeyfactiomiFbS89]:If Ω  iS pSeudoconvex of inite type 2η2,

then

士‖Q‖∞IG「κに11(Ё‖.‖∞lξlド)1/2。
J=2                ι =2

1Ve We use the following construCtiOn of anisotropic``bidiscs":

島(Z′)=Φラ
1(|(11<τ

,ICI<(δ(Z′,7))1/2).

Notice that the bidiscs here have rad五 δ1/2 in the complex normal direction whereas those

in the study of the]Bergman kernel have δ . Fbr this construction of anisotropic bidiscs to

be use皿 ,we establish the fo1lowing doubling and engulhg properties.

Lemma 3.1(Doubling/Enguling)。1/Z″∈J碑(Z′)∩bΩ,tんcη

δ(Z′,7)π δ(Z〃,7);(nd Rτ (Z′)⊂ Rσ τ(Z〃),RT(Z〃 )⊂ Rσ T(Z′).

Ve We d市ide Ω into two regions:the blue and red reJons。On the blue region

{Z∈Ω:d(Z)た(δ(π(Z),1/√))1/2),

it fo1lows ibon■the interior ellipticity of Eコthat

tr C(λ;Z,Z)κλ(δ(π(Z),1/√))1/2 κ λ
π+1.

VI。On the red region

{Z∈Ω:d(″)κ(δ(π(Z),1/√))1/2),
we shall establish

AdL」。ntr caろぅκ λπ+1。
By Lemma 3◆ 1,it sumces to prove:

6⇒   Iァ Om口λろうκにザ化
where γ=1/ν頃・

-104-



6                                SIQI FU

VIIo To prove the above estimate,we will use a rescaling IIlethode We■ rst■atten the

boundary:Let(ηl,η2)=Φz′((1,C):

(ηl,η2)=((1,C十ん((1,Im c)一F(G,c))

where

F((1,o)=ん2((1)(Re c+ん((1,Im C))2/2

+づ(ん1((1)(Re c)+ん2((1)(Re c)(Itt C))。

We use this choice of F to make∂η2/∂C ttniSh to a desirl力le higher order.

VHI.The rescaling is the usual one deined by

(υl,υ2)=Dz′√(ηl,η2)=(η1/τ,η2/δ),

where δ=δ(z′,7).Let Ωz′=Ω∩鴫′.Let Ψz′,7=Dτ°3。Φ aJld Ωz′,7=ΨZ′,7(ΩZ′)=

{Re υ2<01Ψラト(υ)∈鴫′}・Let

gτ:L2(Ωτ)_)L2(Ω);g(鶴)=ldetαΨτl告鶴oΨ・

The rescaling of the∂ ―Neumann Laplacian is done by rescahng the quadratic fbrm via the

following formula.

Q7(し,鶴)=τ
20(gτ鶴,gτ鶴), Supp鶴 ⊂Ωz′,7°

Let□τ be the operator associtted with 070 Roughly speaking,we have□7=τ
2g「1□g70

1t remains to estimate the spectral kernel of[コ τ.

IXo The estilnation of the spectral kernel of[コ τ is based on the folliwng Kohn type

CI洒静ding inequality:

L e m m a  3 . 2 ( K o h n  t y p e  G t t d i n g  i n e q u a l i t y )。∃ε>O  S a cんιんαι

Orし,0馴却すτ2δ
-2‖
島直+"

/ar aJJ u sappοttcaづη{lυll<1,lυ21 δヽ~1/2).

Fron■ the above lemma,we have

OτO,→たOδし,o到鶴曜+δ4‖乱に1+ε
where δ=δ(z′,7).ThuS,as δ―→0,∂鶴/∂う2=00 USing the Bergman projection and a
Payley―Wiener type theoren■ ,we obtain

為(χδパL→κ(1+ゴδ
1/2)一ε/4,

where χδ(υl,υ2)=χ (υl,δ
1/2υ

2)and rらis the inverse of the operator associtted with Oδ。

A commutator argment then yields that

iレリ
tr:τ(Lυ'°≦δ~1/2

where PI(z′)={lυll<1,lυ21<δ
~1/2}e ThiS in turn yields our goal(3.1).
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INⅧ RIANTS FOR HOLOM:ORPHIC/RttIONAL DYNAMICS:

A SURVEY

YTITAKA ISHII

Given a dynamical system f , X --+ X with some (topological, measurable,
differentiable, algebraic) structure, one can introduce an associated invariant.
For certain holomorphic/rational dynamical systems some of these invariants can
be defined, and one may ask how they are related to each other. In this talk I will
suvey several recent results concerning the relationship between these invariarrts
for three classes of holomorphic/rational dynarnical systems.

1. Tno INvRRTRNTS

In this lecture, we will be interested in the following four invariants.

1.1. Topological Entropy. Lef f :X+ X beacontinuousmapof acompact
topological space X. For an open covering U of. X, we denote by card.(I,/) the
minimum number of elements inU to cover X. Given two coverings U a,nd V, Iet
us write tlvV : {U fi.V}ueu,vey and l,ln:l,tv f-t(U) v. . .V |-t'"-r)(U), where
f 

-, (u) : {/-1 (r,r)}uea. Then,

hr"o(f)= slp j{g 1los"."d.(t/,)

exists a,nd is called the topological entropy of /. Topological entropy is shown to
be invariant under topological conjugacy.

Intuitively, the topological entropy represents the growth of the number of or-
bits generated by /. To see this, we grve an alternative definition of the topological
entropy here. Let (X,d,) be a compact metric space, and let f , X + X be a con-
tinuous map. Givene > 0 andn € N, wesaythat two distinct points rly e X
are (n, e)-separated if there exists 0 < k I n- 1 so that d(fk(r),fk(il) > e.
This means that the two strings {l'@)}T:l und {/'(y)}tsJ of length n a,re "dis-
tinguishable" with the resolution of a > 0. Let N(n, e) be the maximum number
of mutually (rz, e)-sepa,rated points in X. Then, a,n alternative definition of the
topological entropy is given by

1
h.o(/) = l'SttflrJp 

: los N(n, e).

Thus, the topological entropy can be seen as the growth rate of the number of
n-strings up to the resolution of e ---r 0.

When X is a complex projective manifold and "f : X --+ X is a rational
map given by its graph ff C X x X, we define fF = {, : (ro,*t,...) e
XN : (ri, re+t) Q fy) with the topology induced from the product topolory in
XN. Then,  theshi f tmap oy:  f f  +  f f ,  o( ro, r l t . . . )  =  ( " t , f i2 , . . . )  becomes
continuous on the compact space ff , thus we can define the topological entropy
of a rational map -f bV hr.o(/) = h+"p(o).

I

-108-



2                        YUTAKA ISHH

l。2.Metric Entropy.Let(X,β ,ν)be a probttility space,∫:X→ X be争

measurable map and ν be a∫―invariant probability measure,ioe.ν(X)=l and
∴ ノ =ν .For a inite ptttition ν ={銑 ,一 ,そ聯 }Of X(thiS metts th乱 硫 ゝ 肛 e

mutually dittoint measurttle sets ttd their union becomes X),we put

N

島0)≡Σ―ズ鴫)bgズ鴫)
づ==1

with the convention Olog O==0。 Keeping the previous deinition of ι仇,

んνO≡Sソれわ仏),
where the supremum is taken over a1l inite partitions of X,e対 sts and is called

the metttc脅 2Casu“ ιんθθ“ιJり θηtropν of∫with respect to ν.

1。3。 Volume Growth Rateo Let X be a compact Rieman五 an manifbld of di―

mensionた ,「 ⊂: X× X be an π 一dilnOnsional submanifold of X× Xo Write

rn≡ {″=("。,πl,・… ,″π_1)∈Xη :(″づ,″づ+1)∈「}・Then,we put

10V(「)≡limSup110gVOl鳥(Fη),

where Volm is the π―dilnensional Hausdorf measure in Xη induced froHl the
Riemttmial metric in Xo When∫iS a rttiond endomorphism of a projective
manifold X g市en by its graph「∫⊂X× X,we deine 10v(∫)≡10V(F∫)and Cdl
it the υθιttπθク"υ流%ιθ Of∫。

1.4。Algebraic Entropyo Let X be a complex projective mttifold of dimension
たwith the stttdard Kttler brm ω(nOrmalized asルωた=1)and let∫:X―→X
be a domintting rttional map.For each l≦J≦た,theヵηαπづCal αり“θo/οtter
J is given by

The dyna,mical degrees are shown to be inva^riant under birational conjugacy.
Now, let / : ClPk * CIFk be a rational map of a complex projective space. We

let deg(/) be the maximum degree of the polynomials which express / in the
homogeneous coordinates. The algebraic entropy of / is then defined a.s

1
h*(f) = jilg : loe des("f").

One can show that h",*(/) - loglr(/).

1.5. Main Questioir. So far we have defined four kinds of invariants: topolog-
ical entropy ho.o(/) (a topological invariant), metric entropy f"(f) (" measure
theoretic invariant), volume grourth rate lov(/) (a geometric invariarrt) a.nd alge-
braic entropy h"rs("f) (an algebraic invariant). Once some of these four invariarrts
are defined for certein class of dyna,rnical systems, it is natural to ask how they
are rel'ated. In the next section, we discuss the relationship in three classes of
holomorphic/rational dyna,micat systems.

πヽ

ｌ

ｌ

ノ

一
ω∧Ａ

「
ノ

ω
π∫√

ん

／

１

１

＼‐ｉｍ中ヽ
≡∫λ
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INVARIANTS FOR HOLOMOR"PItrC/RATIONAL DYNAMICS: A SURVEY 3

2. THprn Rnllrrous

2.1. Topological versus Metric Entropies. We start with a generai fact,
which is a main background of the results presented in this section. Consider
a dynamical system f t X + X under the topological and the measure theoretic
settings. Let M(f) be the set of all /-invariant Borel probability measures. Then,
a well-known classical fact is the so-called

Variational Principle:

h"o(/) : 
,i#?r,h,(f)'

This fact then suggests the following two questions.

Question J. Is the "sup" above attained by some measure? (If so, such a measure
is called a maximal entropy measure.)

Question 2. If such a measure exists, is it unique? (If so, such a measure is called
the unique m,oni,mal entropg measure.)

2.2. Polynomial Diffeomorphisms of C2. One of the first recent results con-
cerning these questions in higher dimensional complex dynamical systems is

Theorem (Bedford-Smillie, Bedfqrd-Lyubich-Smillie). Let f : C2 - C2
be a polynomial diffeomorphism of C2 wi,th algebraic d,egree d > I.

(i) There uists a unique manimal entropg rneo,sure p for f , i.e. pt is the
unique f -inuari,ant probabili,tg rnensure with hp(f): h,o("f) [BS3, BLSI].

(ii) p, describes the li,mit distri,bution of saddle periodic points of f , i,.e.

1 , r
Jga L 6,: P

z€SP2(/)

in the weals topologg, where SP"(/) denotes the set of saddle periodic points
of peri,od n for / [BLS2].

(iii) There esi,sts a positiue closed (L,l)-current p+ which d,escri,bes the limit
di,stribution of preimages of a generic complex one-d,imensional disk M
in C2, i,.e. therc, is a ennstant c: cu ) 0 so that

um | ; - "1 M):  
" t*n-co d,n-

in the wealc topology for a "reasonably choseni M, and lM) d,enotes its
current of integmtion. A simi,lar result holds for p- [BS1, BS2].

In fact, we define p = p+ A p- and the (1, l)-currents p* have been explicitly
constructed from the Green functions:

G生し,の≡鳳嘉bg+謄
πし,の‖

as μ土≡ 券dαcG土 (BedfOrd and Sibony;see Section 1 0fIBSll)・ Key ingredients of

the proof tte pluripotential theory and Pesin theory for non一unifbrnlly hyperbolic

dynanlical systems. Silnilar results ibr holomorphic automorphisms of cottpact

90mplex slrfaces hⅣ e b9en recently obtained by Cttttt ICI.
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2.3. Holomorphic Endomorphisms of CIF&. For holomorphic endomorphisms
of CIP*, the follorring result has been established.

Theorem (Briend-Duvat). Let f : CIP& -* CPk be a holomorphic endomor'
phism of CPk with algebmic degree d > t.

(1) There eri,sts a uni,que mani,mal entropy rneasure p for f , i.e. pt is the
unique f -inaari'ant probabi'Iit1 nxeasure wi'th hr({): h"o(/) [BrDu2].

(ii) p describes the limit distribution of repelling periodi,c points of f , i.e.

1s -
l im  ̂  L  5 , :F
n-* \d')n zeRp.(.f)

i,n the weak topology, where RP"(/) is the set of repelli'ng peri,odic poi,nts
of peri,od n for f [BrDul].

(iii) p describes the timit distribution of preimages of a generic pointw i,nCP' ,
i.e. there exists a proper algebraic subset,E c ClFk so that

]- --
l im  ̂  L  5" :F

n-cF \dF)n zef_n(w)

in the weak topology for alt u.' e CIPft \ E [BrDu2].

The measure p in the setting above has been again explicitly constructed from
the Green function: 

1
G(") = lim * to* llr(r)ll

defined through the lift F' ' Ce+l \ {0} - C'c+i \ {0} of / by the canonical
p ro jec t i on  r :Ck+L  \ {0 }  -  CF*  as  p=dd ' (Gos )n  dd (Gos )n  " 'Add ' (Gos ) ,
where the wedge products are taken k times and s : CIF& ) U --> Ck+1 \ {0}
is a local holomorphic section (Hubba,rd-Papadopol [HP], Forness-Sibony [FS1,
FS2]). Key ingredients of the proof are Bezout theorem and an argument ri lo
Lyubich [L] with area-diameter inequality.

2.4. R^ational Endomorphisms of Projective Manifolds. Assume that X is
a complex projective manifold and consider a dominating rational map "f : X --+

X. In this setting, all of the invariants introduced in the previous section except
for the metric entropy can be considered.

Theorem (Gromov, Dinh-Sibony). Let X be a complea projectiue manifold
of dimensi,on k. If f : X --+ X is a dominating rational map, then

(i) /,n"o(/) < lov(/) [G],
(ii) lov(/) : maxl<rs,c log)r(/) [DS].

In fact, Gromov [G] has proved h.n(/) J lov(/) for holomorphic endomor-
phisms of CIPft, but his proof applies to the setting of the theorem above as well
without modification. Key ingredients of the proofs of the theorem above are
an inequality of Lelong (for Gromov pa^rt) and careful analysis of positive closed
currents (for Dinh-Sibony part).

As an immediate consequence of this theorem, we have

Corollary. For a birational rnap f of CFp, we haue t t"r(f) S h.rr(/).
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INIVARIANTS FOR HOLOMORPHIC/RATIONAL DYNAMICS: A SURVEY 5

Suggested by this result, we propose the

Conjecture. For a bi,rati,onal map f of CP2, we haue h"r(f) : hile(f).

A possible approach to this conjecture might be to employ the missing cast
"metric entropy" in this setting, that is, to construct a reasonable measure like p
in the previous theorems and show that hr(f) - log f, (/). This would then imply
ha"(f) ) h*o(/) > huj) 2 h"rr(l). Also consult recent partial results towards
this direction by Bedford-Diller [BeDi], Dujardin [D], etc for some birational
maps of surfaces.

2.5. Non-Integrability of Discrete Systems. Several discrete systems such
as discrete Painlev6 equations can be regarded as a non-autonomous iterations
of rational maps of CIF2. Unlike the Liouville-Arnold formulation for continu-
ous systems, the concept of "integrability" is not yet well--established for such
discrete systems. There is a criterion for integrability of discrete systems called
the singularity confinement test. However, (i) there ocists a system which passes
this test but which presents a chaotic behavior (Hietarinta-Viaflet [HV]), and
(ii) there exists a system which is solvable by elementa,ry functions but it does
not pass the test (Nalca.rrrura [N]). Note that the notion of algebraic entropy has
been introduced in this context and it is claimed that the positivity of algebraic
entropy should be related to non-integrability of a discrete system [BV].

Here, we have the following observation based on the conjecture in the previous
subsection. First recall that for a smooth dyna,mical system in dimension two,
we have

Theorem (Katok lKl). Let f , X + X be act+"-diffeomorphismof atwo-
di,mensi,onal cornpact Riemannian mani,fold X for sorne a > 0. Then, h.o(/) > 0
i,f and only if fN has a horseshoe for some N > 0 (tlrus, the dynamics of f is
"chaotic" ).

We can not immediately apply this theorem to rational dynarnics under con-
sideration, since the smoothness of / is essential in the proof. However, if the
conjecture in the previous subsection holds, then the above theorem suggests that
the positivrty of the algebraic entropy is equivalent to the existence of chaos for
rational dynarnical systems in ClF2.
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ANALOGUES OF THE HOLOMORPHIC MORSE INEQUALITIES

IN CR GEOMETRY

RAPHAEL PONGE

This talk is a preliminary report about a joint project with George Marinescu
on ortending to the CR setting Demailly's holomorphic Morse inequalities together
with some applications to complex geometry including a generalization of the
Grauert-Riemensdrneider criterion to the noncompact setting.

The talk is divided into 3 sections. In Section 1 we briefly review the holomor-
phic Morse inequalities. In Section 2 we recall the main definitions and properties
concerning CR manifolds, CR vector bundles, CR connections and the F6-complex.
In Section 3 we present our main results.

1。HOLOMORPHIC MoRSE INEQUALITIES

By Kodaira's embedding theorem a compact complex manifold is prqectiVe dge‐
braic i「it carries a positive holomorphic line bundle.The Grauert―]Riemenschneider
COtteCtWe was an tttempt to generalize Kodaira's embedding th∞rem to compact
Moishezon lnanifblds.Recall that the latter are compact complex manifblds which

肛e project市e algebraic up to a proper口odinc飢lon or,equimlently,h〔Ⅳe maximal
Kodalra dilnenslon.

COtteCture(Grttert― Riemenschneider)・ ス Cοπρact cottJcπ  παπ̈ JdづS Mοづsんθ―

Zοπゲづt Cαπづes αんοJοπο,TんづcJづπθ b%πdlc υんづcんづs Pοsづιづυθ οη α αθnse open set.

This was cottecture w甲■rst proved by Siu(ISill,iSi21)using elliptic estimttes
together with the Httzbruch‐Riemttn‐Roch formulae SubsequentlェDemailly lDd

gave an alternative proof based on a holomorphic version of the classical Morse
inequalities as fb1lowse

Let iイπ be a complex manifbld and let iL be a Hemiti〔Hl hok)Inorphic line bundle
overル「with curvtture FL.It is convenient to identiサFL With the section of
End■,l such th就み →F(ル,ル)2嘉・

For 9〓 =0,.。.,η we let 09 denote the open set consisting of points″ ∈■√such

that FL(π )haS g negttive eigenvalues and π
-9 positive eigenvalues and we set

O≦ 9=0。 ∪.…∪09.

T h e o r e m  l。1 ( D e m a i l l y ) .スSた → ∞ 流θルJ″ο観電 αSνηριοt t C SんO J d .

の 段αん」助Jοποηんづc Mοrsc L“しα“tづesf

( 1 。
1 ) dim Ho,q (M, Lo) S det FL * o(,t').ｒ

ん
η

ん

一幼一

ノ

ノ
。

π
た

一幼一

(ii) Strong Holomorphic Morse Inequalities:

(1・鋤  Σ (―⇒9~J dim″QJ(M,五り≦
′=0

1

det FL + o(k').
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βづリ ス Sνη ptο tづc ttrzb%cん ―Rづ cπ αη2-ROCん 」0印 9包Jαf

=力 ← 1ソd h∬ Q J ( M , Lり = (鼻 ソ
五 ノ

e t  F二十∝0 ,( 1。3 )   χ (ゴИ,Lた) =

J=0

υんθ“ χ(M,Lた )づStんθんοJοποηんづc EttJer cんαmctcrづstづcυ づιんcοttEcづCπtSれ Lたっ

In particular,for 9 E=l We get

(100 -dim∬
0'°

0ビ,五り 十∬Ql(M,Lた
)≦ 千

(募 )nlく
l det FL+oltπ

)0

(1。5)   出m∬°'°"И,メ)≧1メ鼻)π鬼<l det F二十∝たn).

If J。<l det FL>0(e・g.if L is semi‐positive mdお>0就 a point)then we get:

dim∬°'°(M,Lた)たたπ,(1。6)

whidh implies that iイ has lnaxilnal Kodaira dilnenslon,ioe.,■ どis Moishezon.

In lBtt BiSmut gⅣ e a hett kemel proof of Demailly's inequdities.Bismutゝ

approach can be divided into 2 main steps.

St甲 ゴf For 9=0,… ,電let△ LF denote the Dolbe狙
比 Laplacim acting on se←

tions of A°'9Tホ」M「Θ Lた。We let「
いL be the Cliford lift of FL,1.e,the section of

EndttQ*T*M)SOttt bc」 け wehM FL=F(岳 ,ル >解 夕>解 Zた)O Then Bお mut

proved:

Theorem l.2(Bismut)・ For aπν t>O υ eんαυc

( 1 0つ ■ 「 畜△l f = (募 ド
ん

d e t i耳
ギ 戸 1・I A Q 9  C ~ t f L +。l tη。

■c P  2∫B y  t a k i n g  t h e  l i m i t  a s  t→∞ i n  t h e  i n t e g r a l  i n ( 1 . 7 ) B i s m u t  r e c o v e r e d  t h e

inequalities(1。ll―(103),宙a line肛_Jgebraic arguments similtt to thtt of his ettlier

proof of the Morse inequalities.

2.CR MANIFOLDS AND THE∂ b“COMPLEX

2.1。CR Manifoldso A CR structure on〔 Πl orientable lnmifold M2■ +1 ls given

by a rank η vector bundle■,。⊂7ヒ■ごSudh that:

(1)■,o iS integrttle in■oebeniu sゞensq

(11)■,o∩■,1={0),Where■91=■,o。
The Πlain exttples of CR Inemifolds include:

‐Boundtties of complex domains;

‐(〕ircle bundles over complex lnanifolds;

‐Boundaries of complex hyperbolic spaces.

Given be a gbbd non― vamishing red l―form θ amnihiltting■ ,O①■,l the assO―

citted Le宙form is given by

(2。1)    Lθ (Z,7)=―づdθ(Z,7), Z,7∈σ∞
(M,■,o)・

We say that iイ is st,%ctlν PscttdοCοπυer when we can choose θ  so that at every

point Lθ is positive deiniteo Similttrlュ¬re say■ごis κ―st,%ctJν psczごοcοηυer When

2
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we c〔m・choose θ so th乱 就 every point Lθ has exactly κ‐negttive eigenvalues ald

π―κ positive eigenvalues。

2.2。 The∂ b―complex. Letノ √be a supplement Of■ ,O①Ъ,lin aM and deine:

Al'°=annihilttor in ttM Of■,l①Ⅳ,
A°'1=amihilttor in■M of■,o①Ⅳ,
AP'9=(Al'° )p∧ (A°

'1)9, P,9=0,… 。,2.

This gives rise to the splitting,

Pa    A*冤 ν=(O A2つ①い A*■M).
P,9=0

1f α∈σ∞
(ノИ,AO,9),then we can write

(2.3)           α α=abα +∂bα+θ∧β,

with aα∈θ∞υИ,Al,9)and abα∈σ∞υИ,AO,9+1).
We hⅣ e D:=0,so∂ biσ

∞
(M,AO,*)→ σ∞

(M,AO,*+1)is a Chah complex

whose cohomology groups are denoted=∫'9(M),9=0,…,π.
Endowing編 cゴИ with a Hermiti劉l metric,the Kohn Laplacian is

(2.4)         □ b=∂:Db+∂.司.

Proposition 2。1.晩んαυθ弓`(M)璧kr□br・
F o r  π∈ν  l e t  κ+ ( 2 )袖dκ_ (π) b e  t h e  n u m b e r  o f  p o s i t i v e  a n d  n e g t t i v e  e i g e n穐ト

u e s  o f t h e  L e v i  f o r m  Lθ t t  π.

Deanition 2.2(ConditiOn y(9))・  ヨ鴨C Cοπttιづοπ y(9)づ S SaιづJtt υ λCn」 or aJJ

″∈■イ乞,cんαυer

(2.5)      9グ{κ_(・),・…,η―κ+(■)}∪{κ+("),0…,π―κ_(π)}.

助αηples.1)Ifルr is strictly pseudo9onveX then the∞ndition y(9)means g≠0,π.
2)If ttr iS κ―strictly pseudoconvex then the condition y(9)means 9≠κ,π―κ.
3 ) T h e  c O n d i t i o n  y ( 0 ) m e a n S  t h t t  Lθ h a s  t t  l e a s t  o n e  p o s i t i v e  a n d  o n e  n e g t t i v e

eigenvdue.

Proposition 2.3(Kohn).υ Lごer candづιづοπ y(9)流 e OPC賓“Or□ b,9づsん″οθJ均,れC

υづ流gαづηげゴdCttυαιづυc,づ.ι.,」ar aπν CοηPaCt κ⊂■イυe λαυc cstづπαtes,

(2。6)        ‖ 鶴|ls+1≦Cκsll□b,9し|ls ∀し∈Cr(ノИ,A°'9).

Corollary 2.4。JJ ttθ Cοndづ湧οπ y(9)ん。Jおιんθπ dim“弓
'9(M)<∞ .

2。3。 CR vector bundles and CR connectionso ln the sequel we say that alnap

φ=(φたι):ν→νЪ(C)iS CR when∂bφたι=0.

Deinition 215。  ■ CR υ cctοr bzπαJθ ε ουer iМ「 づs a υcctοr bυηごJc gづυθπ bν α
c oυθ西町 げ M  bν ιt tυづαれzαれοηs■ : a %→ y J・×C P  4山O S C  t t tπsづιづοπ πa p s  η =

■ 0げ 1 :硫
∩y J .→ G L P ( C )α“ 銘 m a p s .

G i v e n  a  v e c t o r  b u n d l e  ε o v e r」r  f o r  P , 9 = 0 ,…。,η w e  l e t  A P , 9 (ε) = A P , 9Θε.
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Proposition

(2。7)

sucんιんαオご,ε
S=ΣESiCi υC

(2.8)

2。6.IJεづS α 6R υθctοr bundlc tんθπ ttere cttsts α

∂b,」:σ
∞

(M,A°
'*(ε

))→ σ
∞

(M,A°
'*+1(ε

)),

=O α πd」or aην JοCαJ(銘ιJ%π C el,.…,ep aJ ε

んαυc

unique operator,

and enu section

6u,es- t (Datr )  8er .

The cohomolory groups of the complex 6o,e : C* (M,A0'* (S)) '

are denoted Ho'a(M,t), q - 0,.. .,n. As before if the condition

dim Ho'q(M,t) < *.
Next, let t be a CR vector bundle endowed with a Hermitian

V : C- (M, t) - C@ (M,T* M S t) be a connection. Recall that

unitary when we have

(2.9) d({, ril : (V(, ril + ({, Vtl)

for sections € and r7 of. t.
On the other hand, thanks to the splitting we can write:

(2.10) V - Vl 'o + Vo' '  + o A D,

where : Vr'o and V0'1 map to sections of A1'0(f,) and A0'1(t) respectively.

Definition 2.7. V is a CR connection whenYo'r :6a.e.

Now, let End*t the bundle of selfadjoint endomorphisms of t. Then we have:

Proposition 2.8. The space of uni,tary CR connections is a non-ernptg affine space
moilelld on i0 & C*(M,FnLd""t).

3. CR MoRsp INBQullIrrcs

1"1 142n+r be a compact CR manifold together with a Hermitian metric on
TcM (tot necessarily a Levi metric) and with a global real non-'vanishing 1-form
0 annihilating ?r,o O ?o,r and let -L is a Hennitian CR line bundle over M with
unitary CR connection of curvature F'.

Our goal is to obtain analogues of the asymptotics (1.1)-(1.7) in this setting.
There are several earlier related results in this direction.

First, in [Ge] Getzler proved an analogue of heat kernel asymptotics (1.7) for
strictly pseudoconvex CR manifolds with Levi metric and conjectured that such an
asymptotics should hold for more general CR ma,nifolds. Neverbheless, he didn't
derive asymptotic inequalities for dimHl,'c(M,Lh). There seems to be a mistale
in Getzler's final formula (compare Theorem 3.1 below).

Later on, as a consequence of his version of the holomorphic Morse inequalities
for pseudoconcave complex manifolds, Ma,rinescu [Ma] obtained a lower bound for

t.o'o(ttt,P*1wheu M is tle boundary of a strictly q-concave domain on a g-

concave complex manifold X2" with n. ) 3 and q < n - 2.
In addition, Berman [Be] proved a version of Demailly's inequalities for complex

manifold with nondegenerate boundary and F\r has ennegnsefl during his talk at the
symposium analogues of the weak holomorphic Morse inequalities (1.1) on bounded
finite type pseudoconvex domains in C2.

σ∞
(」y,A°

'率+1(ε
))

y(9)hOldS then

metric and let

V is said to be
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3。1。Heat kernel version.Let□胸1たbe the Kohn Laplacian acting on sections
of AO,9(メ)。As before it will be convenient to identitt FL and ttθ with the sections
of Endc■ ,O such th乱 ,for any orthonOrmal frame Zl,。 …,40f■ ,0,we ha/e:

(3。1)    FLZJ・ =FL(ZJ・ ,4)れ , 五 θZJ・=Lθ (ZJ・,4)40

hthermore,for μ ∈R we set

(3。2)          FaL(μ )=Fι
一

μLθ,

計.鷲1,か 誌£1鷺1零質望,現ぶ1ltれ1■∬盤緊
(3.3)     石 夕(μ)=IFL(ZJ・ ,Z)一 μttθ(ZJ・:4月 ε(θ

J)ι
(θ

た
).

Theorem 3。 1(GM+RP)。 ■s5υπC ttαιオんc cοπtttづοη y(9)ん οJお・ コLcπ 」Or aπν
ι>O υ cんαυθ

6・0   ■C~t□111=(券r+1ノ与ど
b'9し,のαンし)+0鮨り,

0司  θQ9し,→=Дdd[  lnC‐考0中,
磁ere dν(")Jθηοtes ttθ υοttmeルmげ M。

Remα 戒 3。2。We actually have a complete ald local asymptotics inた ,so this might

yield a CR andOgue ofthe Tian― Y盪 ―Zelditch―Cttlin asymptotics on(0,9)― fOrms。

3.2i Cohomological verslon(in prOgress)。 We make the fo1lowing extra as‐

sumptions:
―■ごis κ―strictly pseudoconvex;
‐We can choose FL and dθ  ttld the Hermitial metric of鍋cノИ SO thtt we hare

(3。6)              IFL,Lθ l=00

This condition is automatically satisied when iイ is strictly pseudoconvex by taking

the lnetric to be the Levi metric.

Proposition 3。3(GMttRP)。 伽 der tんc abουθ αssし,¬ptづοπSユπ9≠ κ,π―κ υθ
んαυθ∫

Oη   t t G Q 9し ,→=り 9五

:苫

°
品 町

lFL o―
』中 ,

υんθ“ λJ(π)ごCποtes ttθプ
リ晩 eむθπυαJuc arL『 lFL(π

)CοπηιθJ υづ流 π%Jιゎれcづιν.

T h t t k s  t o  t h i s  r e s u l t  w e  m a y  t t g u e  a s  i n  i B l  t O  g e載

Proposition 3。4(GMttRP). 伽 der tんe sαπθ assし,ηpιづOπsルrg≠ κ,π―κ υθ
んαυcr

りJJ λ9+1(2o)>λ9(πo)」Or Sοπθ πO∈y,ιんθη υθんαυer

(3。8)         dim″
°'9(M,Lた)≧たπ+1.

〃」J λ9+1(・)=λ9(π)αt eυeη Pοづπt,流θπ υθんαυer

( 3。9 )          d i m∬
°' 9 ( M ,メ

) = 0 (た
・
)・

5
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3.3. Application to complex geometry (in progress). As an application to

the previous results we obtain:

Theorem 3.5. Let M be a amplex manifokl (not necessarily compact) together

with a Hermitian holomorphic line bundle L such that:
(i) L is positiue outside a Stei,n ilomain;

ft| FL ilegenemtes wi,th rnultiplicity at leost 2 on 0D.
Then M is Moi,shezon.
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SPECTRAL ANALYSIS ON COMPLEX HYPERBOLIC SPACES

GABOR FRANCSICS AND PETER D.LAX

Hayma Symposlunl on
,Complex Analysis in Several Variables

December 18-21,2005

1.INTRODUCTION

Our main goal is tO develop a spectral and scattering andysis Of the automor―

phic Laplace―Beltrami operttor on discrete quotients of the cOmplex hyperbolic space

CHηo The complex hyperbolic sがace CHπ is the rttk One Hermitian symmetric space
of noncompЖt type,SU(2,1)/S(U(1)×U(2))・A stttldard mod91 0f the cOmplex hy―
perbolic space is the complex unit ball Bπ={z∈ Cπ; IZI<1}With the Bergmin
m e t r i c  g =Σ

lん= 1 % ,た ( Z )ご竹 ● αれ , W h e rё % ,た
= c O n S t e  a∂ たl o g ( 1 - I Z 1 2 ) . T h i S  m o d e l

is the bounded realization of the lHerⅡlitian syΠIInetric space⊂;Htte We shall use

mainly the unbounded hyperquadric lnodel of the complex hyperbolic space,that is

Dπ ={Z∈ Cn; s鶴 為 >:Σ 「ll竹12) . T h 9  C O m p l e x  h y p e r b o l i c  L a p l a c e―Bel t r m i
operator on the unit ball is given by

△cP=ill―lttJを16た一例
The quotient,CHn/「 ,is fOrmed by a discret,subgroup r Ofthe h。1。morphic auto―

morphism group of the complex hyperbolic space.We m」nly interested in subgroups

with a noncompact fundment〔 狙domain of inite invariEIlt volume or geometrically

inite subgroups with ininite volume.Our starting point is the silnplest,but realistic

example for a automorphisnl subgroup with a noncompact fundamental donl〔 un of

inite invariant volume:the Picttd modular groupse

The Picttd modular groups are

Sび(2,1;C9α),

where C9d is the ring ofalgebrdc integers ofthe imaginary quadrttic extension Q(れ層)
br any positive squtte■ee integer α(see lH珂)e we tte interested in the simplest
case perhaps:α=1,thtt is,C9d=Zレl,the Picttd modultt group with Gaussian

Date: Janaary 31, 2006
2000 Mathematics Subject Classification. 22E4O; 32M05.
Key words and phrases. Fundamental domain, Picard modular group, complex hlperbolic space.
The first author is grateful to the Mathematical Institute of University of Oxford for its hoepitality.
The research of the first author was partially supported by a Michigan State University IRGP grant.

t
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integer entries. The Picard modular group SU(n,L;ZVD is a discontinuous holomor-
phic automorphism subgroup of CH" with Gaussian integer entries. It is a higher

dimensional analogue of the modular grouP, PSL(2,2), in C'. Our first goal in this

direction is to analyze the geometric and spectral properties of the Picard modular

group T: SU(2,L;Zlil) *iitg on the complor hyperbolic space CH2.
Geometric and spectral properties of lattices in symmetric spaces attracted much

attention during the last decades. Although remarkable progress has beeir achieved,
several important problems related to arithmeticity existence of embedded eigenval-

ues in the continuous spectrum etc., a,re still open. The general structure of a fun-

damental domain for lattices is well known since the work of Ga,rland-Raghunathan

[GR], for example. However there are very few funda,mental domains known com-
ptut"ty explicitly. This is especially true for complex hyperbolic spaces. The case of

complex hyperboiic spaces is a particularly difficult case. This phenomenon is well

known since the work of Mostow [M]. Recently very strong progress has been made

in constructing explicit funda,mental domains for discrete subgroups of complex hy-
perbolic spaces; see for example, the work of Cohn [C], Holzapfel [H1], [H2], Goldman

[G], Goldman-Parker [GP], Falbel-Parker [FPl], [FP2], Schwartz [Sch], Franlsics-La>c

[fl,f1, [FL2]. However, explicit fundamental domains do not seem to be known in

ihe literature for the Pica,rd mbdular groups, except in the case d: 3 (Falbel-Parker

[FP2]), see the comment in [FP2], on page 2. Moreover, very little is known about
the spectral properties of the automorphic complex hyperbolic Laplace-Beltrami op
erator, see the work of [EMM], [Rj, [LV].

The holomorphic automorphism gloup of CH", Aut(CH'), consists of rational
functions g : (h,.. . ,gn) : Dn r- Dn,

g i? ) - %+1,1+Σ鷹塁%+1,たZた-1
αl,1+Σl主〕αl,たZん-1 '

J=1,… 0,2,

C,竹=き,
condition

where

These automorphisms act linearly in homogeneous coordinates Co, ...,
j : L,...,TI. The corresponding matrix A : lainl'ii!, satisfies the

五
*σ

五=σ , (1)

^   σ
≡

0   0

0 島 _1
-づ  0

and -I,,-1 is the (" - 1) x (n - 1) identity matrix. The determinant of the matrix A
is normalized to be equal to 1. The matrix C is the matrix of the quadratic form of
the defining function of. D written in homogeneous coordinates. Three important
classes of holomorphic automorphisms are Heisenberg translations, dilations, and
rotations. The Heisenbergtranslationby a e 0D2, N" e Aut(CH') is defined as

ヽ

ｌ

‐

‐

′

ノ

・
Ｚ

（＝

）

∩

）

／

１

‐

‐

ｌ

＼

-121-
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N_o(21, z2).: (21* a1, 22* a2*i,z[a). The holomorphic automorphism of D2 , A6(z) :
(521,5222) is called,dilation with parameter d > 0. Rotation in the first variable bv
eie, M"rr(zt,zz): (unrrr,z2) is aholomorphic automorphism of. D2 with cp € R. Th;
holomorphic involution J(21,22): (iz1f 22,-Lf z2) will also play significant role.

In a metric space (x, d,) the subset S c X is a Siegel set for an isometry group G of
X if (i) for all x € X thereis g e Gsuch that gr € S,(ii) theset {g e G; g(^9)n S + A}
is finite. Let S11a be the set

島/4={ Z∈ D2; 0≦ 掟zl, 0≦ SZl ,掟zl+ S z l

S響ゎ―
:hF≧:ト

We introduce horoshperical coordinttes(πlμ2,″3,ν)∈ R3× R+as zl=″ 1+づ″2,
Z2=■3+づ(ν十(″:+″3)/2)on D2.Then the c6mplex hyperbolic LaplacOBeltrmi
operttor in horospherical coordinates is」ven by

△c評 =;は 1+珈 +;υν+髯+め罐3+

ν役考+ν″2ala3~ν″la2亀3~ν%・
We will use the notation

昨げ)=2二げr妻山dν
for the invariEIltん2~integral,and」DF for the corre,ponding invariant Dirichlet integr〔■,
thtt is

+イ+π3)|ん312+2ν
21ん

12+

≦L阿 ≦
:

( 2 )

DF(ノ) =二[νlん112+νlん212+ν(2ν
rzA(f *,一九 十九3ん1)~″ lυ(ん2ん3+ん 3一九

2. SretpuENT oF THE RESULTS

Our first result is a semi-explicit fundamental domain for the Picard modular group
with Gaussian integers.

Theorem l.動c sct S1/4づSα&りcl sctルrιんcPづCatt mοれJαr
島 ≡J′島,…。′」鴫V bC aιJ ttCんθJθποηんづc αttιθπOηんづsms I
S1/4∩∬(S1/4)≠0・動θη ttC sct

F≡ {Z∈島/4;l det弓(Z)12≦1,1≦J≦Ⅳ}
is a fundamental domain of the Picard modular group ruith Gaussian i,ntegers.

At this point the transformations .I/2, ..., HN a.re not known explicitly, moreover
not all of them are necessa,ry for defining the fundamental domain .F. However, this
form of the fundamental domain is already useful for obta.ining important geometric
and spectral properties.

月許な

group I i,n c2. Let
€ f \ f* such that

( 3 )
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Three important geometric properties of the fundamental dom〔 un oFr are stated in

the following theoreme

Theorem 2.の 動 θ税りCI SCt S1/41れυαttattt ttηαcr ttθづηυθιtttづυc tttηs/o77′ιαιjθη

S(Zl,均 )=(づ 4,一 あ )O Mο “ θυcち tんと sctげ t%η S/Om2α ιづθηs∬ 1,… ◆,Iれ 「づSづ ηυαttαηι

鶴ηdcr tんe cθ可鶴gαιJοη

∬ 卜)SIS.

動C“ル“ιんθルηααmθηιαι αθmαづηFづsづηυαttαηι ttηαcr tんθれυθ:鶴ιづυθ ιttηs/Omαιjθη

S(Zl,ゎ)=(づ4,一あ)・

μり 動 C tυθ αづmcη sづοηα:θ力 Cげ ιんCル ηごαπCηιαJ αθttαづπ F α tzl=O tsづ αθηれcal

ιθ ιんc staπααだルηααttθηtal αθπαづπ/ar tんc ttθれιar gttΨ.

μづり劉LCルηααπθηtat tθttαづηFんαs α Pttαttεt stract鶴貿ηθarづγ√ηづιν,tんαtづs,

F∩ {z∈c2;sttz2≧α}=S1/4∩ {Z∈C2;sttz2≧α}

ルrJαηθ α>0・

We exploit the involutive trl】贅3formation S to obtain speёtral information on the

認税:∬胤ごstttl鮮‖:1胤淵tmttr驚‖稼,∴Tl
eigenvalue in the continuous spectrum is called embedded eigenvdue or Maass cusp

form.

Theorem 3。劉しθれυαttαηccげιんCルηααmcηιαι αOttαづη F ttηαcr tんct%πs」o印9αιづοη

Sづη ttLcθttm 2づηPれcs tんc cttstcηccげ づヴηづtCり鶴αην θmbcααca cむcηυαJucsれ
ιんc cθηιづηttθt t s  ψC C t t t m  o /流C  a s sοcづαιcα αzιοηοηんづc cθt t J Cπんη cr bθJづc五 叩 Jαcc―

3θ:ιttL7ηづθPc(πしιθr.

Our next goal is to deterΠline a completely explicit fundmental domain for the

Picard mOdular grOup r based on Theoreln lo ln the next theorem we obtain a
surprisingly silnple description of jF in terms of boundary deining functions.

Theorem 4.スルηααπCηιαι αθmαづηルrtんCPづcα配 鶴οα鶴:ar graΨづs

F≡ {Z∈S1/4;IZ212≧1,

lr+づ一(1+づ)Zl+均12≧1,r=-1,0,1,

lr+づ
-2づzl+2z212≧2,r=-1,1,

lr+づ-2zl+2ゎ12≧2,r=-1,1}.

Theorem 5 contains more precise description of the structure of the fundamental
domain .F.

Theorem 5. There are ei,ght holomoryhic automorphims Gr : J,Gz,.. ., Gs in the
Picard modular groupl, descri,bed below i,n equations (/,), (5), (6), (7), such that the
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SCι

F≡ {Z∈島/4; 1均12≧1,

ldetC(Z)12≦1,ブ=2,_,8}

づSαルηααπθηιαJごθttαづηげιんcPづCa用鶴θご鶴Jαr g"Ψ αctづηg θη ιんc cθttJθ″ん″crbθιづc
ψαcc cH2。■:Jθづgんι ιttπs/0知9αιづθηs αtt ηccαCα.動 θんθJθttθηんづc ιttηs/o知eαιづθηs
Gl,030,G8εαη bθ αθscttbθα αsノbJJουSr

動θtt α“/o鶴r traηs∫o鶴αιづθηS υづ流ごづιαιづθη pαttπθιθr lf

Gl(Zl,約)≡  J(Zl,Z2)

(考争,一身),        解)
Gr+3 = J O Er+3

=JO数 1+け・)OM-1,        (5)

υづιんr=-1,0,1.

動θtt α“ルar t%ηS∫0鶴 αιづοπs υづ流 ごづJαιづθη pαttmcter νワf

G5+ザ ≡ Цl,守)OJ°P5+等
=Ц l,宇)OJO数-1+rャ+0°

・√ °礎
帯

'             (6)

αηα

θ7+等 ≡ Цづ,守)OJ°P7+等
=Ⅳ L宇)OJO数―r―ヶ+のO

ス√ °M喘
≠

'            (7)

υんθ“ r=-1,1.

The precise deinition of the holomorphic automorphisms P, J,ゴ V,z4,andル f is

described in the introductiono We lnention that the inequalities in the description of

′r in rrheorem 4 are simphied exphcit versions of the inequalities              ヽ

ldetQ(Z)12≦1
of TheoreⅡ1 5。                    ,

We mention that the lnethod used in l「heorem 3 fbr analyzing the discrete spectrШ

can be extended for a class of automorphism groups containlng the Picard lnodular

group with Gaussian integer entries。

Deinition l.劉しc cJαss gげαZιθttθηんづstt graΨs cθηsづstsげんθιθttθηんづC αttιθmθr―

Pんづstt groΨs「⊂Aut(CH2)υづιんιんCルιJθυづηg pηpc甕づcsf
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rゴノ 「 んαS α ル ιηごα倒OCη ιαJ αθ"oα れ Fυ づιん fη づtC疵 屁υαttαηι υθ:鶴"島c αηα υ jιん θηc cし ,p

αιづヴ ηづtν.

流Лθむ競ルη∴蕊富算鶴空軍出βi∴霞ぷ
C生オlザ話ヤ軍

θ
協

S「S⊂ F.

Theorem 6.Lct r bc aん θιθttθηんづc attιοmθηんづsm gra町〕jη ttc c:αss g.2Ъθ cθηp:θπ

んη crbθ Jづc五 叩 ιαcc―Bclι %π づ 叩 c%ι Or△ cH2 α Ctづηg θ η 「―α%ιθπ θη んづCル ηctづοηSん αS

づηFηjιCIν ttαην cmbθαdcごεづgcnυα:鶴csをηιんc cθηιづηttθtts ψθεtr鶴鶴・

The restriction that「has only one cusp is not important.We expect that the class

of automorphism groups,g,contains lnore groups than the Picard lnodulr group with

Gaussian integers.It is likely that the conditions deining g can be wettned,it lnaly
be enough to assume that「has inite invariant volume and there is a nonholomorphic

isometry of CH[2,s suCh that S2=∬,狙dS「 S⊂ F.

3。 OuTLINE OF THE METHOD

The main building block in our fundmental domain construction is the Siegel

S1/4・ lrhe triangular shape of S1/4 in the zl variable is the consequence of the fact

thtt a Heiseiberg translation AL is in「if ttld only if ttαl,Sαl,掟α2∈ Z and lαl12 is

even.The initness property of S1/4 iS Obtained by using the transformation formula

of the lBergman kernel function and the the involution Jo We build a seΠli‐explicit

fundamental domain f from the Siegel set S1/4 in the fo1lowing wayo Let rl≡J,島 ,
.…,IN be allthe holomorphic tttomorphisms I∈「＼F∞such th乱島/4∩″(S1/4)≠
0.Then we prove thtt the set

{Z∈S1/4;l det』考(Z)12≦1,1≦ブ≦Ⅳ}.
is a fund〔m■ental domain for the Picttd modultt group acting on the complex hyper―

bolic spЖe CH2,At this point the trttsformttions島,ブ=2,… .,N tte not known

exphcitly9 1noreover not al1 0f them contribute to the fundttental donl〔un F。

The key observation in obt盃 ning the spectral properties of Ar iS that the trans―

formation S splits the space of五2 autOmorphic functions into even and odd auto―
morphic hnctions with respect to the transformation S。 One can prove that the

resolvent of△r iS compact on the space of odd automorphic functions. This step uses
a Poincar6 inequality in the"―variableso Ne〔r ininity the fundttmentJ dolmain has a

compact cross section,that is,the cross section written in horospherical coordinates,

礼 =F∩ {ν=α },iS COmpact for lttge α>0.The Poinc肛 6 inettality is applied on

the cross sectio\ Ko.
The basic idea of the

easily.
explicit construction in Theorems 4 and 5 can be described

Let ft= .S(.L) n {z e C2 lzzl> 1} = S(r) n {z e C2;ldet HiQ)12
f c Ft. We will prove that if f/ is one of the transformations f/2,
description of .F in (1) then either

≦1)O Clearly
…,月黙√in the
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(1) ldet H'(z)l( 1 for al l  z e Ft;
or
(2) there is a transformation Gi, j :2,...,8 appearing in (5), (o) and (z) such

that lder['(z)l < ldetC't(z)l for all z € fr. In either case, the transformation ff
does not contribute to the fundamental domain f.
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