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Compact non-kdhler threefolds

associated to hyperbolic 3-manifolds

Akira FUJIKI (Osaka University)

I would like to talk about a class of three dimensional non-kéhler compact complex
manifolds which are almost homogeneous with respect to the special linear group
SLy(C). These manifolds are related to hyperbolic manifolds and Kleinian groups .

In general my interest is in finding methods for constructing compact complex
manifolds which are non-kihler or, more generally which are not in class C. (A
compact complex manifold is said to be in class C if it is bimeromorphic to a compact
Kihler manifold.) So far quite a few methods are known, but still very much in
sporadic ways.

Now it is known for long time that a class of compact non-kéhler manifolds are
provided by homogeneous manifolds, especially a complex parallelizable manifold
which is characterized by the following equivalent properties [5]:

(1) its (holomorphic) tangent bundle is trivial, and

(2) it is of the form X = G/,
where G is a complex Lie group and T is a cocompact discrete subgroup of G.
Suppose for example that G is a simple linear Lie group. Then we can see that G/T
‘is not Kahler, or more strongly, is not in C.

Given a compact complex manifold a way of constructing new manifolds is to
consider its deformations. In the case under consideration, however, it is known by
Raghunathan that X is rigid under local deformations unless G is locally isomorphic
to SLy(C), while Ghys [1] has constructed the Kuranishi family of deformations of
X in the latter case, which is non-trivial for a general choice of the discrete group
T |

We then ask an almost complex analogue for the above manifolds, namely we can
ask if for some discrete group I' (which is not cocompact, but infinite), there exists

an equivariant compactification X of the quotient G/I" which is non-kéhler, or is not
1
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in class C. So far no examples of such manifolds seem to have been known; in any
case it is easy to see that the resulting manifolds satisfy the necessary non-kéhler

properties:

Proposition 1. Any such X is not in class C and its Kodaira dimension k(X) =

-0,

In this talk we shall show that such equivariant compactifications exist for a class
of discrete subgroups of G = PSL,(C'), and study some of the basic properties of
these compactified manifolds. Recall that a discrete subgroup of G := PSLy(C) is
called a Kleinian group and our manifolds should be related with real 3-dimensional
hyperbolic manifolds.

Recall that G is identified with the group of oritentation-preserving isometries of
the hyperbolic upper-half space H3; G 2 Isom* H3, and H® becomes a homogeneous
space of G; H® = K \ G, where K = PSU(2). Now we take and fix a non-trivial

torsionfree Kleinian group I'. Then we have a commutative diagram of quotients

U: = GJT
3 2
M: = K\G/T=H3T

where K = PSU(2), the vertical arrows are natural projections of our complex
manifold U to the 3-dimensional complete hyperbolic manifold M.

Here an observation is that often there exists a natural compactification of the base
M. For instance for many knots in the 3-sphere S3, its complement M := §% — K
is a complete hyperbolic manifold as above so that M is compactified canonically
to the 3-sphere S3. One of the most typical one is the case where K is the figure
eight knot, in which case I in M = H3/TI is the arithmetic Kleinian group explicitly
determined as the Bianchi group PSLy(O3) associated to the maximal order O3 of
the real quadratic field Q(v/3) (Riley ’82)[4]. Especially, M is volume finite and M
has a unique cusp.

In any case one may ask if this compactification M C N := S2 can be lifted to a

(natural) equivariant compactification U C X. But this turns out to be impossible:
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Proposition 2. Suppose that G/T i$ volume finite and admits a cusp. Then G/T

admits no equivariant compactifications.

In view of this result we have to try another direction. H?® admits a natural
compactification H? as a 3-manifold with boundary by adding to it the sphere at
oo, denoted by bH®. Thus we have H = H U bH omitting the superscript. The
action of G extends naturally up to the boundary. Let I' be a finitely generated
torsion-free Kleinian group. I' then admits the (maximal) domain of discoinituity
Q) C bH?® on the boundary, which we assume to be non-empty. Then M = H3/T' is
partially compactified to a 3-manifold with boundary N := MU(Q/T) = (H3UQ)/T,
called a Kleinian manifold (cf. [3]).

Then our basic results are as follows.

Theorem The situation and the assumptions being as above suppose further that
N is compact, or equivalently, C := Q/T" is compact (in general disconnected). Then

there exists an equivariant compactification G/T' C X fitting into the commutative

diagram
G € X
! )
M C N
such that

1) the vertical maps are the quotient map by K,

2) 51(X) = b1 (M), and ba(X) = be(M)+ the numé;er of connected components of
C, where b; denotes the i-th betti number.

8) S := X — G/T is isomorphic to the product C x P, where P is the complez
projective line.

4) =Kx = 2[S] and Ng/x = —Ks, where Kx and Ng/x are the canonical bundle
of X and the normal bundle of S in X respectively.

5) there ezists a four dimensional covering family of P with normal bundle O(1)®

O(1); in fact X is a manifold of class L in the sense of Kato [2].




6) the algebraic dimension a(X) = 0 unless I is elementary, i.e., #(bH\ Q) < 2;
in the latter case I' 2 Z, a(X) = 2 and in fact X is the twistor space of a diagonal
Hopf surface.

Example. 1) The case I' C PSLy(R) C PSLy(C) is a cocompact Fuchsian
group. In this case @ = H*[[ H~ and the universal covering X of X is the twistor
space of §% — S with the induced metric. Since N is known to be homeomorphic
to C x I [3], we have b;(X) = 2g and b2(X) = 3.

2) The case I" is the Schottoky group of rank g 2 1. In this case N is the
handlebody of genus g [1] ; thus we have b;(X) = g.

We shall also disucss the deformation problem for such manifolds in analogy with
the results of Ghys [1]. It is interesting to ask if any higher dimensional analogue of

the above manifolds.
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EXPLICIT EXAMPLE OF MOISHEZON TWISTOR
SPACES AND THEIR MINITWISTOR SPACES

NOBUHIRO HONDA

In this report I would like to explain our recent results in [2, 3, 4]
about constructions and classifications of (mini)twistor spaces associ-
ated to self-dual metrics on 3CP?, the connected sum of three complex
projective planes. The main result is the following

Theorem 1. [2] Let g be a self-dual metric on 3CP? satisfying the
following 8 conditons: (i) the scalar curvature of g is positive, (ii) g
admits a non-zero Killing field, (iii) g is not conformally isometric to
self-dual metrics constructed by C. LeBrun in [6]. Then the twistor
space of g is obtained as a small resolution of a double covering of
CP? branched along certain singular quartic surface whose defining
equation can be explicitly given (cf. below). Conversely, the complex
3-fold obtained by the above construction is always a twistor space of
3CP? and the corresponding self-dual metric satisfies (1), (%) and (iii).

The equation of the branch quartic surface is explicitly given by

(1) {y2y3 + Qyo,y1)}* = yoy1(¥o + v1) (%0 — 1),

where (yo, Y1, Y2, y3) is a homogeneous coordinate on CP?, Q(yo, 1) is
a homogeneous quardratic polynomial with real coefficients, and «a is
a positive real number. Moreover, @ and «a satisfy the condition that
Qo, 11)? — voy1 (o + 11)(¥o — ay1) has a unique double root which is
a real number. Under these conditions, the quartic surace (1) becomes
birational to an elliptic ruled surface and has just 3 isolated singular
points which are two simple elliptic singularities (of type E—,) and one
ordinary double point. Correspondingly, there are a lot of small reso-
lutions of the double covering. It is possible to give a small resolution
explicitly which actually yields a twistor space. We remark that the
twistor spaces do not admit a Kéhler metric (by a theorem of Hitchin
[1]), so that the projectivity is lost through small resolution of the

double covering.
1




The ‘converse part’ of Theorem 1 means that the quartic surface (1)
naturally determines a self-dual metrics on 3CP?. This enable us to
determine a global structure of a moduli space of self-dual metrics on
3CP? as follows:

Corollary 2. Let # be the set of all conformal classes [g] on 3CP?,
where g is a self-dual metric on 3CP? satisfying (i), (ii) and (iii) of
Theorem 1. Then 4 can be naturally identified with R3/G, where G
is a reflection of R® having 2-dimensional fized locus. In particular,
A is non-empty and connected.

Let us explain backgrounds related to these results. In general, it is
known that if [g] is a self-dual conformal class on a compact 4-manifold
M, and if the scalar curvature of [g] is of positive type, then M must be
homeomorphic to S* or nCP? for some n > 1. It is known that for S*
and CP?, the standard metrics are unique self-dual structure respec-
tively (although strictly speaking, for CP?, one has to suppose that
the scalar curvature is positive.) In a cerebrated work [7] Y. S. Poon
constructed a family of self-dual metrics on 2CP? of positive scalar
curvature and also showed that every such metrics 2CP? belongs to
his family. For n > 3, LeBrun [6] and Joyce [5] constructed families of
self-dual metrics on nCP? with posibive scalar curvature, for arbitrary
n. Significant feature of their metrics is that, they admit a semi-free
U(1)-isometry for LeBrun metrics, and U(1) x U(1)-isometry for Joyce
metrics. Moreover, these properties characterizes their metrics respec-
tively.

However, it is readily seen (by deformation theory applied to the

‘twistor space) that for any n > 3 there are many self-dual metrics on
nCP? which are different from LeBrun or Joyce metrics. Corollary 2
classifies such self-dual metrics on 3CP?, under the condition that they
admit a non-trivial Killing field. We remark that the existence of such
metric is never trivial.

A relation between our new self-dual metrics and LeBrun or Joyce
metrics on 3CP? is as follows:

Theorem 3. [3] Our self-dual metrics on 3CP? obtained in Theorem

1 can be smoothly deformed into LeBrun metrics via Joyce metrics,

where the self-duality and the ezistence of a non-zero Killing field are

kept through deformations. In other words, the moduli space of all self-

dual conformal classes satisfying (i) and (ii) in Theorem 1 is connected.
2




Thus a global picture of the moduli space of all self-dual metrics on
3CP? with a non-zero Killing field (and with positive scalar curvature)
became well understood. We remark that when our self-dual metric is
deformed into LeBrun metric, a Killing field (or generated U(1)-action)
must be exchanged when passing through a Joyce metric (namely, a
LeBrun metric with torus action). We also remark that the main result
of [3] determines all U(1)-subgroups of the torus for which one can
obtain equvariant deformations of LeBrun metric with torus action,
for arbitrary nCP2. Moreover, the dimensions of the moduli space of
such new metrics with U(1)-action are also calculated.

Next we explain a result in [4] which describes the structure of
minitwistor spaces associated to our twistor space in Theorem 1. For
this, let ¥, be the Hirzebruch surface of degree 2 and 3, the surface
obtained from T, by contracting the (—2)-section of the ruling. (So %,
has a unique ordinary node.)

Theorem 4. [4] Let F be the minitwistor space of the twistor space in
Theorem 1, which is by definition a quotient space of the twistor space
by the C*-action, where the action is the one coming from the Killing
field. Then F has a structure of the double covering of £y branched
along a smooth elliptic curve that is an anticanonical curve of Ly not
going through the node. Moreover, general minitwistor line (namely the
image of twistor lines by the quotient map) are anticanonical curves of
Z which has a unique ordinary node.

We mention that the period of the branch elliptic curve is the same
as the period of the elliptic curve of the branch quartic elliptic ruled
surface. (So it is determined by « in (1).)

Theorem 4 shows that the structure of our minitwistor space is quite
different from that of LeBrun metrics. Namely, for LeBrun metrics,
the minitwistor space is CP! x CP* and general minitwistor lines are
curves of bidegree (1, 1); in particular, they are smooth.
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An application of the Hamiltonian flow to
the 0 equation

Takao Akahori  University of Hyogo

This paper is a series of our study of the mixed Hodge structure (Rumin
complex) for the case hypersurface isolated singularities. We take a complex
euclidean space C™*!, and take a holomorphic function f, which satisfies :
df(p) # 0, if p is not the origin. And consider analytic space V = {z: z €
C™*1l) f(z) = 0}. This isolated singularity is well studied by several mathema-
tians, but from the point of view of CR structures, even the case hypersurface
isolated singularities is not well understood. About 10 years ago, we were trying
to obtain a CR analogy for smoothness of the versal deformation of complex
structures(at that time, Tian and Todorov gave a simple proof for smoothness
of the versal family for compact Calabi-Yau manifolds). And we found that 68
lemma is a quite important property(in the case compact Kaehler manifolds,
this holds, but, otherwise, it is not valid). Concerning 89 lemma, today we
discuss; on

Vap ={2:2€ C™"1 f(2) =0,a <] z |[< b},

” Is the (T"V, p)*-valued Dolbeault cohomology, represented by the harmonic
forms 7” . Namely, does the following isomorphism hold ?

HY (Voo NN T Vo p)*) =~

{61 ¢ € T(Vap, A" H(T'Vap)” N AT "Vap)")), 36 = 0,6"¢ = 0},

where §” is the formal adjoint of & with respect to the Kaehler metric, induced
by the standard Kaehler metric on C®*1. We must mention that in [O], in a
general setting, by using the functional analysis method, it is discussed. But,
" in our case, V, is no longer strongly pseudo convex. Rather, here, we use the
Hamiltonian flow, and the Euler vector field (we discuss only A, - singularities).

1 Geometrical meaning of H(V,,, A" 1 (T"V,3)*)

Va,p is an open Calabi-Yau manifold(this means that our V, 3 admits a non-
vanishing holomorphic (n,0) form. So,

HY(Vap, Tv, ,) = H (Va,o, A" H(T"Vap)")-

And we know that the left hand side is the infinitesimal deformation space of
complex structures over V, ;. This versal family is explicitly written as follows.
On Cr+1 x C1,

V = {(2,t),: F(z,t) = 0},




where F(z,1) = f(2) + Sie; tigs(2), | = dimcH (Va, Ty, ), and {g:h1<ici
means representatives of the moduli algebra,
Clz1,. .., zny1]
8 3%))
Let (V,7(2),S) be a family of deformations of complex structures of Va,b-

Here S is an analytic space with the origin, and 7(z) is a smooth map from V
to S. So we have the Kodaira Spencer map

Po:ToS = H Vo, T'Vap) (1.1)

Assume that there is a holomorphic (n,0) form, w, which is non-vanishing
on V, 5, and it can be extended to V holomorphically(we use the notation & for
this extension). In this situation, we write down the Kodaira-Spencer class. We
take a C diffeomorphism map from Vo X S to V,

ig >
Va,b xS —_— vV
the projection to the second factorl lr(z)

identity map
S _— s S

Then, we have

Theorem 1.
o _ 0
ok f -~ (n-l,l) —
{558(@ |x.) le=o} WA pol(52)o)

Here, { £i%(@ |x,) ls=o}™ 1Y) means the (n—1,1) part of £i3(@ |v,) |s=o and
A means the inner product, and the equality means in HY(V, p, A" H(T'V, 5)*).

In this note, for brevity, we take a constant function 1 in the moduli algebra,
as a represetative (the other representatives, the same argument follows), and
consider the corresponding family of deformations {V,7(z),C} of V4, where
V = C?*1 and n(2) = f(2), 7~ 1(t) = {z: z € C**1, f(2) = t}. For this defor-
mation, we have a corresponding Kodaira-Spencer class.By choosing, a proper
C®-trivialization and a holomorphic (n,0) form, we look for the corresponding
harmonic form. In Sect.2, we set C'°°-trivialization, and in Sect.3, we discuss a
holomorphic (n,0) form.

2 (- trivialization

For the family, constructed in Sect.1, {V, m(z), C}, we construct a C*° trivial-
ization, which preserves the standard induced Kaehler metric. First, we set a
Hamiltonian vector field X (for the convenient, we take a (1,0) part) by;

Qonir (X5, W) = df (W), W € T"C™.,

-10-




This flow, generated by Xy, preserves {gn+1. Our Xy is explicitly written as

follows.
'i“:l 7 ;) f a

Set X} ;= = (3= X, f)X 7. This vector field makes sense out side of the origin. Now

consider the ﬁow, generated by X/ - This means that: in mod (¢2,%), we consider
the C° map i;
zi — 2 + (X}zi)t in mod (£2,%).

Then,
flzi + (Xjzi)t) = f(z:) +t  in mod (£,9).

Our X } is not a Hamiltonian vector filed, but still satisfies
Q) =y, mod (£2,%).

Here V; = n71(¢).

3 Holomorphic (n,0) forms along the parameter
space ‘

The C trivialization map i; is determined in Sect.2. In this section, we find a
holomorphic (n,0) form. Let o’ = X}|(dz1 A -+ Adzny1). Then,

Proposition 2.
dzy A+ Adzpp1 =df Aw' on C**! —o.

For the proof, see [AG |. Especially. this proposition means that our ' is
holomorphic along the fiber. While, for any vector field of type (1,0)( we write
it by '), satisfying Yf =0 on V,p,

1

YO =T

)X +Y)[(dz1 A+ Adznga)

also satisfies
dzi A+ ANdzpy1 = df Aw'(Y) on a neighborhood of V, 4 in crtl _o.
Suppose that : there is a type (1,0) vector field Y satsisfying Y f = 0, and and
w'(Y); is purely of type (n —1,1), (3.1)
where w’(Y); is defined by;
P (V) =wl)+ o' (Y)it, mod (£,7),
Then, as our w'(Y) is d-closed on V, 3, we have

5w'(Y)1 = 0, Bw'(Y)l = 0

-11-



Furthermore as i, preserves (2 |y, ,, our w'(Y); satisfies
Q [Va,b /\w'(Y)1 = 0.

We recall some the Hodge identities, +/—16" = [A, 8], and for the middle di-
mension, [L, A] = 0. So, we have

8" (Y); = 0.
Hence the problem is to find such a type (1,0) vector field Y satisfying (3.1).

4 The ordinary double points
Let
f=2++22.,
And consider
Vap={z2€C™, 22+ + 2,41 =0,a <| 2| b}.

In this case, the situation is quite simple. In fact, take the C°°-trivialization,
13, defined in Sect.2, and take the holomorphic (n,0) form «’, defined in Sect.3.
Consider

fjw' =W +wit mod (£,7).
Then our w/ is purely of (n—1, 1)-type(see [AGL]). Therefore this w] is automat-
ically a harmonic form by the Hodge identities. However, for A;-singualrities(l #
1), this is not true. In the next section, we sketch how to remedy this point.

5 The Euler vector field

For A; singularities, there is the Euler vector field. Let f = z2+---+22 + 253}
Then on Vo = {2 : z € C™*1, f(z) = 0,a <| z |< b}, there is the Euler vector
field

!
1 d] 1 8
F=32 5 * T4 1omm
We adopt gF as for Y in Sect.3. Namely, consider the holomorphic (n,0) form

W(g) = E+1—gE)—f(Xf +gE)|(dz A~ Adzns1).

Here g is an arbitrary complex valued C° function. We choose a C* function
g satisfying (3.1)(in the notation in Sect.3, Y = gE).

Remark The holomorphic (n,0) form E|(dz; A --- A dzp41), restricted to
Va,b, vanishes. And E|(dz; A--- Adzn41), on f(2z) =t, is a closed (n,0) form.
This corresponds to a vanishing cycle(Lagarange submanifold).

Theorem 3. Let f = 27 +---+ 22 + z[tY. Then,
H (Va5 AV 1T Vap)*) =

{616 € T(Vaos A" HT Vap)* N\ AT"Vap)")), 36 = 0,8"¢ = 0}.
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The (n,0) part of the coefficient of ¢ of i} (E](dz1 A -+ A dzn+1)), is pro-
portional to w’. We write it by; hw’(here h is a C* function on Vap). Ifh
never vanishes, then by taking a suitable g, we can control (n,0) part. For 4;
singularities, this C function A does not vanish on Vj p(this is proved by a
direct computation). So, taking a proper g, we can cancel the (n,0) part of the
coefficient of ¢ of

iy’ (g).

Hence, we have a type (n—1,1) differential form which satisfies (3.1), and corre-
sponds to the Kodaira-Spencer class of the family of deformations (V,n(z),C).
The other deformations are the same. :
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DISCRETE SPECTRUM OF QUANTUM TUBES

CHRISTOPHER LIN AND ZHIQIN LU

A quantum tube is essentially a tubular neighborhood about an im-
mersed complete manifold in some Euclidean space. To be more pre-
cise, let X — R™* k > 1, n = dim(X), be an isometric immersion,
where X is a complete, noncompact, orientable manifold. Then con-
sider the resulting normal bundle 7+ X over ¥, and the submanifold
F = {(z,¢)|z € X,|¢ < r} C T+X for r small enough. The quan-
tum tube is defined as the Riemannian manifold (F, f*(ds%)), where
ds% is the Euclidean metric in R™™* and the map f is defined by
f(z, &) = z+ & If k = 1, then the quantum tube is also called the
quantum layer. The immersion of X' means that the resulting image
of F under f in R™* can have intersections. Moreover, since X can
have quite complicated topology in general, f(F') can too. However,
by doing our analysis on F directly (with the pull-back metric), these
complications are naturally bypassed (cf. [1, 5]).

Although on noncompact, noncomplete manifolds there is no unique
self-adjoint extension of the Laplacian acting on compactly supported
functions, we can always, via the Dirichlet quadratic form define the
Dirchlet Laplacian Ap, which is the self-adjoint extension that reduces
to the self-adjoint Laplacians defined on complete manifolds and com-
pact manifolds with Dirichlet boundary conditions. Therefore we can
proceed to perform spectral analysis, in particular, on the quantum
tube. Geometers, like physicists, are first and foremost interested in
the existence and distribution of the discrete spectrum. For noncom-
pact manifolds this is in general not an easy task at all. However,
using standard variational techniques, the authors Duclos, Exner, and
Krejéifik were able to, in an interesting paper [2], prove the existence
of discrete spectra for the quantum layer (corresponding to n = 2 and
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2 CHRISTOPHER LIN AND ZHIQIN LU

k = 1 in our defintion) under certain integral-curvature conditions on
X Since the discrete spectrum are isolated eigenvalues of finite multi-
plicity, their result is even better, especially in the physical sense since
the discrete spectrum is composed of energy levels of bound states of a
nonrelativistic particle. Our definition of the quantum tube improved
theirs in [2] and we were able to generalize the same existence result
to the quantum tube. The challenges in our attempt at generalization
were mainly geometrical, as we sought to replace the necessary geomet-
ric conditions with appropriate higher dimensional analogs so that sim-
ilar variational techniques from [2] can be applied meaningfully. One
notable observation that arised is the sharp contrast between parabolic
and non-parabolic manifolds.

The main result in [5] is as follows:

Theorem 1. Let n > 2 be a natural number. Suppose & C R™*! is a
complete immersed parabolic hypersurface such that the second funda-
mental form A — 0 at infinity. Moreover, we assume that

n/2] n/2]
(1) Z pox Tr(RF) is integrable and / ,ungfr(’R,k)dZ' <0,
k=1 Z =1

where po; > 0 for k > 1 are positive computable coefficients; [n/2] is the
integer part of n/2, and R is the induced endomorphism of A% (T,X)
by the curvature tensor R of L. Let a be a positive real number such
that al|A]] < Cy < 1 for a constant Co. If ¥ is not totally geodesic,
then the ground state of the quantum layer Q exists.

In [6], we generalized the above results to high codimensional cases:

Theorem 2. Let (F, f*(ds%)) be an order-k quantum tube with radius r
and base manifold X of dimension n such that the second fundamental
form goes to zero at infinity. Moreover, we assume that X is a parabolic
manifold, ZL":/? pop Tr(RF) integrable, and

' [n/2]
2 |3 mmmias <o
>l

If X is not totally geodesic, then the gmuhd state of the quantum tube
from ¥ exists.

By applying the above result into two dimensional case, we get
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DISCRETE SPECTRUM OF QUANTUM TUBES 3

Corollary 1. Suppose that T is a complete immersed surface of R**
such that the second fundamental form A — 0. Suppose that the Gauss
curvature is integrable and suppose that

(3) (%) - YA <0,

where e(X) is the Euler characteristic number of ¥; X; is the isoperi-
metric constant at each end of ¥, defined as

A = lim Vol(Bz(r))
r—co T
at each end E;. Let a be a positive number such that allAl| < Cy < 1.
If T is not totally geodesic, then the ground state of the quantum layer
Q ezists. In particular, if e(X) < 0, then the ground state exists.

We remark here that in the proof of Theorem 2 (and so as in Theorem
1 and the analogous result in [2]), the asymptotically flat condition on
X ensures that we get a lower bound on the bottom of the essential
spectrum, while condition 2 (along with parabolicity) enabled us to
show that such a bound is also a strict upper bound for the total spec-
trum. In this way, we were able to conclude that the discrete spectrum
must be non-empty. It seems intuitive that the asymptotically flat
condition on X is essential for there to be discrete spectra, since only
the “relatively-curved part of 2” located in the “interior” of X will
trap a particle. If X is curved more-or-less the same everywhere, then
a particle may be equally likely to be anywhere since the “terrain” is
more-or-less indistinguishable everywhere. The preceding is of course
a physical intuition coming from the interpretation of our problem as
a problem in non-relativistic quantum mechanics, however, it serves to
motivate the idea that other global curvature assumptions similar to
(2) may also provide the existence of ground state on quantum tubes.

From Corollary 1 (and the result in [2]), it is natural to make the
following

Conjecture. Suppose T is an embedded asymptotically flat surface in
R3 which is not totally geodesic and the Gauss curvature is integrable.
Then the ground state of the quantum layer built from ¥ exists.

We have partial results in this direction [8]:

Theorem 3 (Lu). Suppose £ is asymptotically flat but not totally ge-
odesic in R3. If the Gauss curvature of ¥ is positive, then the ground
state exists for the quantum layer.

-16-




4 CHRISTOPHER LIN AND ZHIQIN LU

In general, we have the following result:

Theorem 4 (Lu). Suppose ¥ is asymptotically flat but not totally ge-
odesic in R® and suppose the Gauss curvature is integrable. Let H be
the mean curvature. If there is an € > 0 such that

— 1
(4) fim = / Hds
B(r)

r—=o0o T

> g,

then the ground state of the quantum layer exists.

Let’s make some remarks on the above results. By the work of [2],
we only need to prove the conjecture under the assumption that

/Kd2>0.

By a result of Hartman [4], we know that

(5) /Kdz—e ()= A

Thus we have e(Z) > 0, or e(X) > 1. Let g(X) be the genus of ¥, we
then know ¢(X) = 0 and ¥ must be differmorphic to R?, which is a
very strong topological restriction.

On the other hand, we have the following lemma:

Lemma 1. Under the assumption that [, Kd% > 0, there is an € > 0
such that

— 1
lim =~ |H|dE > e.
T T JB(r)

Proof. Since ¥ is differmorphic to R2, by (5)
0</2Kd2§27r<47r.
Thus by a theorem of White [9], we get the conclusion.
O
We believe (4) is true under the same assumption as in the Lemma.

The above results confirmed the belief that the spectrum of the quan-
tum tube only depends on the geometry of X, its base manifold. With
regard to the geometry of X' (or any complete, noncompact manifold
for that matter), the volume growth (of geodesic balls) is an important
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DISCRETE SPECTRUM OF QUANTUM TUBES 5

geometric property. Roughly speaking, complete, noncompact mani-
folds can be separated into those with at most quadratic volume growth
and those with faster volume growth. They are termed (very roughly)
parabolic and non-parabolic, respectively. It is the property of parabol-
icity assumed on X' that allowed us to prove the existence of discrete
spectra on quantum tubes. However, if one looks at the hypothesis of
Theorem 2, where X' is required to have vanishing curvature at infin-
ity while being immersed in Euclidean space, it is highly likely that %
will not be of at most quadratic volume growth if dim(X) > 2, hence
unlikely to be parabolic. However, one can be sure that the set of base
manifolds satisfying the hypothesis of Theorem 2 is not empty, due to
an example provided in [5]. Nevertheless, it is clear that if one were to
maintain the assumption of asymptotic flatness of X, then one should
begin paying attention to the situation when X' is non-parabolic.

Although we do not yet have a result specifically for quantum tubes
over non-parabolic manifolds, there is the following preliminary result
for general (possibly non-parabolic) base manifolds (see [7]):

Theorem 5. Suppose X is not totally geodesic, satisfies the volume
growth V(r) < Cr™, and whose second fundamental form A goes to
zero at infinity and decays like 72|A]| — 0 as r — co. Moreover,
suppose

. 1
(6) dim o [ > pink

exists(possibly —oo) and strictly less than —3CCim?e?, where Cy is
an explicit constant that depends on the dimension of X, radius of the
quantum tube, and the upper bound on the curvature of X. Then the
discrete spectrum of the quantum tube with base manifold X is non-
empty.

The result above is certainly an overkill if X' is parabolic. Thus we
should think of applying it only to the case of non-parabolic X', where
m > 2. The direct application of the volume growth hypothesis allows
one to use polynomially decaying test functions to obtain the condition
on (6), and in turn obtain the upper-bound for the bottom of the total
spectrum.

Theorem 5 is only a first step towards generalizing the phenomenon
of localization (we mean this to be the existence of ground state) to
quantum tubes over non-parabolic manifolds with similar non-positivy
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6 CHRISTOPHER LIN AND ZHIQIN LU

assumptions on curvature as the parabolic case. One clearly cites the
technical assumption on the decay rate of the second fundamental form,
and one would like to remove it. In addition, the negativity condition
on (6) is very strong. We do not yet know if weaker assumptions such
as (2) are applicable to the case where X' is non-parabolic.
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Multiplier Ideals and b-Function
Morihiko Saito, RIMS Kyoto University

Let X be a complex manifold, and D a divisor defined by f. The multiplier ideal
J(X,aD) is defined by the local integrability of |g|2/|f|?* for a > 0, g € Oy, see
[17]. This is also defined by using an embedded resolution of (X, D), and there are
positive rational numbers oy < --- < a; < --- such that J(X,aD) = J(X, ;D)
for a € [0, aj41) and J(X, ;D) 2 J(X, ;41 D), where J(X, agD) = Ox with
ag = —00, see [12]. These a; (j > 0) are called the jumping coefficients.

Let bs(s) be the b-function (i.e. the Bernstein-Sato polynomial) of f, see e.g. [9].
By definition, it is the monic generator of the ideal satisafying the relation

bi(s)f*=Pf*t in Ox[f s,

where P € Dx|[s]. Let By be the direct image as D-module of the structure sheaf
Ox by the graph embedding iy : X — X x C. This is free over Ox[§;] with the
canonical generator §(f —¢). M. Kashiwara [10] and B. Malgrange [15] constructed
the V-filtration on By and proved the canonical isomorphism

DRx (o<1 G1vBs) = ¥yCx[dim X — 1],

such that the action of exp(—2mid;t) on the left-hand side corresponds to that of
the monodromy 7' on the right-hand side, where DRx denotes the associated de
Rham complex [4]. Here ¢y = Rp,Cx, with p: X; — X, = D a good retraction,
which can be constructed by using an embedded resolution of D, see [5]. It is
well known that f* and s can be identified with §(f — t) and —0;,t respectively so
that Dx|[s]f* is identified with the Dx[s]-submodule of By generated by §(f — t).
This implies the well-known relation between the roots of the b-function and the
eigenvalues of the Milnor monodromy. By [3] we have

J(X,aD) =V*0Ox if a is not a jumping coefficient,

where the filtration V on Ox is induced by the V-filtration on By. If a is a jumping
coefficient (or actually, for any «), we have for 0 < e <« 1

J(X,aD) = V*0y, V°Ox = J(X,(a—¢)D).

The proof can be reduced to the normal crossing case using the theory of bifiltered
direct images. (By [2] this is generalized to the case of arbitrary subvarieties.)
This gives another proof of a theorem of L. Ein, R. Lazarsfeld, K.E. Smith, and
D. Varolin {7] that any jumping coefficients which are less than 1 are roots of
bs(—s). It is well known that the minimal jumping coefficient a; coincides with
the minimal root of bs(—s), see [11].

For z € D, we define bs,(s), oy, by replacing X with a sufficiently small open
neighborhood of z. For a > 0 with 0 < € < 1, the graded pieces are defined by

G(X,aD) = J(X,(a—-¢€)D)/J(X,aD) (= GryOx).

We say that « is a local jumping coefficient of D at z if G(X, D) does not vanish

at z. We have a partial converse of their theorem as follows (see [18]):
1
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Theorem 1. Let o be a root of b, (—s) contained in (0,1). Assume
(i) &f = f for a holomorphic vector field .

(ii) @ < By := min{ay, |y # = is sufficiently near z}.

Then « is a local jumping coefficient of D at z.

This does not hold if either of the two conditions is not satisfied. Condition (ii) is
satisfied if exp(—2mif) is not an eigenvalue of the Milnor monodromy of faty#«z
for any B € [af4,a]. By definition, the jumping coefficients have a periodicity so
that o > 0 is a jumping coefficient if and only if a + 1 is. However, the roots of
bs(—s) do not have such a periodicity and we have to restrict to (apz,1).

As for the relation with the spectrum ([19], [20]), N. Budur [1] proved that, if
G(X,aD) is supported on a point = of D with a € (0, 1), then the coefficient m,
of the spectrum Sp(f,z) = _; mgt? is given by

(0.1) me = dim G(X, aD),.

Indeed, under the above hypothesis, G(X,aD) (= Gr{;Ox) is identified with the
Hodge filtration F™! on the M-eigenspace H™~!(F;, C), for the Milnor monodromy,
where A = exp(—2mia), n = dim X, and F, denotes the Milnor fiber around z.
Note that the spectrum is defined by

Mo = 3,(=1)7"* dim Gr 17 (F, €)

(0.2) .
with p = [n — @], A = exp(—2mia),

~ In the isolated singularity case, (0.1) is closely related to [13], [14], [21], [22]. We
have a generalization of a result of Malgrange [14] as follows (see [18]):

Theorem 2. There is a filtration P on H"}(F,,C) stable by the monodromy,
containing the Hodge filtration F, and having the following property: If A =
exp(—2mia) is not an eigenvalue of the Milnor monodromy at y # z sufficiently
near T, then o is a root of bs,(—s) if and only if Gr%H”‘l(Fz,(C),\ # 0 with
p = [n — a]. Moreover the multiplicity of the root coincides with the degree of the
minimal polynomial of the action of the monodromy on Gr’l’;H Y F,,C),.

This property of the roots of b;(—s) is similar to the definition of the spectrum
(0.2), replacing P with F and the minimal polynomial with the characteristic

polynomial. If f is a homogeneous polynomial, then P coincides with the pole
order filtration P defined by using a meromorphic connection on P*! calculating
H™(F,,C),, see also [6].

We can give a formula for J (X, aD) if D is locally conical along a stratification,
i.e. if D is locally defined by a weighted homogeneous function with nonnegative
weights and the zero weight part, which is the limit of the (local) C*-action, is
given by the stratum passing through the point [18]. This generalizes a formula
of Mustata [16] for a hyperplane arrangement with a reduced equation. A similar
formula has been known for a function with nondegenerate Newton boundary [8].

For a divisor D on a complex manifold, let ap = min{aj, : * € D} where D is
locally defined by f. By a similar argument we have
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Proposition 1. Assume X = C" and D is the affine cone of a divisor Z of degree
d on P*~1. Let Iy be the ideal sheaf of {0} C C". Then we have for o < az

J(X,aD)=TIF with k=[do]—n+1.
In particular, j/d is a local jumping coefficient of D at 0 if n < j < day.

In general az <1, and az = 1 if Z is a reduced divisor with normal crossings,
e.g. if D is a generic hyperplane arrangement. Since dim Z¥ /Igf“ = (”Zﬁl), we
deduce that if Z is a reduced divisor with normal crossings on P"~! then the
coefficients m, and m,,_, of the spectrum Sp(f,0) are (fz :i) for = j/d < 1. This
is the same for homogeneous polynomials with isolated singularity.

In the case of generic central hyperplane arrangements (with reduced equations),
the b-function is determined by U. Walther [23] (except for the multiplicity of the
root —1):

. 2d—2 .
by(s) = (s + )" ] (s + ),
I=n

where d = deg f > n. Here generic central means that it is the cone of a projective
arrangement with normal crossings in P*~!. His formula can be reduced to the as-
sertion that the roots of bs(—s) is strictly smaller than 2 using the above calculation
of the spectrum, see [18]. Walther’s formula shows that, without restricting to the
interval (0, 1), there is no relation between the spectrum and the roots of bs(—s)
(contrary to the case of a homogeneous polynomial with an isolated singularity).
This comes from the difference between the Hodge and pole order filtrations on the
Milnor cohomology in Theorem 2.

Finally, the jumping coefficients and the spectrum of a hyperplane arrangement

are determined by the combinatorial data, as conjectured by Mustata [16].
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SOME RESULTS CONCERNING HYPERBOLICITY IN ALMOST COMPLEX:
MANIFOLDS

HERVE GAUSSIER

This Note introduces some recent results concerning a geometric study of almost complex man-
ifolds. Our main focus, around hyperbolicity, is to exhibit some properties which particularize
nonintegrable structures from complex structures. Most of the results were obtained in joint works
with A.Sukhov [6, 7] and with J.Byun-K.H.Lee {3]. The corresponding references are stated before
each corresponding result.

We recall that an almost complex manifold is a pair (M, J) where M is a real manifold and J is
a (continuous) (1,1) tensor J on M, satisfying J? = —Id.

The local existence of pseudoholomorphic curves was proved by A.Nijenhuis-W.Woolf [14] for
Hoélderian structures : -

Theorem 1. Let (M,J) be an almost complex manifold, where J is Hélderian with ezponent o
(0 < a <1). Then for every p € M there is a neighborhood U of (p,0) in TM such that :

V(g,v) € U,3f : (A, Jst) — (M, J), f(0) = q, df(0)(8/0z) = v.

This statement deserves some comments.

(3) The condition ” f : (A, Jst) — (M,J)” means that f is a pseudoholomorphic disc in M, i.e.
satisfying df o Jg¢ = J o df. Here Js denotes the standard complex structure on C, and more
generallly on C*, n > 1.

(44) From classical elliptic theory, every pseudoholomorphic disc is of class C¥+1: whenever J is
of class Ck*, k€ N\{0}, 0 < e < 1. ,

(#t7) A.Nijenhuis-W.Woolf also proved the persistence of ”small” pseudoholomorphic discs under

deformation of the structure : if J' is an almost complex structure on M such that ||J' — Jljce << 1,
then there exists f': (4, Jst) — (M, J’) such that ||/ — flleo << 1.

Thanks to the local existence of pseudoholomorphic discs one may define the Kobayashi-Royden
pseudonorm Ky, ;) in (M, J) for a Holderian structure J :

Definition 2. For every p € M and for every v € T,M, we set :
Koy =inf{a>0/3f: (A, Js) = (M, J), f(0) = p, df(0)(0/0z) = v}

The upper semi continuity of Kz, sy, proved by H.L.Royden {17] in complex manifolds, relies
on the persistence of pseudoholomorphic discs under perturbation of the parameters p and v. This
stability result is proved in the almost complex setting by B.Kruglikov [10] for smooth C* structures
and by S.Ivashkovich-J.P.Rosay [9] for C1® structures. Finally, the upper semi continuity fails for
Holderian structures; S.Ivashkovich-S.Pinchuk-J.P.Rosay (8] gave an example of a disc that cannot
be deformed.

From now on we will only consider smooth C1* almost complex structures.
Date: 2006-2-6.
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2 HERVE GAUSSIER

By analogy with complex manifolds, the Kobayashi pseudodistance may be defined by integration
of the Kobayashi-Royden pseudonorm :

Definition 3. (i) For every =,y € M the Kobayashi pseudodistance between x and y is given by
di, gy (@, y) = inf{ fol K, (1(t),7'(8))dt}, where the infimum is taken over all C! paths joining
z and y.

(i) (M, J) is (Kobayashi) hyperbolic if d(ps 5y s a distance (this will induce the usual topology
on M)

(i4) (M, J) is complete hyperbolic if the metric space (M,d(a.)) is complete.

Our first result (Corollary 1 in [6]) concerns the local hyperbolicity of almost complex manifolds :
Theorem 4. Every point in (M, J) admits a basis of complete hyperbolic neighborhoods.

This result is classical in complex manifolds. The Kobayashi pseudodistance and the Poincaré
metric being equal on Euclidean balls, such balls are therefore complete hyperbolic and they provide
the desired basis of neighborhoods.

The natural approach in the almost complex setting consists in viewing a nonintegrable structure
on sufficiently small balls, imbedded in C”, as a deformation of the standard integrable structure.
For such small deformations, Euclidean balls are defined by a strictly plurisubharmonic function.
The problem relies consequently on estimating the Kobayashi-Royden pseudonorm on a domain
D = {p < 0} where p is strictly J-plurisubharmonic. This is given by Theorem 1 in [6}, firstly by
proving an attraction property for pseudoholomorphic discs whose center is close to a bounday point
of D and secondly by using a blow-up technique. This scaling method, initiated by S.Pinchuk [15]
in C", has a new feature in the almost complex setting since this involves a deformation both of
the domain and of the almost complex structure.

The scaling process reflects the local geometry of the domain D and emphasizes the osculation of
8D by spheres. The most striking fact is the convergence of the associated dilated almost complex
structures to "model structures”, owing particular properties. To present them we first realize
the almost complex structure as a C1* almost complex deformation of J on the unit ball B, in
Cn, with a special choice of complex coordinates (fitted to the geometry of D). For a positive
real number 7 let A7 be the dilation map defined on C™ by A™('z,2,) = (1712 '2,771z,), where
('z,20) €CP 1 xC. If J, := (AT)(J) = AT0Jo(A7)"! on A™(B,) then lim,_o J; = Jo, uniformly
on compact subsets of C*, where Jj is an almost complex structure defined on C” by the matricial
representation :

(0.1) » Jo(z) = Jot + L('2,0).

Here L('z,0) is a matrix with Ly; =0 for k=1,...,n—1,7=1,...,n, Ly, = 0 and L,;(2,0) are
real linear forms in 'z for j =1,...,n~ 1.

Intuitively the scaling process reduces the local study of (D, J) to the global study of (H, Jg),
where H is the Siegel half space.

The main properties of the "model almost complex manifold” (H, Jy), studied in [7] and by
K.H.Lee in [12], are summerized in the following proposition :

Proposition 5. (iii) Nonintegrable structures define an open dense subset in the space of almost
complez structures defined by (0.1),

(i) The model almost complex manifold (H, Jo) is hyperbolic and strictly pseudoconvez,

(i3) The automorphism group of (H, Jo) is transitive.
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SOME RESULTS CONCERNING HYPERBOLICITY IN ALMOST COMPLEX MANIFOLDS 3

We recall that a domain D in an almost complex manifold (M, J) is strictly pseudoconvex if
every point in 8D has a neighborhood U (imbedded in C™) such that DNU = {z € U : p(z) < 0},
where the Lvi form —d(J*dp) of p is positive on T(D NU). Finally, an automorphism of an almost
complex manifold (M, J) is a diffeomorphism of M satisfying df o J = J o df.

Proposition 5 cancels the Wong-Rosay Theorem in almost complex manifolds. In complex man-
ifolds this is stated as follows (see [18, 16, 15, 5] :

Theorem 6. Let D be a domain in a complez manifold of dimension n. Assume that there is a
point p € 8D, a point ¢ € D and automorphisms ¢¥ of D such that limy,_..c ¢¥(q) = p. If D is
strictly pseudoconvex at p, then D is biholomorphic to the unit ball B in C".

Consider a nonintegrable structure Jy by Statement (i) of Proposition 5. This prevents from
the existence of a biholomorphism between (H,Jg) and (B, Ji:). By Statement (ii), H is strictly
pseudoconvex at the origin and by Statement (iii) there is an orbit of the automorphism group
Aut(H, Jo) which accumulates at the origin in JH.

This new phenomenon may be explained by viewing model nonintegrable almost complex man-
ifolds as degenerate in the following sense. The Cayley transform ('z,2,) — (2'2/(z, — 1), (2n +
1)/(zn — 1)) transforms HU {oo} biholomorphically onto B. This is a particularity of the standard
complex structure. One can indeed prove the following [3] :

Proposition 7. If the model structure Jg is not integrable there is no strongly pseudoconver rela-
tively compact domain D (possibly with a singularity) in an almost complex manifold (M, J) such
that (D, J) is biholomorphic to (H, Jy).

As a corollary of Proposition 7 we have the following version of the Wong-Rosay Theorem, stated
as a generic compactness phenomenon for the automorphism group of almost complex manifolds [3] :

Theorem 8. Let D be a strictly pseudoconvez, relatively compact domain in an almost complex
manifold (M, J). If (D, J) is not biholomorphic to (B, Js) then the automorphism group Aut(D, J)
18 compact.

To prove Theorem 8 we first establish that if an orbit of the automorphism group accumulates
at a strictly pseudoconvex point in the boundary of a domain, then this domain is biholomorphic
to a model almost complex manifold (see [7, 12]). Then we may apply Proposition 7.

Several articles deal with the persistence either of hyperbolicity or, on the opposite, of folia-
tions by entire pseudoholomorphic curves under deformation of the almost complex structure. For
instance, J.Duval proved an almost complex version of a theorem by M.Green, stating that the
complement of five lines in general position in an almost complex projective space is hyperbolic.
On the opposite, the stability of generic foliation by entire pseudoholomorphic curves in a complex
torus was obtained by J.Moser [13] for small deformation of a complex standard structure. The
non hyperbolicity of such a torus, equipped with an almost complex structure tamed by a standard
symplectic form, was proved by V.Bangert [1].

We recall that an almost complex manifold (M, J) is Brody-hyperbolic if this does not contain
any nontrivial entire curve, namely a map f : (C,Js) — (M, J). Every (Kobayashi) hyperbolic
manifold is clearly Brody-hyperbolic, since the Kobayashi pseudodistance vanishes identically on
(C, Jst) and decreases under the action of pseudoholomorphic maps. The converse, for compact
manifolds, is due to Brody [2] in complex manifolds and can be carried out to almost complex
manifolds. This was pointed out by B.Kruglikov-M.Overholt [11] and it implies the following
stability result :
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4 HERVE GAUSSIER

Proposition 9. Let (M,J) be a compact hyperbolic almost complex manifold. If J " is an almost
complez structure on M satisfying |J' — J||craary << 1, then (M, J') is hyperbolic.

For convenience we give a sketch of the proof.

Assume by contradiction that there is a sequence (J,,), of almost complex structures on M such
that ||J = Jllcra(p) —v—oo 0 and such that (M, J,) is not hyperbolic. Consider for every v a
nonconstant entire pseudoholomorphic curve f* : (C,Js) — (M, J,,). Since J, is of class C1o, f¥
is at least of class C2. Let g be any Riemannian metric on M and let |.|| be the associated norm.
We can assume that [|df”(0)(8/8z)|| is different from zero for every v and so, by isotropic dilations,
that ||df¥(0)(8/8z)| — oo when v — oo. Let A, := {X € C: || < ||df¥(0)(8/0z)||/2} and let
g’ (A, Jgt) — (M, JY) be the J,-holomorphic map defined by :

v o 22
=1 (ndf"(oxa/az)n> '
Then g” satisfies, for A € A, :
ldg* (0)(8/02)]| = 1
ldF+(0)(8/02)|

= lldf#(0)(9/0z)I? — 4N
This inequality is the key point in the Brody reparametrization Lemma [2].

dg” (A)(8/0z)]|

By the classical Ascoli theorem we extract from the sequence (g¥), a subsequence, still denoted
by (¢”), that converges uniformly on compact subsets of C to a map g : C — M. It follows from
the C1* convergence of J, to J and from the quasi-ellipticity of J, that g is a J-holomorphic
curve. Moreover the maps g” converge to g, uniformly with their first derivatives, by ”elliptic
bootstrapping”. This contradicts the hyperbolicity of (M, J) since ||dg¥(0)(8/0z)| = 1. g

As an application of the proofs of Theorem 4 and of Proposition 9 we have ([3]) :

Proposition 10. Let D be a relatively compact strongly pseudoconvezr domain in an almost complex
manifold (M, J). If (D, J) is hyperbolic, then (D, J') is complete hyperbolic for every almost complex
structure J' satisfying ||J' — Jllcr.e(p) << 1.

We point out that the assumptions in Proposition 10 are not redundant. Indeed, in contrast with
the complex case, there exist non hyperbolic strongly pseudoconvex domains in almost complex
manifolds (see [9]).

Acknowledgments. This Note was written while I was in delegation at the CNRS, Institut de
Mathématiques de Jussieu. I would like to thank this institution for its hospitality.
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~On surfaces of class VIIj with a cycle of rational
~ curves - Application to bihermitian surfaces

Georges Dloussky
Hayama Symposium - December 2005

1 Introduction

We want to report on non-kihlerian part of Kodaira's classification of compact
complex surfaces. More precisely we are interested in the following situation:
A minimal compact complex surface S is said to be of the class VIIg of Kodaira
if the first Betti number satisfies b1(S) = 1. A surface S is of class VII§ if
moreover n := by(S) > 0; these surfaces admit no nonconstant meromorphic
functions.

The major problem in classification of non-kdhlerian surfaces is to achieve the
classification of surfaces S of class VIIJ. All known surfaces of this class contain
Global Spherical Shells (GSS), i.e. admit a biholomorphic map ¢ : U — V from
a neighbourhood U < €2\ {0} of the sphere S = 8B2 onto an open set V such
that £ = ¢(S%) does not disconnect S. For example Hopf surfaces or blown-up
Hopf surfaces contain GSS. But many minimal examples may obtained: For
instance the following surface S with 52(S) = 3 (the second Betti number b(S)
equals the number of rational curves), where II;, ¢ = 0, 1,2 are blowing-ups and
o is a biholomorphic map onto its image.

oy .
o2
' s
Hl
P
I,
. Blown-up point

C.;] small ball removed

Unit Ball

Cﬁa
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Ajcopiesof A, j€ Z

Universal covering space = U A; N
a(S)=(a;); . ;~(422)

Another example with 14 curves:

a(S)=(42522 292 722 2)
-2 -7

-2
-2 -2 -2 -2 =2

-2

Are there other surfaces 7

2 Surfaces with GSS and foliations

All surfaces with GSS S admit at least one (singular) holomorphic foliation.
We denote.by n = be(S) the second Betti number, D = Dy + --- + Dy, the
maximal reduced divisor, by M(S) the intersection matrix of the curves and by
on(S) = — Z;:ol D? the opposite sum of self-intersections.

Theorem 2. 1 ([4, 10, 9]) If 0,(S) < 3n, then there is a unique foliation
defined by a closed twisted logarithmic 1-form w € H%(S,Q}(LogD)®L¥), where
L* € HY(S,C*) ~ C* is a flat line bundle with k = k(S) = \/|det M(S)] +1 €
N*. Moreover k(S) =1 if and only if on(S) = 2n.

If op(S) = 3n (i.e. S is a Inoue-Hirzebruch surface), there are ezxactly two
foliations defined by twisted logarithmic 1-forms.

It is an open question to know if a surface of class VIIS’ admitting a foliation
contains a GSS, however, if the foliation is induced by a non-trivial vector field,
it is the case [5].

3 Results and conjectures in the general case

Definition 3. 2 Let S be a compact complez surface and m an integer m > 0.
We say that S admits a numerically m-anticanonical divisor (NmAC divisor) if
there ezists a flat line bundle F € H(S,C*) such that H*(S,—-mKs® F) # 0.

2
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The following implications are known, it is conjectured that all these conditions
are equivalent.

GSS=Global Spherical Shell n=b,(8)
NmAC=Numerically m-anticanonical easy
by construction D?=0 or M(S) neg. def.
— N —_— N
VHO+ VHO VHO
. NmAC divisor
GSS 7 rational curves m>0
- D 2

[D-Oeljeklaus-Toma] (2003)  [D] Am.Mat.J.(2005 ?)

l thm Nakamura ‘l
easy

thm Nakamura

trivial
+ -~ + <
VI, VI v
deformation into| deformation into
non-minimal blown-up Hopf chle of
surface —_— surface rational curves

[D] Am. J. Math. (2005 ?)

The main problem is to show the existence of curves. A curve C gives a line
bundle [C] and a line bundle L gives a Chern class ¢;(L) € H%(S,Z). The idea
is to try to do the converse:

By index theorem, b; = b(S), then a theorem of Donaldson [7] gives a Z-
base (E;) of H?(S,Z)/Torsion, such that E;E; = —&;. It is known that p; =
h2(S, ©) = 0 hence the exponential exact sequence implies that these cohomol-
ogy classes can be represented by line bundles L; such that KgL; = L? = —-1.
Indeed, these line bundles generalize exceptional curves of the first kind, and
since S is minimal, they have no section. Over the versal deformation &S — B
of S these line bundles form families £;. We propose the following conjecture
which can be easily checked for surfaces with GSS:

Conjecture 1: Let S be a surface in class VII{ and S — B be the versal
deformation of S ~ Sy over the ball of dimension h!(S,©). Then there exists
u € A, u # 0, and flat line bundles F; such that H%(S,,L;, ® F;) # 0 for
1=0,...,n—1.

We have

Theorem 3. 3 Let S be a surface in class VII] and S — B its versal defor-
mation. If there exists u € B and flat line bundles F; € H'(S,C*) such that
HO%(Sy,Liy ® F;) # 0 fori = 0,...,n — 1, then there is a non empty Zariski
open set U C B such that for all u € U, S, is a blown-up Hopf surface. In
particular, S is a degeneration of blown-up Hopf surfaces.
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If a surface is a degeneration of blown-up Hopf surfaces, the fundamental group
of a fiber is isomorphic to Z x Z;, hence taking a finite covering, once obtains
a surface obtained by degeneration of blown-up primary Hopf surfaces. Notice
that a finite quotient of a surface of class VII] containing a GSS still contains
a GSS [3].

Conjecture 2: Let S be a surface of class VIIJ. If S is a degeneration of
blown-up primary Hopf surfaces, then S contains a cycle of rational curves.

A surface admitting a NmAC divisor, contains a cycle of rational curves.

Theorem 3. 4 Let S be a surface of class VII{. If S admits a NmAC divisor,
then S contains a GSS.

The proof relies on [6]. It is a weak version of

Conjecture 3 (Nakamura [12]). Let S be a surface of class VII. If S
contains a cycle C of rational curves, S contains a GSS.

The proof is based on the fact that, if H1(C,Z) = H1(S,Z), a curve is equiva-
lent in H2(S,Z) to a class of the form L; — >-jer Lj» with I # 0. Intuitively L;
represents an exceptional curve of the first kind and C is then equivalent to an
exceptional curve of the first kind blown-up several times (Card(I) times). It
explains why curves have self-intersection < —2. We recover a characterization
of Inoue-Hirzebruch surfaces by Oeljeklaus, Toma & Zaffran [11]:

Theorem 3. 5 Let S be a surface of class VIIy with bo(S) > 0. Then S is
a Inoue-Hirzebruch surface if and only if there exists two flat line bundles Fy,
Fy, two twisted vector fields 01 € H°(S,© @ Fy), 6, € H%(S,0 ® F,), such that
61 A O2(p) # 0 at at least one pointp € S.

4 Bihermitian surfaces

We apply these results to complete the classification of bihermitian 4-manifolds
M (see [1],[2] [13]), when b1 (M) = 1 and by(M) > 0: A bihermitian surface is a
riemannian oriented connected 4-manifold (M, g) endowed with two integrable
almost complex structures J1, J» inducing the same orientation, orthogonal with
respect to g and independent i.e. Ji(z) # £J2(z) for at least one point x € M.
This structure depends only on the conformal class ¢ of g. A bihermitian surface
is strongly bihermitian if J;(z) # +J2(z) for every point € M. We denote

Dy ={zeM|J(z)=Joz)}, D_={zeM|Ji(z)=—-Jo(x)}, D=D UD_.

The key observation is that under these assumptions, (M, J;), i = 1,2 admit a
numerically anticanonical divisor, more precisely there exists a flat line bundle
L* with t € R%, such that H(S,—K ® L') # 0. Remark that for an odd
Inoue-surface S, i.e. with one cycle C of rational curves, —K + F = C, with
F®2 = O, therefore F = L~! and S cannot have a bihermitian structure.

4
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Theorem 4. 6 Let (M,c,J1,J2) be a compact bihermitian surface with odd
first Betti number.

1) If (M,c, J1, J2) is strongly bihermitian (i.e D = 0), then the complex sur-
faces (M, J;) are minimal and either a Hopf surface covered by a primary one
associated to a contraction F : (C2,0) — (C?,0) of the form

F(z1,22) = (az1 + 825, a0 123),
with a,s€C, 0< o)’ <a<|a| <1, (a™—a™)s=0,

or else (M, J;) are Inoue surfaces SI'{',p art? SNpar:
b S ¥

2) If (M, ¢, J1,J2) is not strongly bihermitian, then D has at most two con-
nected components, (M, J;), i = 1,2, contain GSS and the minimal models S;
of (M, J;) are

o Surfaces with GSS of intermediate type if D has one connected component

e Hopf surfaces of special type (see [13] 2.2), Inoue (parabolic) surfaces or
Inoue-Hirzebruch surfaces if D has two connected components.

Moreover, the blown-up points belong to the NAC divisors.

If moreover the metric g is anti-self-dual (ASD), we obtain

Corollary 4. 7 Let (M,c, J1,J2) be a compact ASD bihermitian surface with
odd first Betti number. Then the minimal models of the complex surfaces
(M’ Ji), 1=1,2, are

e Hopf surfaces of special type (see [13] 2.2),
o (parabolic) Inoue surfacés or
e even Inoue-Hirzebruch surfaces.

Moreover, the blown-up points belong to the NAC divisors.

Details may be found on Arxiv and will be published in Am. J. Math
2005
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Saddle measures for holomorphic endomorphisms of CP?

Henry de Thélin

Let f be a holomorphic endomorphism of CP? of algebraic degree d > 2.

J.E. Fornzess and N. Sibony defined the Green current 7" of f. We can obtain it as
follows. Let L be a generic projective line (the genericity means outside an algebraic subset
of the dual of CP?). Then f~"(L) is an algebraic curve of degree d" and we have :

Theorem. (see [6], [7] and [5])
There is only one limit for the sequence Lj:;;,(—L)—]. This limit is the Green current T'.

The support of this current is exactly the Julia set of f.

Example. If we consider f([z: w :t]) = [2% : w? : t*] in the chart t # 0 then :

T= / [{} x D]dA(9) + / (D x {e}]dA(0) + / [Vs]dA(6)

where X is the Lebesque measure on [0,27], D the unit disk in C and Vo = {(z,w), z =
e?w, |z| > 1}.

The current T has a continuous potential : in particular, we can define the Green
measure g with the formula p:=T AT (see [7] and [8]).
J.-Y. Briend and J. Duval gave an other construction for this measure p :

Theorem. (see [2])
Let v be a generic point of CP2. Then the sequence of probabilities 2z Y en
converges to the measure L.

(vi)=7 On

In the theorem the genericity means that -y is outside an algebraic subset of CP? but
when f is generic the convergence to u holds for all v € CP2.

The dynamical properties of u are given by the following result of J.-Y. Briend and J.
Duval :

Theorem. (see [1] and [2])

The measure (i is the unique measure of mazimal entropy 2log(d) and its Lyapounov
ezponents are greater or equal to L"—géﬂ.

The second part of the previous theorem means that almost every point for p has
two expanding directions and the fact that y is the unique measure of maximal entropy
implies that y is the measure with the richest dynamics for f.

In this talk, we will describe the dynamics of f outside the support of 4. The topological
entropy of f outside this support is smaller than log(d) (see [3]), so, our aim is to have
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measures v of maximal entropy (i.e. log(d)) outside the support of y, and to evaluate their
Lyapounov exponents.

Let L be a projective line of CP? and S be a limit of the sequence S, = Z 1y Z(L) .
We have f,S = dS and the intersection of S with the Green current T° glves a measure
v =T A S which is invariant by f (in fact the hmlt of S, isn’t unique, so we may have a
lot of different measures v).

When f is hyperbolic, J.E. Fornaess and N. Sibony proved in [9] that these measures v
are saddle (i.e. they admit a positive and a negative Lyapounov exponent) and that their
supports are outside the support of the Green measure u.

The goal of this talk is to give the dynamics of these measures in the general case (i.e.
for all f). First of all, we have (see [4]) :

Theorem 1.
The entropy of v is greater or equal to log(d).

In particular when the support of v is outside the support of y (it happens often) then
v is a measure of maximal entropy outside the support of p. So these measures are the
good ones in order to describe the dynamics of f outside the support of p. It remains to
evaluate their Lyapounov exponents.

In the general case, v isn’t ergodic. In particular, we can’t deduce from the Ruelle’s
inequality that v has a positive exponent. However, if we use geometric arguments we can
prove (see [4]) :

Theorem 2.
For v almost every point z, the highest Lyapounov ezponent of v at T is greater or
equal to l°g(d).

Here the highest Lyapounov exponent at the point z is equal to lim,, £ log || D, f*|| and
so this theorem means that for almost every point there is an expanding direction.

The bound of this theorem is sharp : to see this take a polynomial endomorphism
f such that the restriction of f on the line L at infinity is a Lattés map. In this case
the measure v is exactly the equilibrium measure of the Lattés map and so the highest
Lyapounov exponent is equal to 1°g(d)

For the smallest Lyapounov exponent, we have the following theorem (see [4]) :

Theorem 3.
Suppose that v has no mass on algebraic curves. Then for v almost every point T
outside the support of u, the smallest Lyapounov exponent is non-positive.

In particular the measures v are saddle in a weak sense : we have an expanding and a
non-expanding direction for almost every point outside the support of p.

The hypothesis on v (i.e. the fact that v does not put mass on algebraic curves) in the
last theorem is generic on f. Moreover the bound on the smallest exponent is sharp.

Ideas for the proof of the theorem 2 :

We will explain the origin of the dilation.
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First step

We give here the construction of a subdivision of fi(L) into reasonable disks.

Let + be a generic point in CP? and N be a projective line. We can define the projection
7 : CP? — {y} — N by using the pencil of lines through the point . The restriction of w
on fi(L) gives a ramified covering of degree d* between f*(L) and N (it is the Bezout’s
theorem because the degree of fi(L) is d').

The disks in f*(L) will be preimages of squares of N by the map msi(r).

We take a subdivision of N into squares. If we consider a preimage by msi(r) of a
square ¢, we may have a graph (we call it “good component”) or a ramification point (a
“bad component”)

We want to show that the number of good components is greater than the number of
bad components. But we know that the number r of bad components is roughly speaking
equal to the number of ramifications for msi(z). So, by the Riemann-Hurwitz’s formula,
we have :

r+x(f(L)) = x(N)d'

i.e.

r=2d" - 2.

So the number of good components (which is equal to Card. of the subdivision of N x
d* — (2d* — 2)) is greater than the number of bad components and the difference grows up
when the subdivision of NV gets smaller.

To simplify, we suppose now that we have d* good disks (i.e. graphs) A on fi(L) with
radius 1.

Second step

We take the preimages of these d disks by f* which are in L. We obtain d’ disks A,
in L and the number of A; with area greater than Cd~* is smaller than d*/C (because
the area of L is 1). So, for almost every preimage A; we have area(A;) < Cd™.

Now if we reduce a little the disks A and if we use an estimate of J.-Y. Briend and J.
Duval (see the appendix of [2]), we obtain :

diam(A;)? < Karea(A;) < KCd™

for almost all preimage of the d* disks of f*(L) in L.
By using the Cauchy’s formula (and by reducing a little more the disks A), we obtain :
. di/2
D.fY|| 2 ——===
10512 gy

for z in A;.
It implies that we have a lot of points z for which :
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! log(d)
=1 A > =222
lim ~log || D. || > —

This is the estimate that we expected.

In conclusion, the dilation comes from the fact that the area of L is equal to 1 and
the area of f*(L) is equal to d* (i.e. comes from cohomological reasons).

Références

[1] J.-Y. Briend and J. Duval, Ezposants de Liapounoff et distribution des points pério-
diques d’un endomorphisme de CP*, Acta Math., 182 (1999), 143-157.

[2] J.-Y. Briend and J. Duval, Deuz caractérisations de la mesure d’équilibre d’un endo-
morphisme de P*(C), IHES Publ. Math. , 93 (2001), 145-159.

[3] H. de Thélin, Un phénoméne de concentration de genre, Math. Ann., 32 (2005),
483-498.

[4] H. de Thélin, Sur la construction de mesures selles, to appear in Ann. Inst. Fourier.

[5] C. Favre and M. Jonsson, Brolin’s theorem for curves in two complezr dimensions,
Ann. Inst. Fourier, 53 (2003), 1461-1501.

[6] J.E. Fornass and N. Sibony, Complez dynamics in higher dimension, Complex Po-
tential Theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
439, Kluwer, Dordrecht (1994), 131-186.

[7] J.E. Fornaess and N. Sibony, Complez dynamics in higher dimension I, Astérisque,
222 (1994), 201-231. .

[8] J.E. Fornass and N. Sibony, Complex dynamics in higher dimension II, Ann. Math.
Studies, 137 (1995), 134-182.

[9] J.E. Fornass and N. Sibony, Hyperbolic maps on P?, Math. Ann., 311 (1998), 305-
333.

Henry de Thélin

Université Paris Sud
Mathématiques Bat. 425

91405 Orsay

FRANCE
Henry.De-Thelin@math.u-psud.fr

-38-




Fefferman-Graham metric for even
dimensional conformal structures

Kengo Hirachi

In the paper, Fefferman [F] initiated a program of studying local invari-
ants of CR manifold of dimension 2n — 1 by using a Ricci-flat Lorentz-Kahler
metric on an n + 1 dimensional complex manifold. This program was later
generalized by Fefferman-Graham [FG] to the case of conformal manifold
(M™,[g]); the associated Ricci-flat Lorentz metric g is defined on an n + 2
dimensional real manifold. The metric g is now called the ambient metric
or Fefferman-Graham metric. The ambient metric becomes a standard tool
in CR and conformal geometries, but in CR and even-dimensional conformal
cases the construction of the ambient metric is obstructed at a finite jet and
thus the ambient metric construction of CR/conformal invariants are not
complete. :

In this note, I describe how to improve the construction of the ambient
metric with the intention to get all conformal invariants out of the metric.
(See [H] for the case of CR geometry.) This is an interim report on a joint
project with Robin Graham; but I am responsible for any error in this note.

1. Conformal invariant. Let g = > 7';_, gij(z)dz*dz’ be a metric defined
on a neighborhood of 0 € R®. We want to write down all conformally invari-
ant expressions in the g;;(z) and their derivatives of all orders. To start with,
we consider scalar conformal invariant. Thus a conformal invariant I(g) is a
polynomial in (det g;;)~!, and the derivatives 8°g;;, satisfying two invariance
properties:

(1) I(g) is independent of the choice of the coordinate that represent g;;
and its derivatives.

(2) There is a constant w € R (called the weight of I) such that I(e?* g) =
e**/I(g) for any smooth function f.




The first condition says that I{g) is a Riemannian invariant and the
second says that it is covariant under scaling of the metric. It is well-know

“that the Weyl tensor Wi, the trace free part of the Riemannian curvature, is

a local conformally invariant tensor. Thus any O(n)-invariant homogeneous
polynomial of W;;i; gives a conformal invariant. However, it is not easy to
give even one example of conformal conformal invariant that contain higher
derivatives of the metric.

2. Ambient metric. Let (3, [g]) be an n-dimensional conformal manifold
and 7 : G = {(z,t*g(z)) : £ € M,t > 0} — M be the metric bundle, which
admits an R,-action ds(x,g) = (x,s%g) on each fiber. The tautological 2-
tensor go on G is defined by

9(X)Y) = g(nX,n,Y) for X,Y € T(z G-

The ambient space M of M is an (n + 2)-dimensional manifold that contains
the metric bundle G as a hypersurface and admits an R, -action extending
that on G. The generator of the R -action is denoted by X and the inclusion
is denoted by ¢ : G — M.

An ambient metric for a conformal structure [g] is a Lorentzian metric g

on M that solves Ricci(g) = 0 (to oo-jets along G) such that

(i) vg=go |

(ii) g is homogeneous of degree 2, that is, 817 = s°9.
Theorem ([FG]). If n is odd, the ambient metric g éxz'sts uniquely up to
R, -equivariant diffeomorphisms that fix G.

In odd-dimensions, we can construct all conformal invariant — see Theo-
rem ([FG], [BEG]) below. However, if n is even, the equation for the ambient
metric may not have a smooth solution. We thus consider ambient metrics
with singularities: An (singular) ambient metric for a conformal structure [g]
is a formal solution to Ricci(g) = 0 along G such that:

(i) g=2go
(ii) Let @ = g(X, X), then g admits an expansion

=99+ g (@10gQ)",

k=1

where each ¢ has homogeneous degree 2 — nk.

o
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(iii) VxX = X (it means that R,-orbits are parametrized geodesics.)

Note that (iii) implies that @ is a smooth function even thought g is
not. Such g always exits and then @ is shown to be smooth. If n is odd,
singular ambient metric is shown to be smooth and we get nothing new (The
condition (iii) follows from other ones).

Theorem. If n is even, the (singular) ambient metric g exists for any
conformal structure [g].

In even-dimensions, the ambient metric is not unique (even up to diffeo-
morphisms). However, we can parametrize the family of ambient metrics for
a fixed [g] by a two tensor appears in the n/2-jet of g(®.

3. Invariant theory. We now construct conformal invariants by using the
ambient metric. If n is odd, we define R®?) = VPR be the p-th iterated
covariant derivative of the curvature of §. If n is even, we define R® to be
that for the smooth part ¢/® of §. Let £ be the volume form of § and set

g0 = XE.

Then we define scalar valued functions by taking the following complete
contractions (with respect to g):

contr(R(pl) ® P ® R(pd)),
contr(R(”l) ® - -® RP) & &),
contr(R(pl) ®---® RP) @ £o)-

Such a contraction defines an R -homogenous function W on M. Since a
metric g € [g] defines a section Sy of G — M, the composition W := Wo Sy
gives a function on M. We call such functions Weyl invariants. If n is odd,
we can shown that W depends polynomially on the jets of the metric and
thus define a conformal invariant of weight Z‘;:l(—pj - 2).

Theorem ([FG], [BEG]). If n is odd, all Weyl invariants are conformal
invariants, and all conformal invariants are given as linear combinations of
Weyl invariants.

If n is even, the ambient metric is not unique and thus Weyl invariant
may not determined by the conformal structure. However, there are many
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linear combinations of Weyl invariants that are independent of the choice of
the ambient metric. In fact, we have

Theorem. Ifn, each conformal invariant is written as a linear combination
of Weyl invariants and exceptional invariants.

Exceptional invariants are another class of invariants studied by Bailey
and Gover [BG]|. They exit only when n is divisible by 4 and weight is —n,
and their construction in terms of R®) is well-understood.

This theorem does not tell which linear combination of Weyl invariants
gives conformal invariants. It is the main open problem and we only have
some sufficient conditions. For example,

Proposition. Let n be even. Weyl invariants of degree d of weight >
—2(d — 1) — n are conformal invariants.
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THE ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL ON
NON-COMPACT MANIFOLDS
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The asymptotic of the Bergman kernel on high tensor powers of a line bundle has
attracted a lot of attention recently.

Let (X, ©) be a Hermitian manifold of dimension n, where © is the (1, 1) form associ-
ated to a hermitian metric on X. Given Hermitian holomorphic line bundle L on X, we
consider the space of L2 holomorphic sections H, ?2) (X, LP) in the tensor powers LP = L%P.

Let Py(z,7'), (z,2' € X) be the Schwartz kernel of the orthogonal projection F, from
the space L*(X, L?) of L* sections of L? onto H{, (X, L?) with respect to the Riemann-
ian volume form dvx(z’) associated to (X, ©). Then by the ellipticity of the Kodaira-
Laplacian and Schwartz kernel theorem, we know Py(z, z') is €. Choose an orthonormal
basis (SP)2, (d, € NU{oo}) of H{,(X, L?). The Bergman kernel can then be expressed
as

Po(z,2) =D 5¥(x) ® (SU(2))" € (L) ® (I7);

Moreover its restriction on the diagonal has the form

dp
B,(z) = Py(z,z) = Z |5?(z)]* e R.

We denote by Kx = det(T*(9X) the canonical line bundle of X and by Rt the Ricci
curvature of © (i.e. the curvature of Kx induced by ©). The line bundle L is supposed
to be positive and we set

VI,

27
We denote by gZX the Riemannian metric associated to w and by rX the scalar curvature
of g¥*. Moreover, let a; < ... < a, be the eigenvalues of w with respect to ©. The

torsion of © is defined by T" = [i(©), 06, where i(©) is the contraction with ©. We have

the following result.
1
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2 XIAONAN MA AND GEORGE MARINESCU

Theorem 1 ([2]). Assume that (X, 0) is a complete Hermitian manifold of dimension
n. Suppose that there exist € > 0, C > 0 such that one of the following assumptions
holds true:

(1) vV-1RF >e0, +-1R*>-CO, |T|<CO

Then the kernel Py(z,z") has a full off-diagonal asymptotic ezpansion uniformly on com-
pact sets of X x X. FEspecially, there ezist coefficients b, € €°(X), r € N, such that for
any compact set K C X, any k,l € N, there exists Cy; x > 0 such that forp € N,

k
1
—B - b, " < —k-1,
" p(Z) ; (z)p ) kLKD
Moreover, bg=a;---a, and
by = u[rx - 2Aw(log(a1 - -an)) +4iRE(vw T, )]
87r w = 573 Ywhg ’

where {v,;} is an orthonormal basis of (T X, gTX).

Let us remark that if L = K, the first two conditions in (1) are to be replaced by
(2) h is induced by © and v—1R%" < —¢®©.

Moreover, if (X, ©) is K&hler, the condition on the torsion is trivially satisfied.
The proof is based on the observation that the Kodaira-Laplacian O, = 8" 9 acting
on L*(X, L?) has a spectral gap of the form

Specd, C {0} U [2ppo — Cr,0)

where pg = inf e x a1(z) and Cf, is a constant which depends on the geometry of L and
X. The technique from [2] apply then and deliver the result.

Theorem 1 has several applications e.g. holomorphic Morse inequalities on non-compact
manifolds (as the well-known results of Nadel-Tsuji [6], see also |2, 8}) or Berezin-Toeplitz
quantization (see [4] or the fothcommimg [3]).

We will emphazise in the sequel the Bergman kernel for a singular metric. Let X be a
compact complex manifold. A singular Kdhler metric on X is a closed, strictly positive
(1,1)-current w. If the cohomology class of w in H?(X,R) is integral, there exists a
holomorphic line bundle (L, kL), endowed with a singular Hermitian metric, such that
%RL = w in the sense of currents. We call (L, k%) a singular polarization of w.

If we change the metric h”, the curvature of the new metric will be in the same
cohomology class as w. In this case we speak of a polarization of [w] € H%(X,R). Our
purpose is to define an appropriate notion of polarized section of L?, possibly by changing
the metric of L, and study the associated Bergman kernel.

—44-




THE ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL 3

Corollary 2. Let (X,w) be a compact complex manifold with a singular Kéhler metric
with integral cohomology class. Let (L, h*) be a singular polarization of [w] with strictly
positive curvature current having singular support along a proper analytic set . Then
the Bergman kernel of the space of polarized sections

H (XS, I7) = {ue L2X \%,I7, 0p ,hE): 3" u=0
(2) 2 £

has the asymptotic expansion as in Theorem 1 for X \ ¥, where ©p is a generalized
Poincaré metric on X N\ X and h¥ is a modified Hermitian metric on L.

Using an idea of Takayama [7], Corollary 2 gives a proof of the Shiffman-Ji-Bonavero-
Takayama criterion, about the characterization of Moishezon manifolds by (1,1) positive
currents.

We mention further the Berezin-Toeplitz quantization. For a complex manifold X,
let €2 ,(X) denote the algebra of smooth functions of X which are constant outside a

compact set. For any f € €2,(X) we denote for simplicity the operator of multiplication
with f still by f and consider the linear operator

(3) Tip: (X, LP) — L*(X,L7), Tip=PF,fF,.

The family (T} ,)y>1 is called a Toeplitz operator. The following result generalizes [1] to
non-compact manifolds.

Corollary 3. We assume that (X,0) and (L,hl) satisfy the same hypothesis as in
Theorem 1. Let f, g € €2,(X). The product of the two corresponding Toeplitz operators
admits the asymptotic expansion

Ty pTp = EP_TTCr(f,g),p +O(p™)

r=0

where C, are differential ope’rators. More precisely,

1
C 3 = ’ C 3 - C ’ = —7—1J»
o(f,9)=Ffg, Ci(f,9)-Cilg, f) \/—_1{f g}
where the Poisson bracket is taken with respect to the metric 2rw. Therefore
Tty Top] = p—lT—\/l_——l{f,g},p + ﬁ(p_2)

If we wish to consider more general class of functions as €20, (X) we have to impose
some restrictions on the geometry of X at infinity.

Finally, we refer the reader to the contribution of Ma and Zhang [5] for further aspects
of the Bergman kernels.

- 45—




4 XIAONAN MA AND GEORGE MARINESCU

REFERENCES

[1] M. Bordemann, E. Meinrenken, and M. Schlichenmaier, Toeplitz quantization of Kdhler manifolds
and gl(N), N — oo limits, Comm. Math. Phys. 165 (1994), 281-296.

[2] X. Ma and G. Marinescu, Generalized Bergman kernels on symplectic manifolds, C. R. Math. Acad.
Sci. Paris 339 (2004), no. 7, 493-498. The complete version available at arXiv:math.DG/0411559.

[3] , Toeplitz operators on symplectic manifolds, Preprint.

[4] , Holomorphic Morse inequalities and Bergman kernels, book in preparation, (2005).
[5] X. Ma and W. Zhang, Bergman kernel and geometric quantization, in these Proceedings.
(6]

6] A. Nadel and H. Tsuji, Compactification of complete Kihler manifolds of negative Ricci curvature,
J. Diff. Geom. 28 (1988), no. 3, 503-512.

[7] S. Takayama, A differential geometric property of big line bundles, T6hoku Math. J. 46 (1994),
no. 2, 281-291.

[8] R. Todor, I. Chiose, and G. Marinescu, Morse inegualities for covering manifolds, Nagoya Math. J.

163 (2001), 145-165.

CENTRE DE MATHEMATIQUES LAURENT SCHWARTZ, UMR 7640 pu CNRS, ECOLE POLYTECH-
NIQUE, 91128 PALAISEAU CEDEX, FRANCE
E-mail address: ma@math.polytechnique.fr

FACHBEREICH MATHEMATIK, JOHANN WOLFGANG GOETHE-UNIVERSITAT, ROBERT-MAYER-STR.
10, 60054 FRANKFURT AM MAIN, GERMANY
E-mail address: marinesc@math.uni~frankfurt.de

—46-




BERGMAN KERNELS AND GEOMETRIC QUANTIZATION

XTAONAN MA AND WEIPING ZHANG

Hayama Symposium on Complex Analysis in Several Variables
18-21 December 2005

In this talk, we explain our recent results on the asymptotic expansion of the Bergman
kernel and its relation to the geometric quantization [8]. The talk of Marinescu [7]
gives further aspects of the Bergman kernel. The interested readers may find complete
references in [3], [5], [8], especially in the forthcoming book [6].

Let (X,w) be a compact symplectic manifold of real dimension 2n. Assume that there
exists a Hermitian line bundle L over X endowed with a Hermitian connection V% with
the property that *_I1RL = w, where Rl = (V%)? is the curvature of (L,V%). Let
(E, h?) be a Hermitian vector bundle on X equipped with a Hermitian connection V¥
and R denotes the associated curvature.

Let g7X be a Riemannian metric on X. Let J : TX — TX be the skew—adjoint linear
map which satisfies the relation

(0.1) w(u,v) = g7% (Ju,v)

for u,v € TX. Let J be an almost complex structure such that 7% (Ju, Jv) = g7%(u, v),
w(Ju, Jv) = w(u,v), and that w(-, J-) defines a metric on TX. Then J commutes with
J and J = J(=J?)"/2. Let VTX be the Levi-Civita connection on (T'X, ¢¥¥) with
curvature RTX and scalar curvature X, and V7¥X induces a natural connection V9
on det(TM9X) with curvature Rt and the Clifford connection VCf on the Clif-
ford module A(T*®VX) with curvature R, The spin® Dirac operator D, acts on
Q%(X, [ ® E) = @,_, "X, [? ® E), the direct sum of spaces of (0,g)~forms with
values in I? ® E. We denote by D} the restriction of D, on Q****(X,[? ® E).

Let G be a compact connected Lie group with Lie algebra g and dim G = ny. Suppose
that G acts on X and its action on X lifts on L and E. Moreover, we assume the G-
action preserves the above connections and metrics on TX, L, E and J. Then Ind(D;“ ) is
a virtual representation of G. Denote by (Ker D, )¢, Ind(D;")¢ the G-trivial components
of Ker Dy, Ind(D}) respectively. ,

The G-invariant Bergman kernel is PS(z,z’) (z,2' € X)), the smooth kernel of PS,
the orthogonal projection from (Q2%*(X,[?® E),{ )) on (Ker D,)¢, with respect to the
Riemannian volume form dvx(z’). The purpose of this paper is to study the asymptotic
expansion of the G-invariant Bergman kernel Pf (z,2') as p — oo, and we will relate it
to the asymptotic expansion of the Bergman kernel on the symplectic reduction X¢.

Theorem 0.1. For any open G-neighborhood U of P in X, &g > 0, [,m € N, there
exists Cim > 0 (depend on U, g¢) such that forp > 1, z,2’ € X,d(Gz,z') > € or
1

—47-




2 XIAONAN MA AND WEIPING ZHANG

z, ' € X\U,

(0.2) |Pf($, ')|gm < Crmp ™

where €™ is the €™-norm induced by V¥, VE, VIX, bt hF, g™x,

Assume for simplicity that G acts freely on P. Let U be an open G-neighborhood of
1 ~1(0) such that G acts freely on U. For any G-equivariant vector bundle (F, V¥) on
U, we denote by Fp the bundle on U/G = B induced naturally by G-invariant sections
of F on U. The connection V¥ induces canonically a connection V¥ on Fg. Let RfB
be its curvature. We denote also uf(K) = VE — L € End(F) for K € g. Note that
PS¢ € (€=U x U,pr}E, ® pr;E;))¢*°, thus we can view Py (z,2’) as a smooth section
of pr}(E,)p ® pr3(E;)p on B x B.

Let g% be the Riemannian metric on U/G = B induced by g7*. Let VT2 be the
Levi-Civita connection on (T'B, gT8) with curvature R72. Let Ng be the normal bundle
to X¢ in B. We identify Ng with the orthogonal complement of T'X¢ in (T B|x,, g*B).
Let gTX¢, gMe be the metrics on T' X, Ng induced by g72 respectively. Let PTXc, PNc
be the orthogonal projections from TB|x, on T X¢, Ng respectively. Set

(03) vNG — PNG (VTBIXG)PNG7 vTXG — PTXG(VTBIXG)PTXG,
oV =T g Ve, A=VTP -0V,

Then V¢ 9V”® are Euclidean connections on Ng, TB|x; on Xg, VTX¢ is the Levi-
Civita connection on (T Xg,g?*¢), and A is the associated second fundamental form.
We denote by vol(Gz) (z € U) the volume of the orbit Gz equipped with the metric
induced by ¢7X. Let h(z) be the function on U defined by

(0.4) h(z) = (vol(Gz))Y/2.

Then h reduces to a function on B. We denote by Iggz the projection from A(T*®Y X)®
E onto C ® E under the decomposition A(T**YX)® E=C® E & A>TV X)® F,
and Icgr, the corresponding projection on B.

In the whole note, for any zq € Xg, Z € Ty, B, we write Z = Z° + Z+, with Z° €
TooXg, Z* € Nga,. Let 1202+ € NG,expffoG 29 be the parallel transport of Z+ with

respect to the connection V¢ along the geodesic in Xg, [0,1] 3 t — expXc(tZ°). For
g0 > 0 small enough, we identify Z € T, B, |Z] < & with expoXG(Zo)('rZoZL) € B,
€XPz

then for = € Xg, Z,2' € T, B, |Z|,|Z'| < &9, the map ¥ : TB|x, x TB|x, — B x B,
\IJ(Z’ Z/) = (expipfoc(zo)(TZOZ_L)?expipfoG(Z’O)(TZ'OZ-L))

is well defined. We identify (E,)p 2z to (Ep)B, by using parallel transport with respect
to VBB along [0,1] 3 v — uZ. Let mp : TB|x, x TB|x, — Xg be the natural
projection from the fiberwise product of T'B|x, on X onto Xg. From Theorem 0.1,
we only need to understand PPG o ¥, and under our identification, Pf’ oW¥(Z,Z") is a
smooth section of 7% (End(E;,)p) = 75(End(A(T*OVX)® E)g) on T'B|x, x TB|x. Let
| lgm(xs) Pe the €™-norm on ¥*(X¢, End(A(T**VX) ® E)p) induced by V2,
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VEs, hF and ¢g™*. The norm | |gm (x,) induces naturally a %™ -norm along X¢ on
F°(TB|x; x TB|xg, m5(End(A(T*®VX) ® E)p)), we still denote it by | |em (xs)-

Let dvx,, duy, be the Riemannian volume forms on (Xg,g"*¢), (Ng, gN¢) respec-
tively. Let kK € €°(TB|x;,R), with K = 1 on X, be defined by that for Z € T, B,
zo € Xg,

(0.5) dvp(zo, Z) = K(zo, Z)dvr, B(Z) = K(0, Z)dvxs(To)dUNg ., -
The following result is one of our main results.

Theorem 0.2. Assume that G acts freely on u~*(0) and J = J on p~'(0). Then there
ezist 94(Z,Z") € End(A(T*®VX) ® E)p 4, (20 € X, 7 € N), polynomials in Z, Z" with
the same parity as r, such that if we denote by

(0.6) PiNZ,2"y = Q.(2,Z)P(Z,Z"), Qu(Z,Z') = Icers
with
(0.7) P(Z,2') =exp ( - -723|ZO — 2 — /=1 (Jo, 2°, Z’°>)

x 27 exp ( - (| Z+? + IZ”“IQ)),
then there exists C” > 0 such that for any k,m,m',m"” € N, there ezists C > 0 such that
fO’f’ Zg € XG', Z, RS TmOB, IZ', lZ’I < gg,
Plal+le]

0.8) (14 /p|Z%| + /B2 )™ —_
(0.8) (1+vpIZ7[+VPIZZ)™  sup |-

|a]+|a/|<m

( 3 (hied)(2) (he})(Z)ES 0 W(Z, 2') = 3 P /B2, /B2 )0 5)

r=0

g™ (Xc)
< Cp"(k+1—m)/2(1+\/ﬂZO| +\/ll_)lZI0|)2(n+k+2)+meXp(—\/ﬁ\/ﬂZ—le)—}-ﬁ(p_oo).

Let  denote the restriction to Xg of the function h. Let #, be a section of End(A(T*®V X)®
E)p on X defined by

09)  Flzo) = / 13 (20, Z)FS o U((z0, Z), (20, Z))A(0, Z)dvng (Z).
Z€ENg,|Z|<eq
By Theorem 0.1, modulo &(p~°), .#,(z¢) does not depend on &, and
(0.10) dim(Ker D,)C = / Te(7, (zo)|dvxs (20) + O@).
Xe

Theorem 0.3. If (X,w) is a compact Kdhler manifold and L, E are holomorphic vector
bundles with holomorphic Hermitian connections V¥, VE, J = J, and G acts freely
on p~(0), then for p large enough, F(z0) € End(Eg)s,, and there exist ®.(xp) €
End(EG)zo and @ = Idg, such that

(0.11) P (o) — Z<I> (zo)p™

r=0

om’ S Ck,m’p—k—l
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Moreover
1 3 ~ 1
(0.12) Dy (zg) = grﬁf + Z’/—rAXG logh + %Rﬁf(wy,ﬂ)’? .

Here 1%¢ is the Riemannian scalar curvature of (T Xg,g*%¢), Ax, is the Bochner-
Laplacian on Xg, and {w} is an orthonormal basis of TH9 X¢.

Let i : P — X be the natural injection. Let g : €°(P, LFQE)® — €>~(X¢, LL.®Eg)
be the natural identification. Then by a result of Zhang, for p large enough, the map

fgoit i €°(X, [P @ E)° = € (Xg, L ® Eg)
induces a natural isomorphism
(0.13) 0, =mgoi" : H(X,[? ® E)° — H(Xg, L}, ® Eg).

(When E = C, this result was first proved by Guillemin-Sternberg.)

Let dvx,, be the Riemannian volume form on (Xg, g7*¢). Let (, )12 45, be the metric
on L}, ® Eg induced by hl¢ and h¥e. In view of the analytic approach to the geomet-
ric quantization conjecture of Guillemin-Sternberg given in [9], the natural Hermitian
product on €°(Xg, LY, ® Eg) is the following weighted Hermitian product (, );:

(014) <81, 32>71 = /X (Sl, 32>L’(’;®EG (330)7;,2 (11;0) d'UXG (mo)

Theorem 0.4. The isomorphism (2p)~ % o, is an asymptotic isometry from (H°(X, [*®
E)C,(,)) onto (H*(Xg, L% ® Eg),(, );): i.e if {sP} is an orthonormal basis of
(HYX,L[» @ E),{,)), then

(015) ) oush ol =05+ 0 3).

The basic philosophy developed in [3], [5], [6] is that the spectral gap properties for
the operators proved in [2], [4] implies the existence of the asymptotic expansion for the
corresponding Bergman kernels, by using the analytic localization technique inspired by
[1, §11]. The key observation here is that the G-invariant Bergman kernel is exactly
smooth kernel of the orthogonal projection onto the zero space of a deformation of Df,
by the Casimir operator (i.e., to consider D2 — pCas) which has a spectral gap. Thus
the above philosophy applies to the proof of Theorems-0.1, 0.2.
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Holomorphic Functions of Slow Growth on
Coverings of Strongly Pseudoconvex Manifolds

Alexander Brudnyi
Department of Mathematics and Statistics
University of Calgary

1. Introduction

In my talk I consider certain problems for holomorphic functions of slow growth
defined on coverings of strongly pseudoconvex manifolds. The subject was originally
motivated by the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L?
functions on coverings of pseudoconvex manifolds. In turn, in the latter paper the
authors were trying to find a new approach to a problem of Shafarevich on the
holomorphic convexity of the universal covering of a complex projective manifold.
Indeed, according to a Grauert theorem, any complex projective manifold M of
dimension n admits a holomorphic embedding into a strongly pseudoconvex manifold
L of dimension n + 1, with the same fundamental group. Thus the main idea of
[GHS] was to try to develop the complex analysis on coverings L' of L and then,
taking restrictions of holomorphic functions on L' to the corresponding coverings
M'(C L'), to study holomorphic functions on M’.

In [GHS] the von Neumann dimension was used to measure the space of holomor-
phic L2-functions on regular coverings of a strongly pseudoconvex manifold M. In
particular, it was shown that the space of such functions is infinite-dimensional. It
was also asked whether the regularity of the covering is relevant for the existence of
many holomorphic L?-functions on M’ or it is just an artifact of the chosen methods
which requires a use of von Neumann algebras.

In my talk I will show that actually the regularity of M’ is irrelevant for the
existence of many holomorphic functions on M’. Moreover, I will also present a
substantial extension of main results of [GHS]. My method of the proof is completely
different and much easier from that used in [GHS] and is based on the L?-cohomology
techniques, as well as, on the geometric properties of M.

Also in the talk, I will formulate some results related to several interesting
problems posed in the paper [GHS]: theorems on peak points for holomorphic L2
functions on M’, Hartogs type theorems for holomorphic functions of exponential
(:= slow) growth defined in certain infinite domains on M’, some interpolation the-
orems for holomorphic functions of slow growth on M’ etc.

Concerning the Shafarevich problem, the results of {Br1}-[Br5] and [GHS] don’t
imply directly any new results in this area. However, one obtains a rich complex

1
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function theory on coverings of strongly pseudoconvex manifolds L’ (as above). Thus
there is a hope that together with some additional ideas and methods it could give
an information about holomorphic functions on M’(C L'). For now, the strongest
result in this area is due to Eyssidieux [E]. It states that the regular covering of a
complex projective manifold M corresponding to the kernel of all representations
71 (M) = GL,(C), with a fixed n, is holomorphically convex. I also mention another
interesting result in this area proved independently by Campana [Ca} and by myself
[Br6] which states that the universal covering of a complex projective manifold with
a residually solvable fundamental group is holomorphically convex.

2. Formulation of Main Results

2.1. In order to formulate our main results we first introduce some notation and
basic definitions.

Let M cC N be a domain with smooth boundary bM in an n-dimensional
complex manifold IV, specifically,

M={z€e N : p(z) <0} (2.1)

where p is a real-valued function of class C2(£2) in a neighbourhood §2 of the compact
set M := M UbM such that

dp(z) #0 forall ze€bM . (2.2)

Let z1,..., 2, be complex local coordinates in N near z € bM. Then the tangent
space T,N at z is identified with C*. By T<(bM) C T,N we denote the complex
tangent space to bM at z, i.e.,

K3

TEBM) = {w = (wi, .., wn) €TUN) = 3 g—z(z)wj —0}. (23)

i=1

The Levi form of p at z € bM is a hermitian form on TS(bM) defined in local
coordinates by the formula

n 82
L,(w, D) = ———(2)w;Ty, . : (24
j,;l AL )

The manifold M is called pseudoconvez if L.(w,w) > 0 for all z € bM and w €
Te(bM). 1t is called strongly pseudoconvez if L,(w, @) > 0 for all z € bM and all
w# 0, we TH(bM).

Equivalently, strongly pseudoconvex manifolds can be described as the ones
which locally, in a neighbourhood of any boundary point, can be presented as strictly
convex domains in C". It is also known (see [C], [R]) that any strongly pseudocon-
vex manifold admits a proper holomorphic map with connected fibres onto a normal
Stein space. In particular, if M is a strongly pseudoconvex non-Stein manifold of
complex dimension n > 2, then the union Cs of all compact complex subvarieties
of M of complex dimension > 1 is a compact complex subvariety of M.

2
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Without loss of generality we may and will assume that m;(M) = m(N) for M
as above. Let r : N’ = N be an unbranched covering of N. By M’ := r~}(M)
we denote the corresponding covering of M. Also, by bM’ := r~}(bM) and M’ :=
M’ UbM' we denote the boundary and the closure of M’ in N'.

Let dVjs be the Riemannian volume form on M’ obtained by a Riemannian
metric pulled back from N. Let ¢y : N' — R, be such that logy is uniformly
continuous with respect to the path metric induced by this Riemannian metric. By
H3(M') we denote the Hilbert space of holomorphic functions g on M’ with norm

(|, lsrEmE) " (25)

For ¢ = 1, we write H2(M') instead of H2(M").

Let X be a subspace of the space O(M’) of all holomorphic functions on M.

A point z € bM'’ is called a peak point for X if there exists a function f € X such
that f is unbounded on M’ but bounded outside U N M’ for any neighbourhood U
of zin N'.

The Oka-Grauert theorem [G] implies that if M is strongly pseudoconvex and
bM is not empty then every z € bM is a peak point for H%(M). In general it is
not known whether a similar statement is true for boundary points of an infinite
covering M’ of M.

Let us introduce the Hilbert space lpy.(M’) of functions g on 2’ := r~(z),
x € M, with norm

1/2
191262 == (Z Ig(y)l"’w(y)) - (2.6)

yex’
Let 2;, 1 <i < m, be distinct points in M \ Cyy.

Theorem 2.1 If M is strongly pseudoconvez, then

(a) For any f; € lay.,, 1 < i < m, there erists F € H}(M') such that F|,; = f;,
1<1<m;

(b) If v is such that log v is bounded from below on N, then each point in bM' is
a peak point for H(M').

Example 2.2 Let d be the path metric on M’ induced by a Riemannian metric
pulled back from N. For a point 0 € M’ we set d,(z) := d(o,z), € M’. Then as a
function 1 one can take, e.g., e®® with ¢ € R in Theorem 2.1 (a) and with ¢ > 0 in
Theorem 2.1 (b).

Theorem 2.1 gives a substantial extension of one of the main results of [GHS]
(see [GHS, Theorem 02]). Similar results are valid for certain weighted L, spaces
of holomorphic functions on M’. It is worth noting that results much stronger than
Theorem 2.1 can be obtained if M is a strongly pseudoconvex Stein manifold, see
[Brl1], [Br2] for an exposition. '
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2.2. The Hartogs type theorem presented in this section is related to one of the
problems formulated in [GHS].

We retain the notation of the previous section. Consider a domain D C M’ with
a connected piecewise smooth boundary D such that

r(D) CcC M. (2.7)

Next, for a fixed 0 € D we set d,(z) := d(o, z), z € M'. Also, by D C M’ we denote
the closure of D and by O(D) the space of holomorphic functions on D. Now, recall
that a continuous function f on bD is called CR if for every smooth (n,n — 2)-form
w on M’ with compact support one has

/bDf-gw———O.

If f and bD are smooth this is equivalent to f being a solution of the tangential
CR-equations: 0,f = 0 (see, e.g., [KR]).

Suppose that f € C(bD) is a C R-function satisfying for some positive numbers
¢, ¢ the following conditions

1)

If(2)| € e forall z€bD;
(2) for any 23, 22 € bD with d(z1,2) <4

]f(zl) _ f(z2)l S ecmax{do(z1),do(zz)}d(zl, 22) )

Theorem 2.3 There is a constant ¢ = &(c,6) > 0 such that for any CR-function f
on bD satisfying conditions (1) and (2) there ezists f € O(D) N C(D) such that

f]bp =f and |f(z)| < €@ forall ze D.

Remark 2.4 (A) If, in addition, bD is smooth of class Ck 1 < k < oo, and
f € C*(bD), 1 < s < k, then the extension f belongs to O(D) N C*(D). This
follows from [HL, Theorem 5.1].

(B) Condition (2) means that f is locally Lipschitz with local Lipschitz constants
growing exponentially. For instance, from the Cauchy integral formula it follows
that this is true if f is the restriction to D of a holomorphic function of exponential
growth defined in a neighbourhood of bD whose width decreases exponentially.

(C) From Theorem 2.1 it follows that holomorphic functions of exponential growth
on M’ separate points on M'\ C}, where C}; := r~}(Cys). Thus there are sufficiently
many CR-functions f on bD satisfying conditions (1) and (2).

(D) Results much stronger than Theorem 2.3 can be obtained if M is a strongly
pseudoconvex Stein manifold, see [Br2], [Br3].

2.3. In this section we present one of the interpolation theorems for holomorphic
functions on coverings of strongly pseudoconvex manifolds.
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Let Y be a closed complex submanifold of some neighbourhood of M. We set
X =Y N M and assume that
XNCy=0. (2.8)

For a covering r : M’ — M of M as above we set X’ := r~1(X). Next for a function
¥ : N' — R, such that log 1 is uniformly continuous with respect to the path metric
induced by a Riemannian metric pulled back from N we define the Banach space
Ha(X') of functions f holomorphic on X’ with norm

|71 = sup |flag,e
rzeX

where | - |24 . is defined by (2.6). Similarly one defines H, 4 (M').

Theorem 2.5 For every function f € Hau(X'), there ezists a function F € Hyy(M')
such that F = f on X'.

Analogous results hold for spaces of holomorphic functions H,(X') and #;, 4 (M),
1 < p < oo, defined similarly in case 7 : M’ — M is a regular covering of M.

3. Method of the Proof

3.1. The case of coverings of pseudoconvex domains in Stein manifolds is considered
in [Br1]-[Br3]. Our method of the proof is based on the theory of coherent Banach
sheaves together with Cartan’s vanishing cohomology theorems, see, e.g., [Le] for an
exposition.

3.2. In the case of coverings of strongly pseudoconvex (non-Stein) manifolds M we
proceed as follows. First, we construct a complete Kahler metric on M’ \ Cj, for
a covering r : M’ — M. Then we define a specific Hermitian vector bundle on M’
whose space of holomorphic L, sections can be identified with the required space
of holomorphic L, functions on M’. Finally, we apply standard Complex Analy-
sis techniques based on the L, Kodaira-Nakano vanishing theorem for cohomology
groups, see [D], [O], to get the desired results.
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REMOVABLE SINGULARITY THEOREM FOR
PSEUDO-HOLOMORPHIC MAPS

JAE-CHEON JOO

The primary goal concerns a removable singularity theorem for pseudo-
holomorphic mappings between manifolds with non-integrable almost
complex structures:

Theorem 1 ([1]). Let A be a thin subset of an almost complex man-
ifold X and let M be a compact Kobayashi hyperbolic almost complex
manifold. Then every holomorphic map f : X \ A — M eztends a
holomorphic map on X into M.

Let D be the unit disc in the complex plane C. We call a smooth
map g from D% x D into an almost complex manifold X of dimension
2d a local foliation of X by pseudo-holomorphic discs around p, if

(i) g is a diffeomorphism onto a neighborhood V' of p,
(i) 9(0,0) = p, and
(iii) g(#/,-) : D — X is a pseudo-holomorphic embedding for every
2/ € D41,
A closed subset A of X is called a thin subset if there exists a local
foliation g = g, of X by pseudo-holomorphic discs around p, for every
p € A which satisfies the following properties:

(A) There is a positive constant r < 1 such that A,y = {w € D :
g(',w) € A} is a finite point set contained in the r-disc D, =
{we C:|w| <r} for every 2/ € D* 1.
(B) There exist sequences {r;} and {s;} of real numbers less than 1
such that r; — 0 and the cylinder {(2/,w) : |w| =1}, |#| < s}
does not intersect g~!(A) for every j =1,2,... .
As an example, every analytic subvariety of a complex manifold is a
thin subset.

The study pertaining to removable singularity theorems shows an
impressive history. Among all the significant contributions, we have
been influenced by [2], [3], [4], [5], [6].

Our starting point is to describe a pseudo-holomorphic curve f from

a Riemann surface S to an almost complex manifold M as a harmonic
1
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map. This can be achieved if one chooses an appropriate affine con-
nection for the tangent bundle of the target manifold:

Proposition 1. Let (M,J) be an almost complex manifold and let S
be a Riemann surface with a conformal metric. Suppose that V is an
affine connection of M which satisfies the following conditions:

(C1) V is J-linear, i.e. VJ =0.

(C2) For every p € M and for every = € T,M, T(Z,JE) = 0 where

T is the torsion tensor of V.

Then a pseudo-holomorphic mapping f : S — M satisfies the harmonic
map equation with respect to the connection V, regardless of the choice
of the conformal structure on S.

A connection on M which satisfies the conditions (C1) and (C2) is
said to be compatible with the almost complex structure J of M. If
2z = z! + v/=12? is a local complex coordinate of S and if (y?,...,y™)
is a smooth local coordinate system of M, then the harmonic map
equation has a following local expressions:

- afl o f
Aft =
f + O[Xj% k(f) o axa
fori =1,...,n. Here, A = (5%) (aﬁ) and T%, is the Christoffel
symbol of the connection that we choose.

To prove Theorem 1, we first consider pseudo-holomorphic curves
with discrete singularities, that is, we consider a pseudo-holomorphic
map f defined on D* = D\ {0}. The existence of continuous extensions
can be proved by the method used in [6]. One of the crucial part is
an area estimate from below for pseudo-holomorphic curves, which is
already known as Gromov’s monotonicity lemma. (See [7] for instance.)
The conformal property of f implies that f is indeed a weak harmonic
map on D if

L(f(or)) — 0
as r — 0 where L is the length function of curves induced by a hermit-
ian metric on M and

_ o, ={2€C:lz|=r}
By the hyperbolic property, there is a constant C' such that
L(s) < C L¥°(s)

for every piecewise smooth curve s in M, where LK represents the
length function induced by the Kobayashi metric. By the decreasing
property of the Kobayashi metric,
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L(f(ov)) < CL**(f(a,)) < CL¥*(a,) = Togr] 0

as 7 — 0. Therefore, f is a weak harmonic map defined on the entire
disc D and the regularity theorem for continuous weak harmonic maps
ensures the smoothness of the pseudo-holomorphic curve.

Next, we consider the higher dimensional cases. The condition (A)
for thin subsets and the 1-dimensional extension theorem enable us
to use the normal family theorem for pseudo-holomorphic curves (See
[7].) to prove the continuity of the pseudo-holomorphic mappings with
singularities contained in a thin subset. Since the Riemann exten-
sion theorem and the Cauchy integral formula are not available for
the pseudo-holomorphic maps between non-integrable almost complex
manifolds, we exploit a scheme of the Implicit Function Theorem to
prove the smoothness:

For p € A, choose a local foliation g : D4~ x D — X around p which
satisfies the conditions (A) and (B). By the continuity of f up to A, we
may assume that f o g maps D¢ into a single coordinate neighborhood
U of f(p) with coordinates (y?,...,4™). Let f, = fog(z,-): D - U
and let v, = f,|pp. We define a non-linear functional G : C**(D,R") x
C**(6D,R") — C**(D,R"™) x C*>*(8D,R™) by

o ) Oh? Oh*
g(h, ’U) = (Ah’ -+ z P;k(h)gg—l,‘:%) s h|3D -V},

a4k i=1,...,n

where C**(D,R") and C**(8D,R") are spaces of R™-valued (k, \)-
Holder functions on D and 9D, respectively. (In fact, G is defined only
on a neighborhood of (fy,vg).) By Proposition 1, G(f, v,) = 0 for every
z € D% 1. We denote by £ = 8G/38h, the linearization of G in direction
of h at (fo,v). If we reparametrize g by the dilation (2, w) — (t2,tw)
for t > 0, it can be shown that £ becomes invertible if ¢ is sufficiently
small. It is achieved by the unique solvability and the Holder estimates
of the Dirichlet problem of the Poisson equation. Applying the Implicit
Function Theorem, we can prove that f is smooth near p if we choose
the reparametrizing constant ¢ by r; in the condition (B).
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STRONGLY PSEUDOCONVEX HOMOGENEOUS DOMAINS
IN ALMOST COMPLEX MANIFOLDS

KANG-HYURK LEE

ABSTRACT. Main result of author’s Ph.D. thesis [6] is the classification of strongly pseudoconvex
homogeneous domains in almost complex manifolds. The origin of this work is in the Wong-Rosay
theorem. In this article, we introduce the Wong-Rosay theorem in almost complex manifolds and
we give a brief process of the classification.

1. THE WONG-ROSAY THEOREM IN ALMOST COMPLEX MANIFOLDS

A strongly pseudoconvex homogeneous domain in a complex manifold has to be biholomorphic
to the unit ball in the complex Euclidean space. It can be obtained by the Wong-Rosay theorem
(see [2, 8, 9]) which says that

A domain in a complex manifold which admits an automorphism orbit accumulating

at a strongly pseudoconvex boundary point has to be biholomorphic to the unit ball.
The most general version of the Wong-Rosay theorem for complex manifolds (see [2]) has been
obtained by the scaling method which was initialized by Pinchuk [7]. In [3], Gaussier and Sukhov
modified the scaling method to generalize the Wong-Rosay theorem to the real 4-dimensional almost
complex manifolds. But for higher dimensional cases, it turns out that there are infinitely many
domains in almost complex manifolds which satisfy the condition of the Wong-Rosay theorem but
whose structures are non-integrable.

Definition 1. Let Q = (Q,z) be a N x N positive definite hermitian matrix and B = (Bjx) be a
N x N skew-symmetric complex matrix. We call a pair (Gq, Jg) a model domain where

(1) Gq is the domain in CV*! defined by Gq = {z € CV*! : Rezn41 + Q(, 2/) < 0} where

2 =(z,...,2n) and Q(z,w') = Eﬁk___l Q, %W is the hermitian inner product on (AN
(2) Jg is the almost complex structure of CV*! defined by ‘
N N
7] 0 0 0 0 - 7]
Jg [ =) = inm B rzke——— and Jg | o ) = —ime B. 47
® <3ZJ> "oz ,; ke (351') 55 poet Pk DNt

(we call this structure a model structure). Here, welet Bjx =0for j=N+lork=N+1
for convenience.

It can be easily verified that the domain Ggq is strongly Jg-pseudoconvex at the origin and the
dilation A, which is defined by A, (z) = (v/721,-..,+/T2N,T2N+1), is an automorphism of (Gq, Jg)
for 7 > 0. The point —1 = (0,...,0, —1) always belongs to Gq and the automorphism orbit A,(—1)
tends to the origin as 7 — 0. Since the matrix B represents the Nijenhuis tensor of Jg {a torsion
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for an integrability of an almost complex structure), the model structure Jg is non-integrable if
B # 0. Now we have infinitely many examples which show that the classical Wong-Rosay theorem
does not hold in the almost complex case.

2. SCALING METHOD

We introduce the scaling method for the Wong-Rosay theorem and the modification of this
method by Gaussier and Sukhov (3, 4]

2.1. The complex case. Let 2 be a domain of a complex manifold M which admits an automor-
“phism orbit ¢”(p) accumulating at a strongly pseudoconvex boundary point g. The scaling method

is to follow the next steps:
(1) For some coordinate neighborhood U of ¢, one may assume that QNU is a domain in ch+1

defined by
QNU = .{z €U :Rezy+1 +Q(7,2")+0 ([zN+1[ + |z"2) < 0}
for some Q > 0. Choose a point p}, € 92 N U such that
dist(p,, pk) = dist(p,,60) =7,

where p, = ¢ (p). .
(2) Choose a complex rigid motion L” so that

LY(pt) =0, L’(p,)=(0,...,0,~7,) and ToL"(0QNU)={Rezn+1 =0}.
(3) For each 7, > 0, let A¥(z) = A -1 foreachv =1,2,....

Now we consider the scaling sequence defined by
FY=AoL"oyp”.

Analyzing the boundary of A¥ o L¥(2 N U), we have that the sequence of sets AY o L*(Q N U)
converges to Gq in the sense of local HausdorfI set convergence. Moreover F” is a normal family
and its subsequential limit is a biholomorphism F : 8 — Gq. By the Cayley transform, we have
Gq =~ Bn+1. Therefore the Wong-Rosay theorem is obtained.

2.2. The almost complex case. Let Q be a domain in an almost complex manifold (M, J) and
¢” be a sequence of automorpisms of (€, J) which generates an automorphism orbit accumulating
at a strongly J-pseudoconvex boundary point g. Then we can also construct a scaling sequence
F¥ as we introduced. In the limiting process, we must consider not only a sequence of domains
AY o L*(QNU) but also a sequence of almost complex structures which is generated by FY in the
sense of

JY =dF’oJo(dF¥)™!.
It can be verified that the sequence J¥ converges to a model structure Jg for some B. Consequently,
we can obtain a subsequence of F¥ which converges to a (J, Jg)-biholomorpism F :  — Gq.




Theorem 2 ({4, 5]). Let (M, J) be an almost complex manifold equipped with the almost complex
structure J of Hélder class CY®. Suppose that a domain Q in M admits an automorphism orbit
accumaulating at a strongly J-pseudoconvex boundary point. Then (2, J) is biholomorphic to a model
domain {Gq, Jg) for some Q and B.

As a result, all model domains are stongly pseudoconvex and homogeneous. Hence the classifi-
cation of model domains is the same as the classification of strongly pseudoconvex homogeneous
domains in almost complex manifolds.

3. BASIC PROPERTIES OF MODEL DOMAINS

In this section, we introduce an automorphism group and a biholomorphis equivalence of model

a

domains

3.1. The automorphism groups. Let (Gq, Jg) be a model domain. For any point ¢ = (¢, {N+1),
£ = (¢,én+1) € CVFL, we define a binary operation *(qg) by

Cﬂqm§=<C+5£MJ+&HVQQ@£3+§%WﬂCO~

Here, B(¢',{') = E?”kﬂ B; k(& Then the boundary 8Gq is closed under this operation so that
Hqp) = (0Gq, *(q,8)) is a Lie group. Note that Hq,g) is the usual Heisenberg group.
It can be verified that for each { € 8Gq, the mapping
¢ -
Yiae =¢*@p 2
belongs to Aut(Gq, Jg)- Since WEQ,B) o W%Q,B) = \Ilfg(’%f)g, the group H(qg) can be identified as a
subgroup of Aut{Gq, Jg)-

Theorem 3. The automorphism group of model domain can be decomposed by
Aut(Gq, Jg) = Aut_3(Gq, Jg)oDo H(Q,B)

where

(1) Aut_1(Gq, Jg) = {® € Aut(Gq, Jg) : ®(—1) = —1} an isotropy subgroup,
(2) D={A;: 7> 0}.

It is easily verified that the action by D o H(q g) is transitive.
Corollary 4. Model domains are homogeneous.

3.2. Biholomorphic equivalence. Since model domains are homogeneous, the equivalence prob-
lem of model domains is the same as the existence of a biholomorphism which leaves the common
point —1 fixed. Concerning possible differentials of biholomorphisms at —1, it is successful to
obtain
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Lemma 5. Two pseudo-Siegel domains (Gq, Je) and (Gg, Jg) are biholomorphically equivalent if
and only if
AQA=Q and A'BA=B

for some A € GL{N,C).

If (Gq, Js) and (Gg, Jg) are biholomorphic, then the biholomorphism can be realized by ®(z) =
(A(2"),zn+1) for A as in the lemma.

When Q = I, the domain Gq is the Siegel half plane H = {z € C¥*! : Rean41 + 12'|2 < 0}. For
each Q, it is possible to choose A € GL(N,C) with A’QA = I. Therefore the set of model domains
can be reduced by the set of model domains whose underlying domain is H.

Corollary 6. Two model domain (H, Jg) and (H, Jg) are biholomorically equivalent if and only if
B = A'BA for some U(N).

In Theorem 3, there is no information for the isotropy subgroup of the model domain. Using

Cartan’s uniqueness theorem and Lemma 5, we have

Corollary 7. For any model domain (H, Jg), Aut_1(H, Jg) ~ {A € U(N) : A'BA = B}.

4. CLASSIFICATION

Let Sk(IV) be the space of N x N complex skew-symmetric matrices. Due to Corollary 6 and 7,
it is natural to consider the following unitary action &/ on Sk(N):

U:U(N)xSk(N) — Sk(N)
(A,B) +— A'BA.

From now on, we concentrate on

Modified Problems: Compute the quotient space Sk(IN)/U, and the isotropy sub-
group Ug = {A € U(N) : U(A,B) = B}.

Given B € Sk(N), we denote by Ann(B) the annihilator of B, defined by
Ann(B) = {v € CV : B(v,w) = 0 for any w € CV} .

The the orthogonal decomposition C¥ = Ann(B) @ Ann(B)?! is an invariant under U in the sense
that

Proposition 8. Let B,B’ € Sk(N). If A'BA = B’ for some A € GL(N,C), then A(Ann(B')) =
Ann(B) and A(Ann(B')*) = Ann(B)L.

Since B = 0 on Ann(B), it suffices to consider the restriction of B on Ann(B)1. On Ann(B)* (of
complex even dimension), B defines a non-degenerate skew-symmetric bilinear form (usually call
complex symplectic form). Hence we first consider the non-degenerate case.




4.1. The non-degenerate case. Let B be a complex symplectic form on C?® and denote by
Sp(B) = {4 € GL(2n,C) : A'BA = B}. Then the isotropy subgroup of B is

Ug = U(2n) N Sp(B) .

Our problems are closely related with the dimension of the intersection of U{(2n) and Sp(B). The
0 I

I 0 ) be the standard symplectic form.

maximal case is well-known. Let 2 = (

Proposition 9. The symplectic group Sp(n,C) = Sp(Q) is ¢ non-compact Lie group and the
symplectic compact group Sp(n) = Uq is a mazimal compact subgroup of Sp(n,C).

Since Sp{B) ~ Sp(n, C) for any complex symplectic form B, an isotropy subgroup Us = Sp(B)} N
U(2n) is also isomorphic to a compact subgroup of Sp(n, C). Therefore it follows that

dimg Ug < dimg Sp(n) .

The maximal case can be characterized by the compatibility of a symplectic form and the standard
hermitian inner product A.

Definition 10. We call a real linear transformation J : C2* — C?" a quaternion structure if J is
anti-complex linear and defines another complex structure on C?*, i.e. Ji = —iJ and J?2 = —Id. A
pair (B, k) is called compatible if there is a quaternion structure J such that

B(Jv,Jw) =B(v,w), h{Jdv,Jw)=h(v,w) and h(v,Jw) = —B(v,w)
for any v,w € V.
Then we have
Proposition 11. A symplectic form B is compatible with h if and only if B € U(Q).

In an analogy way to find a complex structure which is compatible with a real symplectic form
(see [1}), we have

Lemma 12. For any complex symplectic form B, there ezist a complex symplectic form B', positive
real numbers A1 > --- > A, > 0, positive interges ki,...,k, and an orthogonal decomposition
Cr =V, &--- @V, uniquely so that

(1) B’ is compatible with h,

(2) dim¢ Vp = ky,

3) B=AB on V.

For B’ as in Lemma 12, there is A € U(2n) such that A’'BA = Q by Proposition 11. By the
condition (2) and (3), we can choose a suitable A so that

woa= (", 2) wma p-

A1
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where each )\, appears in k, times. Moreover
Us =~ Sp(kr) @ ® Sp(k,) -
4.2. The general case. For any B € Sk(N), let
CY = Ann(B) @ Ann(B)* .
T T

Since B is a complex symplectic form on Ann(B)*, we can apply Lemma 12. Then

Theorem 13. There exist positive real numbers Ay > --- > A, and positive integers ki +---+k, =
2n uniquely such that for some unitary matriz A € U(N),

0 0 0 A
ABA=1|0 0 D and D= .
0 -D ¢ Ay

where each A, appears in k, times. Moreover
Ug ~ U(k) ®Sp(k1) & --- & Sp(ky) .

This solves our problems in the front of this section. So it is successful to classify strongly
pseudoconvex homogeneous domains in almost complex manifolds.
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Recent Progress in the Theory of Holomorphic Curves

Junjiro Noguchi
Hayama Symposium on Complex Analysis
in Several Variables 2005

We will discuss some new results in the Nevanlinna theory of holomorphic curves into algebraic varieties.
The central problem is the following conjecture, strengthened from the original of Griffiths (1972):

Griffiths Conjecture 1 (1972). Let f : C — M be an algebraically non-degenerate holomorphic curve
into a complex projective manifold M. Let D be an effective reduced divisor of simple normal crossings.
Then we have

(0.1) Ts(r; L(D)) + T (r; Kar) < No(r; f*D) + €T¢(r)|le, Ve > 0.

Here Ni(r; f*D) stands for the counting function truncated to level one.

Vojta formulated an analogue of this conjecture in Diophantine approximation theory with the non-
truncated counting function N(r; f*D) and proposed Vojta’s dictionary, which has brought interesting
observations and motivations in the both theories.

Griffiths Conjecture 1 implies

Griffiths Conjecture 2 (1972). Let X be a (complex) algebraic variety of log general type. Then every
holomorphic curve f : C — X is algebraically degenerate.

1 Order function.

We need to define the order function of f in a more general form than those already known (cf., e.g.,
Stoll [21], Noguchi-Ochiai [8]).

In what follows X is a compact complex reduced space and a subspace is a closed one. Let Ox denote
the structure sheaf of local holomorphic functions over X. Let Y be a subspace of X, not necessarily
reduced, and let Z C Ox be the defining coherent ideal sheaf of Y. Here one may begin with taking
a coherent ideal sheaf T C Ox and take a subspace Y defined by Z. In any case, there are a finite

open covering X = {JU, of X and holomorphic functions o1, ... ,0x, on Uy such that at every point
z € U, their germs oa1_,... ,0x, generate the fiber Z, of T at z. Take relatively compact open covering

Vi € Uy, X = Va. We take py € C§°(Ux) with paly, =1 and set

Ix 172
(1.1) “dy(z) =dz(z) = Zp)\(z) (Z [al\j(z)ﬁ) , z€E€N
Y

=1

(cf. [11] Chap. 2 §3, [25] §2, [16]). Another finite open covering and another local generators of Zy yield
a function dy- by the same construction as above. Then there is a constant C' > 0 such that

(1.2) |log dy (z) — log dy (z)| < C, zeX.
The function dy (z) stands for “a sort of the distance” between z and the subspace Y. We call
oy (z) = ¢z(x) = —logdy(z), z€X

the Weil function or the prozimity (approzimation) potential of Y.
For a holomorphic curve f: C — X with f(C) ¢ Supp Y we define

(1.3) wyg = wrg = —dd°y (z) = ——%55@/(2)

c 1
=dd IOg mz—),
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which is a smooth (1,1)-form on C. The order function of f for Y or I is defined by

T dt
(1.4) T(riwys) = T(r;wryp) = / 7 / wy,f-
1 |z]<t

When 7 defines a Cartier divisor D on M, we see that
T(r;wz,f) = Ty (r; L(D)) + O(1),

where T (r; L(D)) is the order function defined by the Chern class of L (cf. [8]).
Similarly taking a hermitian metric form w on Xeq, we define an order function of f with respect to
w by

. "dt .
L =100 = [ § [ fw
1 lz]<t
Then in general we have
T(r;wz,5) = O(Ty(r))-
The prozimity function (or approximation function) of f for Y is defined by

dé

(15) min¥)=mr D)= [ bvefg:

It follows from (1.1) that the integral is finite, and from (1.2) that ms(r,Y") is well-defined up to O(1)-
term.

Let Y, X = |JU, and 0x1,... ,0x, be as above. Suppose that f({) € Ux. Then oy; o f(2) are local
holomorphic functions in a neighborhood of ¢ vanishing at ¢ with multiplicity mult¢ ox; o f. We define
the intersection multiplicity of f with Y by

mult; f*Y = min{mult¢on;j o f;1 < § < i},

which is independent of the choice of local generators o;. The counting function with truncation level
k < o0 is defined by

Ni(r; £*Y) = Ni(r; f*I) = / ' % > min{mult, f*Y, k}.
b K<t
We set N(r; f*Y) = N(r; f*I) = Noo(r; f*Y).
Theorem 1.6 (|25], [17}) Let f : C — X and I be as above. Then we have the following:
(i) (First Main Theorem) T'(r;wz,¢) = N(r; f*Z) + ms(r; ) — ms(1;1).

(ii) LetZ; (i = 1,2) be coherent ideal sheaves of Ox and let Y; be the subspace defined by ;. If I, C I,
or equivalently Y1 O Ys, then
myg(r;Yz2) < mg(r; Y1) + O(1).

(iii) Let ¢ : X3 — X3 be a holomorphic mappings between compact complex manifolds. Let Io C Ox, be
a coherent ideal sheaf and let T) C Ox, be the coherent ideal sheaf generated by ¢*Iy. Then

ms(r;I1) = mgor(r; I2) + O(1).

(iv) Let I;, i = 1,2, be two coherent ideal sheaves of Ox. Suppose that f(C) ¢ Supp (Ox/I1 ® I2).
Then we have
T(r;wniets.f) = T(rswz, 5) + T(r;wr,,5) + O(1).

(v) A holomorphic curve f : C — X is a rational curve if and only if T¢(r) = O(logr), provided that
X is algebraic.




Here we recall the classical result for a holomorphic curve f : C — P"(C) into the complex projective
space of dimension n. We set T¢(r) = T(r; Q) with Fubini-Study metric form Q.

Theorem 1.7 (Nevanlinna-Cartan) Let f : C — P™(C) be a linearly non-degenerate holomorphic curve,
i.e., f(C) is not contained in a hyperplane. Let {Hj}j-:l be hyperplanes of P™(C) in general position.
Then

q
(1.8) (g—n—1)Ts(r) <> Na(r, f*H;) + O(logr) + O(log Ts(r))]],
i=1

where the symbol “|” stands for the estimate to hold for r > 0 outside a Borel subset of finite total
Lebesgue measure.

2 Min Ru’s result.

In the Diophantine approximation theory, P. Corvaja and U. Zannier [1] generalized Schmidt’s Subspace
Theorem to the case of hypersurfaces in the projective space P™, and then J.-H. Evertse and R.G. Feretti
[3], [4] generalized it to the case of subspace M C P™.

Min Ru [18], [19] found their analogue to be valid in the theory of holomorphic curves and proved the
following:

Theorem 2.1 Let M c PV (C) be a smooth subvariety of dimension n. Let D;,1 < i < g be hypersur-
faces of degree d; in PN(C) which are in general position in M; i.e.,

MnD,n---NDi,, =0
foralll <iy < -+ <ipy1 £ q. Let f: C = M be an algebraically non-degenerate holomorphic curve.
Then
1
(@-n—-1—&Tf(r;0(1) < Y TN f*Di)lles Ve > 0.

=1
In the proof the following approximation theorem due to H. Cartan is one key:

Theorem 2.2 Let L;,j € Q = {1,... ,q} be linear forms on P™(C) in general position. Let f : C —
P?(C) be a linearly non-degenerate holomorphic curve. Then

LFQIILs ) do .
/ICl=r m}%(lxg;{log LG 2n < (m+1+4)Ts(r; OW))les

where K C Q runs with |[K|=n+ 1.

This is showing the limit how much f(¢) can approximate the divisor [],.o L;j = 0 on P*(C). They
apply a very elaborate combinatorial argument for Veronese embeddings of degree m as m — oo (e — 0).

3 Dethloff-Lu’s result.

Theorem 3.1 (Log Bloch-Ochiai (N. *77-’81, N.-Winkelmann [12])) Let X be a Zariski open subset of
a compact Kdhler manifold X such that the log irregularity g(X) > dimc X. Then no holomorphic curve
f:C — X has a Zariski dense image in X.

Problem. What happens in the case of §(X) = dimc X7

A holomorphic curve f : C — M into a compact hermitian manifold M is called a Brody curve if the
norm ||f'(z)|| of the differential of f is bounded on C.

As for Griffiths Conjecture 2 G. Dethloff and S. Lu [2] dealt with Brody curves into algebraic surfaces.
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Theorem 3.2 Let X be a smooth algebraic surface of log general type with log irregularity §(X) = 2, and
let X be a smooth compactification with s.n.c. X = X\ X. Then every Brody curve f : C — X C X is
algebraically degenerate.

Proposition 3.3 Let X be an algebraic surface with R(X) =1 and g(X) = 2. Assume thal the quasi-
Albanese map ax : X — Ax is proper (a bit more general assumption works). Then every holomorphic
curve f: C — X is algebraically degenerate.

By Kawamata’s theorem this is easily reduced to the case of dimX = §(X) = &(X) = 1, and then
little Picard’s theorem is applied.
They gave an interesting example.

Remark 3.4 There is an algebraic surface X with &(X) = 1 and §(X) = 2 which admits an algebraically
non-degenerate f : C — X.

On the other hand, J. Winkelmann gave another interesting example:
Remark 3.5 There is a compact projective threefold X such that

(i) k(X)=0and¢(X) =3,

(ii) the Kobayashi hyperbolic pseudodistance dx =0,

(iii) there is a holomorphic curve f : C — X with the dense image in the sense of the differential
topology, :

(iv) there is a proper subvariety Z C X satisfying that for every Brody g: C — X, g(C) C Z.

4 Semi-abelian varieties.

Let f : C — A be a holomorphic curve and let Jx(f) : C — Jx(A) denote the k-jet lift of f into the k-jet
space Ji(A) over A. Let X (f) denote the Zariski closure of the image of Ji.(f).

Theorem 4.1 (N.-Winkelmann-Yamanoi [16]) Let A be a semi-abelian variety. Let f : C — A be a
holomorphic curve with Zariski dense image.

(1) Let Z be an algebraic reduced subvariety of Xx(f) (k > 0). Then there ezists a compactification
Xe(f) of Xi(f) such that

(4.2) T(rswz,g.(p)) S Ni(r; Je(£)*Z) + €T5(r)lle, Ve >0,
where Z is the closure of Z in Xi(f).
(i) Moreover, if codim x, (5)Z > 2, then
(4.3) ' T(rswz,5.5) < €Ts(Mlle,  Ve>0.
(iii) In the case when k = O and Z is an effective divisor D on A, the compactification A of A can

be chosen as smooth, equivariant with respect to the A-action, and independent of f; furthermore,
(4.2) takes the form

(4.4) T¢(r; L(D)) < Ni(r; f*D) + €T¢(r; L(D))|le, Ve > 0.
Note that in the above estimate (4.2), (4.3) or (4.4) the error term “eTy(r)” cannot be replaced by
“O(logr) + O(log T¢(r))” (see [15] Example (5.36)).

Remark 4.5 (i) In N.-Winkelmann-Yamanoi [15] we proved (4.4) with a higher level truncated count-
ing function N;(r; f*D). In the case of abelian A {4.4) with truncation level one was obtained by
Yamanoi [26).

(ii) Theorem 4.1 is considered as the analogue of abc-Conjecture over semi-abelian varieties. Cf. Vojta
[24] for a result without order truncation.




5 Application and conjecture.

As applications for Griffiths Conjecture 2 we have the following (see [17]).

Theorem 5.1 Let X be a complez algebraic variety and let # : X — A be a finite morphism onto a
semi-abelian variety A. Let f : C = X be an arbitrary entire holomorphic curve. If R(X) > 0, then f is
algebraically degenerate.

Moreover, the normalization of the Zariski closure of f(C) is a semi-abelian variety which is a finite
étale cover of a translate of a proper semi-abelian subvariety of A.

Corollary 5.2 Let X be a complez algebraic variety whose quasi-Albanese map is a proper map. Assume
that R(X) > 0 and g(X) > dim X. Then every entire holomorphic curve f : C — X is algebraically
degenerate.

Theorem 5.3 Let E;,;1 < i < q, be smooth hypersurfaces of the complex projective space P*(C) of
dimension n such that E =Y E; is a divisor of simple normal crossings. Assume that

(i) ¢g=n+1.
(ii) deg E > n + 2.
Then every holomorphic curve f: C — P™{(C)\ E is algebraically degenerate.

Remark 5.4 In Theorem 5.3 the case when n = 2, E;,;i = 1,2, are lines and Ej3 is a quadric was a
conjecture of M. Green [5].

Let A be a semi-abelian variety and let D be an effective reduced divisor on A. Assume that the
stabilizer {a € Aa+ D = D} = {0}. Then there is an equivariant compactification 4 of A such that the
closure D of D in A contains no A-orbit ([24], [16]). Let A = A\ A denote the boundary divisor, which
has only simple normal crossings.

Conjecture. Let f : C — A be an algebraically non-degenerate holomorphic curve. Then we have

(5.5) mg(r; D) + ms(r; 0A) < Ty(r; L(8D)) + O(log ) + O(log T#(r))|].
When f(C)NOA =0, (5.5) was proved in [15].

6 Analogue in Diophantine approximation.

We first recall
Abc-Congjecture. Let a,b, ¢ € Z be co-prime numbers satisfying

(6.1) at+b=c
Then for an arbitrary € > 0 there is a number C, > 0 such that

max{lal, b, lc} <Cc [

prime p|(abc)

Notice that the order of abc at every prime p is counted only by “1+¢” (truncation) when it is positive.
As in §1 we put r = [a,b] € P*(Q). After Vojta’s notational dictionary ([22]), this is equivalent to

(6.2) (1 - e)h(z) < N1(z;0) + Ni{z; 0) + Ni(z;1) + C.

for x € P1(Q) (cf. [7], [23] for P™). This is quite analogous to (1.8). Here we follow the notation in Vojta
[22] for number theory and Noguchi-Ochiai (8] for the Nevanlinna theory in particular,

h(z) = the height of z.
Ni(x; %) = the counting function at * truncated to level 1

(see below).
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Motivated by the results in sections 3 and 4, we formulate an analogue of abc-Conjecture over semi-
abelian varieties. Let k be an algebraic number field and let S C My be an arbitrarily fixed finite subset
of places of k containing all infinite places. Let A be a semi-abelian variety over k, let D be a reduced
divisor on A, let A be an equivariant compactification of A such that D(c A) contains no A-orbit, and
let o, be a regular section of the line bundle L(D) defining the divisor D.

Abe-Conjecture over semi-abelian variety. For an arbitrary € > 0, there exits a constant C. > 0 such
that for all z € A(k)\ D

(6.3) (1 - e)hr(py(x) < Ni(z; S, D) + Ce.

Here hp)(z) denotes the height function with respect to L(D) and N1 (z, D; S) denotes the S-counting
function truncated to level one:

. 1
. = 1 v/
Nl(l') S7 D) [k . Q] ve%:\s OgNk/Q(p )

ordvvab(z)?_l

Remark. Cf. [14] for the analogue over algebraic function fields.
It may be interesting to specialize the above conjecture in dimension one.

Abc-Conjecture for S-units. We assume that a and b are S-units in (6.1); that is, z in (6.2) is an S-unit.
Then for arbitrary € > 0, there exists Ce > 0 such that

(6.4) (1 - €)h(z) < Ni(=;S5,1) + Ce.

Abc-Congecture for elliptic curves. Let C be an elliptic curve defined as a closure of an affine curve,
2 __ .3 *
y° =z" + c17 + co, cirek.

In a neighborhood of oo € C, 0, = z/y gives an affine parameter with ¢,(00) = 0. Then for every € > 0
there is a constant C¢ > 0 such that for w € C(k)

(1 - e)h(w) < Ny{w; S, 00) + Ce

X ,
=T Z log Nijq(po) + Ce.
[k ’ Q] vEME\S

ordp, coc(w)>1
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EXTENSION OF CR STRUCTURES ON THREE DIMENSIONAL
COMPACT PSEUDOCONVEX CR MANIFOLDS

D. CATLIN AND SANGHYUN.CHO
PURDUE UNIVERSITY, U.S.A.
SoGAaNG UNIVERSITY, KOREA

Let (M, S) be an abstract smoothly bounded orientable C' R-manifold of dimen-
sion 2n — 1 with CR-dimension equal to n — 1 (i.e., dim¢cS = n — 1). Since M
is orientable, there exist a smooth real nonvanishing 1-form 7 and a smooth real
vector field Xy on M so that n(X) = 0 for all X € S and n(Xy) = 1. Define the
Levi-form of § on M by

(1) (L', I, L',L" €8.

Definition 1. We say (M, S) s strictly pseudoconvez (resp. pseudoconvex) if the
Levi-form defined in (1) is strictly positive definite (resp. non-negative definite).

Then we have the following celebrating local embedding theorem by Kuranishi.

Theorem K. (Kuranishi 81°) If (M,S) is strictly pseudoconvex and dimgM =
2n—12>9, then (M,S) can be locally embedded as a real hypersurface in C".

Theorem (K) has been improved by Akahori and Webster(Theorem A and W)
in 1985. They showed that (M, S) can be locally embedded as a real hypersurface
in C™ provided (M, S) is strictly pseudoconvex and dimgM > 7. In Theorem
(K,A,W), they used solvability and estimates of 9, equation, the tangential Cauchy
Riemann equation.

In 1994, Catlin proposed another Approach : Extend the given CR structure
to an integrable almost complex structure by deforming the given almost complex
structure [1,2].

Theorem C. (Catlin 94’) : If (M,S) has either 3 positive eigenvalues or (n-1)-
negative eigenvalues, then there is a tubular neighborhood €2 so that M C b§) and
Q is an integrable complex manifold.

Typeset by AMS-TEX
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2 ~ D. CATLIN AND S. CHO

Corollary. If (M,S) is pseudoconvez near zo and has 3 + eigenvalues, then M =
bS2, where € is a complexr manifold

Corollary. : If (M,S) is strongly pseudoconvex and dimgM > 7, then M can be
embedded in C™ as a real hypersurface type. Same conclution holds if M has three
positive eigenvalues and three negative eigenvalues.

For weakly pseudoconvex CR manifold (M, S) of finite type, the second author
proved some series of extension problems [3,4].

Theorem Chl. (Cho, S. 97°) Letr(M ,S) be a smooth compact pseudoconver CR
manifold of finite type with dimrM = 3. Then there ezists a tubular neighborhood
Q on the concave side of M so that M C b}, and Q is an integrable complex

manifold. That is, there exists an integrable almost complex structure L on Q such
that for allz € M, Lz 0y NCTM = S;.

Corollary. If M is the boundary (or a portion of the boundary) of a complex
manifold D with dimcD = 2 and assume that M is of finite type. Then the
complex structure of D extends smoothly beyond M. That is, there is a complex
manifold 2, dimc) = 2, such that DUM C Q.

Theorem Ch2. (Cho, S.,2003 ) Let (M,S) be a smooth pseudoconver CR man-
ifold of finite type with dimgM = 2n — 1, and the Levi-form of M has at least
(n — 2)-positive eigenvalues. Then there ezists a tubular neighborhood Q0 on the
concave side of M so that M C b}, and Q is an integrable compler manifold.

That s, there exists an integrable almost complex structure L on €0 such that for
allz e M, l:(z,o) NCTM =S§,.

Theorem Ch3. (Cho, S.,2002 ) Let (M,S) be a smooth pseudoconver CR man-
ifold of finite type with dimgrM = 2n — 1, and the Levi-form of M has at least
(n — 2)-positive eigenvalues. Then there exists a tubular neighborhood Q on the
convez side of M so that M C b}, and ) is an integrable complex manifold. That
is, there exists an integrable almost complex structure £ on ) such that for all
r€EM, [,(x’o) NCTM =8,.

Corollary. Let M be as in Theorem Ch2. Then M can be locally embedded as a
real hypersurface in C™.

We note that dimgM = 5 case is still open.

Let us study the extension problem of compact pseudoconvex C'R manifold
of dimgM = 3. Let (M,S) be a smooth compact orientable pseudoconvex CR
manifold. Using the vector field X, we can define a projection II%! of CTM onto
S. IfY € CTM, we can uniquely write Y = Y’/ +Y” +cXg, whereY' € S, Y” € S.
Define II®'Y = Y. In terms of this projection, we can define the Hessian H) of
a smooth function A. If L{, L, are sections of S, define

(2) HA(Ll,Zz) = le.zx\ - [Ll,Z2]”/\.
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EXTENSION OF CR STRUCTURES 3

In general, this Hessian depends on the choice of X,. However, note that if Ly
and L are both in the null space of the Levi-form at a point p € M, then [L1, Lo]
is in the span of S and S at p so that Hx(L1, L) is independent of the choice of
Xo-

Definition 2. We say \ is strictly subharmonic near the set W of weakly pseu-

doconvez points if Hx(L,L) > 0, L € S, where L is a nonzero vector in Sandp
is any point in W.

Set

Q={(z,r); zeM, -1<r <1},
Q" ={(z,r)e; -1 <r <0}

and for a sufficiently small € > 0, let
Qe = {(z,7) € M x (-1,1) ; —e <7 <€}

and set
QOf ={(z,r); €M, 0<r<e}.

Then it follows that .
89r(L,T) = zn((L.I)).

Assume that if ) is strictly subharmonic near the set W C M of weakly pseu-
doconvex points. Then we can arrange so that X is strictly plurisubharmonic for
some €p > 0 on .

Let P, : QFf — M be the projection map. Then our main results are as follows
(Catlin, Cho).

Theorem (C,Ch). Let M be a smooth compact orientable pseudoconvez CR
manifold of real dimension three with a given CR structure S and assume that
there is a smooth function \ which is strictly subharmonic near the set W of
weakly pseudoconvezr points. Then there ezist a small positive number ¢ > 0
and a smooth integrable almost complex structure £ on QF such that for all
t € M, Lz NCTM = S;. Furthermore, if I : TQe — T, is the map
associated with the complex structure L, then dr(Jc(Xo)) < 0 at all points of
My = {(z,0);z € M}.

Note that we are extending the given CR structure on M to the concave side
(instead of convex side) of M. Theorem (C,Ch), in general, does not imply that
the given CR structure can be locally embedded in C? [6](cf. the example of non-
solvable elliptic PDE of Nirenberg). When M is compact strictly pseudoconvex of
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4 D. CATLIN AND S. CHO

real dimension three and has the property that the range of J; is closed, then the
results of Kohn and Burns imply that M can be embedded in C¥, for some N.
The finite type analog of this result is due to Christ. If the CR structure already
extends to the pseudoconvex side, then one can embed M in a manifold of the
same dimension:

Corollary 3. Let D be a compact pseudoconvex complexr manifold with smooth
boundary and dim¢ D = 2. Suppose that the complex structure on D extends
smoothly up to the boundary -bD of D, and that there is a smooth function )
which is strictly subharmonic near the set W' of weakly pseudoconvez points of
bD. Then there exists a complex manifold D, dime¢ D = 2, such that D can be
holomorphically embedded into D.

Also, as an application of Theorem (C,Ch), we have the following local extension
theorem:.

Theorem 4. Let M be a CR manifold of real dimension three and assume that
M is pseudoconvez in a neighborhood U of zo € M. Then there exist € > 0 and a
neighborhood V. C U of zg € M such that the given CR structure Sly on M can
be extended to an integrable almost complex structure £ on V¥ = PZH(V).

Corollary 5. Let D be a complex manifold with smooth boundary and dimcD = 2.
Suppose that the associated almost complezr structure on D extends smoothly up
the boundary bD of D, and bD is pseudoconver near zo € bD. Then there is a
neighborhood V' of zy such that D can be embedded in a larger complex manifold
D so that V. N bD lies in the interior of D as a real hypersurface.

Sketch of the Proof

Set @ = M x (-1,1). Extend Ly,...,L,_1 € E; so that it does not depend on
t. For a real vector field X with n(Xg) = 1, we set

Ln = 8/8t — iX,,

and set £ = span{Li,...,L,}. Then (£, L) is an almost complex manifold. By
recursive process, we first prove that there exists (€2, £o) such that if Lq, Ly € Ly,
and w € A0, then w([L;,L2]) = O to infinite order along M. That is, Lo is
integrable up to infinite order along M.
For g =0,1,... ,n, set
1 =A09 g L.

If {Li,...,L,} is a local frame and {w?,... ,w"} is its dual frame, then each
A €T? can be written as )

A= Z Aj,k(x)wk . Lj,

Jk=1
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EXTENSION OF CR STRUCTURES 5
where A; j are smooth functions. Similarly, every B € I'? can be written as:
n
B=>">" Bi=)w@’ L.

1=1 |J|=q

/

Therefore, we can define norms for B € I'? (C*-norms, Sobolev-norms, etc.) on
by using component functions of B and by using a partition of unity on €2.

Note that if A € I'l, then A is a C-linear bundle homomorphism from Lto L.
That is if L = 5 p_, bxLx € L, then

AT)= Y AjibiL; € L.

Jrk=1
If A; is sufficiently small, we set
PA(Z) =L+ A(—L_) = ZA,

and set
La={Pa(L):LeL}

Then L4 is a deformation (or a perturbation) of £. Set wg = w — A*w, where
A* : AY0 — A% is given by

(A*)(I) =w(A(D)), LeL, we A’
Then w4 is a dual of £4. That is,
wA(fA) =0, ZA S ZA.
Q1 : Find A (i.e., a deformation of £) so that (Q},L£,) is integrable.
That is, find A so that for each wy € A}‘{O, and for all Ly,L- € L,

(3) wa([Pa(L1), Pa(L2)])
= (w - A*w)([fl + A(Z1),E2 + A(ZQ)]) = 0.

Define a non-linear operator ® : I'' — I'? by :

(AT, T ,w) = wa([Pa(Tn), Pa(T)).
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So our question is reduced to :

(Q2) Find A € A! so that ®(A4) =0.

Note that (3) and hence (Q2) are non-linear problems. We use the Nash-Moser
implicit function theorem. Up to second order term of A (i.e., by linearizing), (3)
becomes :

(4) w([L1, A(L2)]) + w([A(L1), L2) — A*w([L1, La]) = —w([L1, L2)).

For LeCT,,les L=L'+L" where L’ € L, and L € L,. Define

1

(D2 A) (L1, Le) = [L1, A(Ly))' ~ [L2, A(L1)) = A([L1, Lo] ).
Then D, A € T'?, and (4) is equivalent to
DyA = —F,
where F € I'? satisfies F(Ly, L2) = [L1, L2)’, which measures the extend to which

fails to be integrable.
Let P4 : 'Y — T'? be the bundle isomorphism defined by

PYG(L1,. .. ,Lq, ) = G(Pa(L1),... ,Pa(Ly), Qa(2)).
Then it turns out that
() ®'(4) = PAD5(P4) ™" + O(B(A)A).
Set Ag = 0. By induction, we set
(6) da, =Ph, o (D) o Nj, o (P4,) 7" (—2(Ar))
where Nﬁxk is the Neumann operator with respect to the structure £4* with weight
et t > T}, for some T} depending on k.

Using weighted D} estimates and the careful inspection of the parameters € and
t, we see that

(7) 4 llk.e S 1Ak + € | Al 18(A)]lo,z
+ e % 10(4) o,z
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and

1

® 1D(A) + @' (A)(d4)||p S e —F10¢k+3es.
DA k31 @(Alla (1 + |Alks1)

If we set Agy1 = Ax + Sp.da,, where Sp,d4, is a smoothing operator, then by
combining (5)—(8), we see that

B(Aps1) = B(A) + &' (A)da, + O(lda,*) = O(lda, ),

that is, ®( A1) vanishes second order in d4,, or in second order in the right hand
side of (7).

(7) and (8) are called the Tame estimates, which are necessary in the variant
of Nash-Moser iteration process. Using the variant of Nash-Moser theorem [5], we
obtain our main theorem.
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THE DIMENSION OF THE AUTOMORPHIC FORMS OF N-BALL

LU HONGWENY* AND ZHU XIAQLIN® 2~

ABSTRACT. In this paper, we get the classification of conjugacy classes in the group of auto-
morphisms on 3-dimensional ball. The contributions from the conjugacy classes of the regualr

elliptic elements and some hyperelliptic elements in the dimension formula are obtained.

1. AUTOMORPHIC FORMS ON n-DIMENSIONAL BALL.

Let B, be n-dimensional ball: B, = {z = (21, ..., z,) € C*|1 — 2!z > 0}.
I, 0

Let I, be the identity matrix of degree n, I,,; = 0 ) and

SU(n,1)={ge SL(n+1, C)[tgln,lg =1I,1}.

As a well-known result, B, is a classical domain of type I and SU(n, 1) is group of automorphisms
which act transitively on Bp(cf.[2],[3],and[4]).

Let I' be an arithmetric subgroup of SU(n,1). We say a holomorphic function f on B,
an automorphic form of weight m for I' if j(vy,2)™f(v2) = f(2) forally € T and z € B,.
Here j(v, z) denotes the jacobian of the mapping v € SU(n,1) at z € B,, which is given by

* X
j(v,2) = (tz+d)™" L fory = ( d) where d € R. Let
c

(1.1) k(z,w) = (1 — 2t@w) ™!

which is the Bergaman kernel function of By, (cf.[2],[3],and[4]). Then the volume element dV (w) =
k(w, w)dw(where by dw we denote the Euclidean volume element) is invariant under SU(n,1).
A fundamental domain of I" acting on B,(i.e. a measurable set of orbit representations) is

denoted by F. For the automorphic forms f; and f2 of weight m for ', we set
(12) (Fuf) = [ AEEERE) "V (),

which is called the Petersson inner product. It is easy to prove that the integral in (1.2) is

independent of the selection of the fundamental domain.

* Supported by National Natural Science Foundation of China(10471104, 10511140543).
1
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Let A, (") denote the space of automorphic forms of weight m for I which have the property
that k(z, z)~ % f(z) is bounded on a fundamental domain F(i.e. a measurable set of orbit repre-
sentations)of I' acting on B, we also call them cusp forms. It is obvious that any cusp form

f is square integral with respect to the Petersson inner product, ie(f, f) < oo

—1 2 2y .
We set a map A: 2z = o Z,, 22=—\/_—u1,,...,zn=£-:*_"—,1. It is easy to show that A is a
7

w
bijective biholomorphic transformation of a Siegel domain of type 2:

Dy = {(w,u) € C x C* 2Imw — v'u > 0}.

onto the n-dimensional ball B,,.
Let f be an automorphic form of weight m for I' on B,,. It is easy to prove that

n+l
2

is an automorphic form of weight m for A7IT'A on Dy, i.e., F is analytic in Dy, and satisfies the
functional equation F(uZ)j(u, Z)™ = F(Z) for any p € A7'TA and Z € Dy. As shown in[5],

F has a Fourier-Jacobi expansion of the form:

(1.4) F(w,u) =Y gr(u)exp(2mirw),

r=0

Which is called the Fourier-Jacobi expansion of f, where g, are theta functions on C*

Theorem 1.1. An automorphic form f(z) on B, is a cusp form if and only if the first coefficient

go of its Fourier-Jacobi expansion (1.4) is 0.

2. KERNEL FUNCTION.

Proposition 2.1. Let m > 2. For (z,w) € B, x B, define
(2.1) K(z,w) = a(m) ) k(yz,w)™j(v,2)"™,
~yel’

where

_oIT((n+1)(m—1)+n)
I'((n+1)(m-1)) ~’

and k(*,*) is the Bergman kernel functional defined by (1.1). Then one has:

alm)=m7

(a)For any w € B, the series on the right hand side of (2.1)—considered as a series of functions
in z—is normally convergent on every compact subset of H x C.

(b)K (z,w) is the reproducing kernel function for A, (I') with repect to the Petersson inner
product, i.e.:

(VK (z,w) = K(w, 2);

(ii)for any w € By, the function K (*,w) is a cusp form in A, (T);
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(iii)for any w € B,, and any cusp form f € A,,(T), one has
< f,K(xw>= f(w).
Theorem 2.2. For m > 2, one has

(22) dimAn(D) = a(m) [ 3 k12, 2)73(7,2)"h(z, )"V ().
F
ver
3. CONTRIBUTION FROM THE CONJUGACY CLASS OF A REGULAR ELLIPTIC ELEMENT
The matrix I,,1 determines a Hermitian form (, ) on C™**! x C™*! by the (z,y) =t §l,12.
Our group SU(n, 1) can then characterized as the group of matrices ¢ € SL(n + 1, C) such that
(gz,9y) = (z,y) for all z,y € C™!. We say that the nonzero vector z € C**1 is positive,

isotropic or negative according as (z,z) is positive, zero or negative.

Definition 3.1. An element g € SU(n,1) with g # 1 is regular elliptic if g has a positive

eigenvector and has no isotropic eigenvector.
Proposition 3.2. For m > 2 and a regular elliptic element g, we have:
(1)/ k(gz,2)™j(g,2)™k(z,2)"™dV (z) is convergent;
B,

(ii)the contribution from elements in I" which are conjugate in I to g in the dimension formula
(22) is given by N(g) = (472 [, k(9% 2)"5(0,2)"k(z,2) "V (2)

To calculate the integral, we obtain:

Theorem 3.3. For m > 2,
An—{ntl)m

N(g) = IC(HIA=AD)A=A2)... (A= )\n)‘

Remark 3.4, If n =1, one has N(g) = ﬁ‘;]ﬁ;’z—/\l, which is well known in the theory of trace
formula for modular forms of one variable. If n = 2, N(g) = et g)|(,/\\:\33( =) which has been

calculated by Cohnl[1].

In addition to elliptic elements, we will generalize Cohn’s(cf.[1]) method and calculate contri-
butions from other conjuacy classes in SU(3,1). Since the bijective biholomorphic transforma-

tion A~! map B, to D,, it follows that we discuss the Siegel domain Ds.

4. THE GROUP OF AUTOMORPHISMS AND ITS SUBGROUPS ON D3

We can easily get the group of automorphisms which act transitively on Dj:

G =1t"15U(3,1)t = {g € SL(4,C)|'!gHo 29 = Ha 5},
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where t € SL(4, Z[i]) is the transformation matrix of the bijective biholomorphic transformation
)
A:D3— Bs,and Hyp = I
—1
We take our discrete group I = G N SL(4, Zli]).
we now define the (parabolic) subgroup P of G to be the group of upper triangular matrices

belongs to G. Then we get that unipotent radical P, of P is the set of matrices of the form

1 v m Toiqr
L iy | =M1l (v=(mm) € Clr e R =l + ).
1

We have the multiplication rule e, 71}{3, j2] = [a+8, j1+ jo—Imayb; —Imagbs], where a = (a1, a2)
and 8 = (by,b2). We also define the subgroups 'Y =TNPand T = CNP,. Tt is easy to
show that Too = {[7,7] € Plv1,72 € (1 +4)Z[i] or y1,72 € (1 +9)Z[i] + 1,r € Z} and Tl =
{#g2lv,"|[v, 7] € Too,€ € Z,n € Z} 2 Too x Z/(4) x Z/(4), where go = diag{i,—1,1,i} € .
Then we get the following conclusions which are generalizations of Cohn(1](pp13~27).

Conclusion 4.1. If I = tI't™!, and Gau = fPQm, and if 4m € Z and m > 2, then
a(m) " tdimAn(T) = c(m, T)vol(F)

k( ) ) 3 7\
+ Y /pkipw; = (y,p) dp + lm o D /—%J(%P) dp

vel-(rQuz;) e P z5)
= c(m, D)vol(F) + Z ) %’Z‘p%m—j(%p)mdp
plr=e” 7 FEP)
(41) + lim k(p, 71’..) T

MEEnTS - Zp)#¢ 676-1e<r<“ Zz)

k(p,yp)™ j(7,p)

+ / _
(1-s) 15(& 2ms
S~8- 16(1‘(1) Zz) §-1F k(p’p)m ® !.7( ,P)‘ :

Here Zx is the center of T, and c(m,T) = % 7(v.po) ", where pp = (i,0,0) € D3, and k(p,q) =
’ Yye T

({(T—w)—u'B)~* for any p = (w, u),q = (z,v) € Ds; dp = k(p, p)dwduidus; T is a discrete group
of G, and F is a fundamental domain in D3 for f; G, is the centralizer of v in G; f7 =GN T
is the centralizer of « in I'; and 17’.y = Usep /1:76"113‘ is a fundamental domain in D3 for f7.

Remark 4.2. We shall denote by I,,,(~y;s) the integral / _pip))_ i(v,p) dp(y € T,s > 0).We
b,p
write In, () for I, (;0).
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Conclusion 4.3. Every primitive isotropic vector v € I can be embedded in a basis {v,1,92,7'}

of T with v/ isotropic, (v',v) =1, (y5,¥;) = —1, (y1,¥2) = 0 and y;Lv,v'.
Remark 4.4. Depending on conclusion 4.3 and Lemma 6.2, we easily get Gop = fPQ{,-].

5. CLASSIFICATION OF CONJUGACY CLASSES IN THE GROUP OF AUTOMORPHISMS G

In addition to the regular elliptic element, when n = 3, we obtain the following definition of

classification of the other conjugacy classes in G referring to [1].

Definition 5.1. If ¢ € ¢ and g is not in the center of G, we say g is hyperelliptic if there
exists a hypebolic plane W C C%(i.e. a two-dimensional non-degenerate subspace containing an
isotropic vector) such that g|W is multiplication by a scalar (of absolute value 1); hyperbolic if
g is not hyperelliptic and has linearly independent isotropic vector z; and z3 in C* such that
g(zi) = vzi(i = 1,2) with A; € C,A1 # Ag; or parabolic if g has an isotropic eigenvector and is
neither hyperelliptic nor hyperbolic.

Theorem 5.2. For any g € G and g is not in the center of G, then g belongs to one of the

regular elliptic elements of conjugacy classes or the above types of conjugacy classes.

Remark 5.3. From the above theorem, we get the following results(Let g(v;) = Ajv;(j < 4)):
' 4

(i). The element g is regular elliptic, if C* = @ Cv;, with v; positive,v;(j = 2, 3, 4) negative,

4

(ii). The element g is hyperelliptic, if C* = @ Cvj and A} = A2 or A\; = A3 or A; = )y, with
j=1

7=1

v positive, v;(j = 2,3,4) negative.

(iii). The element g is hyperbolic, if C* = Cv; ® Cvy & (Cvz + Cvyg), with v; and vz negative,
vz and vg isotropic,A3 # A4. If g has only three eigenspaces Vi, = Cv1,V), = Cvp and
Vi, = Cvs, with v; negative, vo and vs isotropic, v; L w(= Cva +Cuz), Ay # A3, then g
is also hyperbolic.

(iv). The element g is parapolic, if g has only three eigenspaces V), (= Cv;,j = 1,2,3),
with v1 and ve negative, vs isotropic, vy, v2,vs pairwise orthogonal. If ¢ has only two
eigenspaces Vi, = Cv; and V), = Cvq, with v negative, vy isotropic, v1 L vs, then g is
also parapolic. In addition, if g has no positive or negative eigenvectors, then g is still

parapolic as it must have at least one eigenvector which must be isotropic.
6. HYPERELLIPTIC CONJUGACY CLASSES
Suppose that v € I is hyperelliptic and that ~v(v;) = Aju;(4 = 1,2,3,4) with v; positive, vo,v3
4

and vg negative, v; Lvg(j # k),|\;? = I,H Aj =1, = A
j=1
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Lemma 6.1. ~ belongs to one of the following three types:
(i) (/\1,)\2,)\3,/\4) = ie(l —-1 l 1) (11) ()\1,)\2,/\3,/\4) = ’LE(’L —1 1 ’L) (111) ()\1,/\2,)\3,/\4)
i€(1, p, p*,1). Here (¢ = 0,1,2 or 3; p = exp(2mi/3)).

Now, we will devote to computing the contributions from the conjugacy classes of the hyper-
elliptic elements of type (ii). By means of the conclusion 4.3 in section 4, we get the following

lemmas.
Lemma 6.2. If v € T is hyperelliptic of type (i) and type (ii), then [ylz N P # ¢.

Remark 6.3. By the above Lemma 6.2 and Cohn[1], every hyperelliptic T-conjugacy class g
of the type ii) has a representative in I‘g,) =TNP. Butif v,v € r&,’ are hyperelliptic and

conjugate in f, they are conjugate in r&i’.

Remark 6.4. By Lemma 6.1 and Lemma 6.3, it is easy to show that there are the following
T-conjugacy classes of hyperelliptic elements of type ii): i°(go)”, 61 (90)"(81) 7Y, i%02(g0)"(82) %,
11g0(m1)7h, ©72(g0)*(72) 7, iETago(Ts)"l, i74(g0)3(r4) 71, #7590(75) ", ©°76(90)%(76) ™", Here
n=1,or3 & = [(1,0),0], & = [(0,—-1),0], n = [(-5%,51),0], =2 = [(}F,-9),0, 13 =
[(—55, 59,00, 74 = (552, ~ ), 0], 7 = (-5, 54),0], 76 = [(5%,— ), 0}

By means of Cohn[1)(p31), let r; = [f(go)n : f(go)n N p~Tp|,re = [Ggoyn N p_lfp] : f(go)n N
p‘lfp] forn=13p=6;(j=12),ornp=1p= 'T_;,'/(jl =1,3,5), or n=3,p =71;:(j' = 2,4,6),
we have that the contribution of the conjugacy classes of p(go)"p~! is given by I, (p(g0)7p™!) =
2In((g0)"). we also have that I (i5(g0)") = i*™ In((g0)™)-

(4m—2)n .
Theorem 6.5. I,((g0)") = 3X16 (4m_1)(4m_§)(1_,, ET—D e
1 4m — 2

N((go)") =

(dm—2)n/,,
3% 16 (i-7 — )" — (1)) (n=1,20r3).
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HARMONIC AND PLURIHARMONIC BEREZIN TRANSFORMS

MirosLAv ENGLIS

ABSTRACT. We show that, perhaps surprisingly, the asymptotic behaviour of the
Berezin transform as well as some properties of Toeplitz operators on a variety of
weighted harmonic and pluriharmonic Bergman spaces seem to be the same as in the
holomorphic case.

Let Q be a bounded domain in C*, L () C L?($2) the Bergman space of all
square-integrable holomorphic functions on Q, and K(z,y) its reproducing kernel,
i.e. the Bergman kernel. Thus

fe) = /Q f@) K@) dy = (f Ka), Ko o= K(2),

for all f € L% ) and z € Q. Recall that for ¢ € L>(Q), the Toeplitz operator Ty
with symbol ¢ is defined by

Ty: Lig— Li),  Tsf = P(of),

where P : L? — Lfml is the orthogonal projection (the Bergman projection). The
Berezin symbol of a (bounded linear) operator T on L2 | is, by definition, the

function T on € defined by

- (TK.,K.)) /. K. K.
T =gt =TT =T

Finally, the Berezin transform of f € L™ is, by definition, the Berezin symbol of
the Toeplitz operator T}:

Bf(2) = T3 (z) = K(z,2)" /Q @) 1K (@,9)? dy.

It is immediate that the mapping T + T is linear, I = 1, (T*)~ = ?, 1Tl < 1T,
and T is a real-analytic function on §; similarly for f +» Bf. Since the function
(TKy, K), being holomorphic in z and 7, is uniquely determined by its restriction

to the diagonal z = y, it also follows that both mappings T +— T and f— Bf are
one-to-one — a fact which is of crucial importance for some applications.

.Research supported by GA AV CR grant no. A1019304 and by AV CR IRP no. AV0Z10190503.
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There are also the weighted analogues of all the above objects: namely, for any
continuous, positive weight function w on 2, the subspace L2 ,(Q,w) of all holo-
morphic functions in L2(Q, w) is closed and possesses a reproducing kernel Ky, (z,y)

— the weighted Bergman kernel; and one may define the Toeplitz operators T(w),

Berezin symbols T(*) and Berezin transform B(*) in the same way as before. ,
0°®
6z,~62,-
defines a Kahler metric on 2, with the associated volume element du(z) = det[g;;] dz
(dz being the Lebesgue measure). For any h > 0, we then have, in particular,
the weighted Bergman spaces L2 (9, e~%/"du) =: Lﬁol,h, and the corresponding

reproducing kernels K (z, y), Toeplitz operators T}h), and Berezin transforms By, f.

It turns out that the following theorem holds.

Theorem. ([E1},[BMS]) Assume that Q is smoothly bounded and strictly pseudo-
convex, and e~ % is a defining function for ). Then as h \, 0,

Consider now a strictly plurisubharmonic function @ on (2. Then g; =

(1) Ki(z,z) ~ 2@/h = Zhj b;j(x);
j=0
(2) Bnfm~) K Q;f;  and
3=0
o -
(3) T}h) Téh) = Z h? ngé £.9) (in operator norm),
=0

for some functions b; € C>(§2), some differential operators Q;, with Qo = I and
Q= ggiﬁﬁj, the Laplace-Beltrami operator with respect to the metric g;3; and
some bidifferential operators Cj, where Co(f,g9) = fg and Ci1(f,g) — Ci1(g, f) =
={f,g} (the Poisson bracket of f and g).

The proof of the theorem makes use of the domain
Q:={(z,t) e A x C: |t|* < e~ 2@}

which by the hypotheses is smoothly bounded and strictly pseudoconvex, and ad-
mits 7(x,t) = [t|? — e"2®) as a defining function. Its boundary X = o is a
compact manifold, and & = Im 8r is a contact form on X (i.e. @A (da)™ ! is a non-
vanishing volume element). Let H2(X) be the Hardy subspace of all functions in
L2(X) that extend holomorphically to Q. According to a formula of Forelli, Rudin
and Ligocka, the reproducing kernel Ky of H2(X) — the Szegd kernel — satisfies

Kat((2,8), 0:9) = oy D (9)* Kij(eanin)(@:0)
" k=0

On the other hand, by results of Fefferman, Boutet de Monvel and Sjostrand,

a o 1 =
Kx |diagonal = —zg +blogr,  a,b€ C(Q).
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Employing the usual Cauchy estimates for the function f,(¢3) := Kx((z,1), (z, s))
of one complex variable on the disc [t3] < e~®(*), the expansion (1) follows (where
h=1/(k+n+1), k — o0). In fact, this even gives a similar expansion for Kj(z,y)
for (z,y) € Q x Q close to the diagonal, and (2) then follows by an application
of the stationary phase method. Finally, (3) can be proved using the Boutet de
Monvel-Guillemin theory of generalized Toeplitz operators (with pseudodifferential
symbols). ‘

A completely analogous result also holds for an arbitrary Kahler manifold §} such
that the second cohomology class [w] of the K&hler form w is integral: namely, there
exists then an Hermitian line bundle £ over §2 with compatible connection V such
that curvV = w. For k = 1,2, ..., consider, instead of the spaces L2 (£, e=*® dp),
the subspaces of all holomorphic square-integrable sections of the k-th power L*®k
of the dual bundle £*. Taking the unit disc bundle ) C £* in £* in the place of the
domain € from the preceding paragraph, a totally parallel argument again shows
that (1) and (2) hold, and the Guillemin-Boutet de Monvel theory of generalized
Toeplitz operators again yields also (3) (cf. [BMS],[Zel]).

The last theorem has an elegant application to quantization on Kahler manifolds.
Recall that the traditional problem of quantization consists in looking for a map
f — Qy from C*°(Q) into operators on some (fixed) Hilbert space which is linear,
conjugation-preserving, (J1 = I, and as the Planck constant A ™\, 0,

ih
@ (@1, Qel ~ 5 Qa1

(The spectrum of Qy is then interpreted as the possible outcomes of measuring the
observable f in an experiment; and (4) amounts to a correct semiclassical limit.)

Our last theorem implies that (4) holds for Qs = Tf(h), the Toeplitz operators
on the Bergman spaces Lﬁol, , (or on the spaces of holomorphic L2-sections of the

bundles £*®1/%). This is the so-called Berezin-Toeplitz quantization.

There is also another approach to quantization, discarding the operators Q@5 but
rather looking for a noncommutative associative product * on C*(£2), depending
on h, such that as h \, 0,

fxg— fg, E—g—-_hg—*f%%{f,g}-

Such products are called a star-products, and are the subject of deformation quan-
tization. The relationship to Bergman spaces is the following: in view of the injec-
tivity of the map T — T from operators to their Berezin symbols, we can define
for two bounded operators T,U on L, ;, a “product” of their symbols by

T+U:=TU.
This gives a noncommutative associative product on

{T : T a bounded operator on L2, ,} C C*().
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It can be shown from part (2) of the last theorem (i.e. from the asymptotics of Bx)
that if k is made to vary, these products can be glued into a star-product on C*°(£2).
This is the so-called Berezin quantization.

From the point of view of these applications, the weighted Bergman spaces Lfml, A
(or their analogues L2, (£*®*) for manifolds) have an obvious disadvantage in that
their very definition requires a holomorphic structure (hence, in particular, they can
make sense only on Kahler manifolds). On the other hand, the other ingredients —
the operator symbols, the Toeplitz operators and the Berezin transform — make
sense not only for L2 ;, but for any subspace of L? with a reproducing kernel. Hence
it seems very natural to investigate whether any such spaces other than weighted
Bergman spaces can be used for quantization.

For instance, one such candidate might be the harmonic Bergman spaces L7, .,
of all harmonic functions in L?. As in the holomorphic case, these possess a re-
producing kernel, the harmonic Bergman kernel H(z,y); in contrast to the usual
Bergman kernel, H(z,y) is real-valued and symmetnc, H(z,y) = H(y,z) € R.
Similarly, one has pluriharmonic Bergman spaces Lph (and pluriharmonic Berg-
man kernels).

Still another candidate are Sobolev spaces of holomorphic functions (Sobolev-
Bergman spaces), i.e. the subspaces Wy, of all holomorphic functions in the (possi-
bly weighted) Sobolev spaces W*, s € R. In fact, one can show that in the situation
from the last theorem (i.e. when e~? is a defining function), the weighted Bergman
spaces L, ,, for h = 1/m, coincide (as sets) with W;,(Q2) where s = nl=m <.

It is also possible to combine these two approaches and look at Sobolev spaces
of (pluri)harmonic functions.

In this talk, we discuss in more detail the situation for the harmonic and pluri-
harmonic Bergman spaces.

Unfortunately, it turns out that — from the point of view of the quantization
applications at least — bad things happen. First of all, recall that for the Berezin-
Toeplitz quantization we needed that the Toeplitz operators satisfy

[T(h) Tg(h)] T(h)

5 Li.9} as h 0.

h

However, for Toeplitz operators on L2, this fails even on Q = D, the unit disc
in C, with the hyperbolic metric (given by Kahler potential ®(z) = log —r—rz')
and f(z) = z, g(z) = Z. Second, recall that the Berezin quantization (the star-
products) was based on the fact that the correspondence T' — T between operators
and their symbols was one-to-one. However, this fails on any harmonic Bergman
" space if f, g are any two linearly independent elements in L%, .., then the operator

= (-, f)g (-,9)f is easily seen to satisfy (T'Hg, Hz) = f(z)g(z)—g(z)f(z) = 0 Vz;
hence T = 0, while apparently T' # 0. Thus, there is no hope to perform the
quantization. (See [E2] for the details.)

In view of these failures, it would be only natural to expect that also the other
assertions of our theorem (e.g. the asymptotics of the Berezin transform, or the
injectivity of the map f — Bf) break down. The following results therefore came
as some surprise for the author.




BEREZIN TRANSFORMS 5

Recall that a domain 2 C C” is called complete Reinhardt if z € Q and |y;| <
z;| V7 imply y € Q. In particular, such domains are invariant under the rotations
7

(5) 2 (2169 20692 2,e%0), Vbi,...,60, € R.

Theorem 1. Let €2 C C™ be complete Reinhardt and let v be any finite measure
on {2 invariant under the rotations (5). Then on Lgh(Q, dv),

Ti=0 = T;y=0 (ie. Bf =0 = f=0).

Thus, although the Berezin symbol map T" — T is not injective on all operators,
it is injective on Toeplitz operators.

Theorem 2. Consider the following situations,

L rea (D, S (1 = [22)Y1),

harm s wh

—-n_—|2]?
L2 (Cm ke /Ry

(i.e. the harmonic Bergman spaces on the disc with respect to the usual weights and
the pluriharmonic Fock spaces on C"), and also the pluriharmonic analogues of the
standard weighted Bergman spaces on bounded symmetric domains in C™. Then
the associated Berezin transforms possess the asymptotic expansion (2), i.e. there
exist differential operators Q); such that Vf € C*° N L>™,

Buf(z) =) h Q;f(z) ash\0.
=0

In fact, these are the same (Q; as in the holomorphic case.

Theorem 3. The assertion of the last theorem also holds for

L2 (Rn, h—n/26—|x12/h)

harm

(the harmonic Fock space on R™), with Q; = (A/4).

The proofs of these theorems go by explicit calculations of the reproducing ker-
nels in question (which are possible owing to the rotational symmetry of the do-
mains and measures) and the method of stationary phase; see [E3]. (For Theorem 3,
one also needs the properties of certain spherical harmonics [ABR], and an interest-
ing special function — one of the hypergeometric functions of Horn — plays a role.)

In a way, these theorems raise more questions than they answer. First of all,
it is not clear whether the results are anomalies whose validity stems from the
abundant symmetries of the domains, or whether they hold in more general set-
tings. For instance, does Theorem 1 hold for the Toeplitz operators on the pluri-
harmonic Bergman space on a general smoothly bounded strictly pseudoconvex
domain in C™®? Or does Theorem 2 hold for the pluriharmonic analogues of the
spaces L} ,(Q,e~%/"dy) from the traditional Berezin and Berezin-Toeplitz quan-
tizations? For Theorem 3, it even makes sense to study the problem not only for
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pseudoconvex domains in C™, which are the natural arena for holomorphic func-
tions, but for any open set in R™. (Currently, it is even unknown whether an
analogue of Theorem 3 holds for the unit ball of R™.)

We remark that in the holomorphic case, the asymptotics of the weighted Berg-
man kernels, of the Berezin transform and of the Toeplitz operators were de-
rived from the boundary behaviour of the Szegé kernel of the “inflated” domain
Q={(z,t) € 2x C: |t|> < e ?}, using the formula of Forelli-Rudin-Ligocka and
the Fefferman-Boutet de Monvel-Sjostrand theorem. It should be noted that the
Forelli-Rudin-Ligocka formula holds also in the pluriharmonic case: if we denote by
th(k' ), X = 6?2, the subspace in L%(X) of all functions that have a pluriharmonic

extension inside §, then the reproducing kernel of th(X ) is given by
1 o0
h i h
Ki’ ((z,1),(y,5)) = Gy Z (St)b] Kf/(]j[.’_n_*.l)(x: Y),
j==o0

where 2V = 27 or 77 according as j > 0 or < 0, and K7 7m(ac, y) is the reproducing
kernel of Lgh(ﬂ, e~™® du). Thus in principle we can again get the asymptotics of

K f}‘m, and of the pluriharmonic Berezin transform, from the boundary singularity

of K f\’fh. Unfortunately, what is missing is the pluriharmonic analogue of the Feffer-
man-Boutet de Monvel-Sjostrand theorem, i.e. the description of the boundary
singularity of the pluriharmonic Szegt or Bergman kernels.

Similarly, it seems unknown what is the boundary singularity of the harmonic
Bergman (or Szegd) kernel of a domain in R™. (There exist optimal estimates for
the boundary growth, though; see [KK].) However, in this case there is no analogue
of the Forelli-Rudin-Ligocka formula.
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The Logarithmic Singularities of
the Bergman Kernels for model domains

HANJIN LEE

1. Statement of theorem
A domain Q € M if and only if

Q= {(20,2) e Cx C": I(2z0) > F(z)}
F . real analytic strictly plurisubharmonic function on C™ such that
1. F0)=VF(0)=0
2. F(e1z, -+ ,ePz,) = F(z1, -+ ,2,) for any 8; € R

3. There are small positive numbers ¢ and € such that F(z) > c|z|° for sufficiently
large |2] = (T, |z[2)V/2.

Theorem 1. Suppose n = 2. Let () be a domain that belongs to the class M. Then
Q is biholomorphic to the ball if, and only if, its Bergman kernel function does not
have logarithmic singularity at the boundary.

2. Background of theorem

Theorem 2 (Fefferman). Let G C C", bounded strictly pseudoconvezr domain, 0G
is smooth and G = {r > 0} for smooth defining function r then,

_ ¥
.BG-—-;;IT4—¢dogr

where @, ¥ € C°(G)

Expansions of ¢,y :

o= eir* mod O(™™), Y~} ghr

k=0 k=0

where ¢, ¥ € C°(G)
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Fefferman’s program

Choose 7 = rF which satisfies certain transformation rule under biholomorphism.
Then ¢k, are CR invariants, that is, polynomials in Moser’s normal form co-
efficients satisfying certain transformation rule with weight k¥ and n + 1 + k. By
Chern-Moser theory, Moser’s normal form coefficients are expressed in terms of CR
curvature tensors. It implies that certain conditions on singularities ¢y, decide
the geometry of domains.

Theorem 3 (Burns / Graham). Let G C C2. The boundary of G is locally CR
equivalent to the sphere if ¥ = O(r?).

Our theorem is an attempt to generalize Burns-Graham’s theorem for higher
dimension. For 2 dimensional case, with additional assumption of complete Rein-
hardtness it is known that the vanishing of log term implies that G is equivalent to
the ball (Boichu and Coeuré, Nakazawa). For general dimension, if the domains are
ellipsoids close to the ball,then vanishing of log term implies that the domain is the
ball (Hirachi).

3. Proof of theorem
We use basically ideas and methods in Kamimoto’s work (2004).

Part 1. Formula of log singularities
Haslinger’s formula

H,(C") = {g € O(C™) : / 9P~ FdV < oo}
. Cr
K(-;7) : Bergman kernel for H,(C")

1 oC
Bo(zg,2) = 57;/ e 2@ T K (2 7)rdr
0

. _ lz|2a
K(z;7)= Z ——

2
Q€L ca(7)

where |2|%* = |z1]|%® - - - |2,]?*, and

calr? = [ 1PV (2)




Singularity formula ‘

n+1
(20,2 Z P (2)(Sz0) 771 + Z ( (2)(S20)P log(Szo) ‘
p—O
where
pj(z) = Z €o,laj+n+1—j |z|2a
a€Zl
1/)17('2) = E €o,|a|+n+2+p |z|2a
aEZi
7
F(z) =Yl +>_ Bllaf ..., |zl
j=1 1>2
where

‘-Pl(yla e ayn) = Z Cﬂ(«)l)yﬁ
Bl=t

Set Sy = {y € R} : y1+---+yn = 1}. dp is surface measure on S, and dp, = y*du
€alal+ptn+2 T / 1)|a'+p+n+3 dﬂa
Sy
/ Plojiptnt2 Podpia + / Pioj+pini2 dpia / Py dpg
Sy St S;
/ P|a|-i;p+'n.+1 Pydp + / Pia]+p+n+1 dpa / P3dyg
Sy S¢ Sy

/5 Piajspinst P dia + /S Pratipinss Prdpia | Prdpia
+ +

S+
/ P]a]-i—p—%—n+1 dpta / Py dyug / Pydug
St St

Sy
+
lo|+p+n+2
1 '
T [ A [
Lty Y5+ S+
=l|aj+p+n+2

where each term has proper constants, but we didn’t consider them here.
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Part 2
We consider the case n = 2. ( Most of key lemmas still hold for general dimension,
but some arguments depend on the partition of 7 )

Theorem 4. ¥ = 32, ("B;M Pp(2)(S20)P = O((S20)*) implies Py = 0 for all
k>2.

From the observation

. 1
ea,(l) = Z C[(,l+"+3) B(B4,..-,Pn) + polynomial (Cé+n+2), ety g))
1Bl=l+n+3

we can consider
€a(aftp=l) = Cajjal+piniz=lintz =0,  Jaf <l 1=0,1,...
as system of polynomial equations
EM(P,...,P)=0, j=1...,m k=23...

We may assume P, # 0 or Ps # 0 because if P, = P3 =0, we can show that P, =0
for all k.
(A) We assume P, # 0.

Lemma 1. The whole system ( in fact, finite subsystem ) of equations is reduced to
EP (Ry) =0, j=1,2,3
EQ(P,P) =0, §i=1,234
and in particular P = P3 = 0.
Key idea for lemima is to find smallest L such that
ne+--+np>2+)+@B+1)+...+(L+1).
Fork>5

e = 3/2k-5 k is even
*T\ 3/2(k+1)—6 kisodd.

Since we have redundant terms when k > 17, we replace ny with i, = (k +1) + 2
for k > 17, then L = 26 is smallest number such that

ng+--+ng+agr+o-+aL22+1)+@+1)+ -+ (L+1).
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= [ PysP# du comes from

€a,(lal+p=42) = /P47+P46P2+- .+ Pos(PP +.. .+ Pog)+(Lot)du+(Pr: 7 < 46) =0

=> Condition for vanishing order of log term

Reduction
/Pky{pdﬂ= /Pk—1y’{p+2du+l.o.‘c

for j1=0,...,0k—a=k—5,...,Jn, =2(k—4)
Suppose ng > k+ 1. LHS can be considered linear equations in C(()k), ... C’,ik).

Solve equations for (gk), . C’,(ck)

S Pe y{I du= [ Py y{1+2 du+l.o.t

[Py dp= [ Po_y i 2 dp+ 1ot

Then
k+1

(*) C}k) = Z(/ Pio1 4777 dp) + Lot
p=1

/Pk yj” dy,](*) = /Pk—l yf+j” du + lo.t

forp=k+2,...,n4

E
LHS =Y B(jp+k - 5,))C| ()
j=0
/Pk_j yf”" dyp = Z /Pk_1 yf+jp du +lot
p<k+1

forp=k+2,...,n
Equations for P,
(k,m) represents [ P Py*du, and — means reduction.
(26,21) — (25,22) — (24,23) — (23,24) — ...
(25,21) — (24,22) — (23,23) — ...
(25,20) — (24,21) — (23,22) — ...
(24,20) — (23,21) — ...
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(25, 20), (25,21), (26,21) forms a tail in the whole system. Full reduction =
Qu(P2) =0, d=44,45,46 = P, =0. '
(B) Case P, =0,P;#0
F(z) = Zkzs Pe(jz1)?,. .., |2a]?) and €a,(joj+p) (P2 = 0) =0 for all o € Zt,p €
Z.. Apply previous arguments to

F(2) = ePo(|z1]%, ..., |2l + F(2)

where Pls, =1

€a,(jal+p)(FE) = eol+ptd oo e(Poj4prat -+ (FPe k2 3)) + terms without P
= 6(Plt:¢|+p—i~4 +- o+ (Pe ik 23)+0(e)

Y0 = €q,(jaj+p=0) = (P4) -+ 0(6)
Me] = €a(laj+p=1) = (F5) + (P§) + O(¢), |a|=0,1
Y2,le| = €a,(jal+p=2) = (Ps) + (PsPs) + O(e), lal=0,1,2
o] = €a,(jal+p=3) = (Pr) + (PsP3) + (P?)+O(e), |a]=0,1,2,3

(P3) =+, + O(e)
(PaP3) =7y,;+0(e) j=1,2

= .
(PsPs) = (P}) +75;+0(e) 7=1,2,3

n3—(3+1)=—3,

ng—(4+1) = -2,
ns— (5+1)=-1,

= Finite system with |a| + p < 42
= (Reduction) Overdetermined system for P
= P3 =0

Fudan University, Shanghai.
hxl@postech.ac.kr
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HEARING THE TYPE OF A DOMAIN IN C?
WITH THE -NEUMANN LAPLACIAN

SIQI FU

1. INTRODUCTION

Motivated by Mark Kac’s famous question [Kac66] “Can one hear the shape of a drum?”,
we study the interplays between the geometry of a bounded domain in C” and the spectrum
of the 8-Neumann Laplacian. Since the work of Kohn [Ko063], it has been discovered that
regularity of the 8-Neumann Laplacian is intimately connected to the boundary geometry.
(See, for example, the surveys [BSt99, Ch99, DK99, FS01].) It is then natural to expect that
one can “hear” more about the geometry of a bounded domain in C* with the 8-Neumann
Laplacian than with the usual Dirichlet or Neumann Laplacian.

For bounded domains in C?, it follows from Hérmander’s L2-estimates of the 8-operator
[H65] that pseudoconvexity implies positivity of the spectrum of the 8-Neumann Laplacian
on all (0, ¢)-forms, 1 < ¢ < n—1. The converse is also true (under the assumption that the
interior of the closure of the domain is the domain itself). This is a consequence of the sheaf
cohomology theory dated back to Oka and H. Cartan (see [Se53, L66, O88]). (See [Fu05] for
a discussion and proofs of this and the analogous result for the Kohn Laplacian without the
sheaf cohomology theory.) Therefore, in Kac’s language, we can “hear” pseudoconvexity
via the 8-Neumann Laplacian.

Regularity and spectral theories of the §-Neumann Laplacian closely intertwine. For
example, on the one hand, by a classical theorem of Hilbert in general operator theory,
compactness of the 5-Neumann operator is equivalent to emptiness of the essential spec-
trum of the 8-Neumann Laplacian. On the other hand, by a result of Kohn and Niren-
berg [KN65], compactness of the 5-Neumann operator implies exact global regularity of the
O-Neumann Laplacian on L?-Sobolev spaces. It was shown in [FS98] that for a bounded
convex domain in C”, the -Neumann operator on (0, g)-forms is compact if and only if the
boundary contains no g-dimensional complex varieties. (It is noteworthy that the proof of
the necessity of this result is based on the Ohsawa-Takegoshi extension theorem [OT87].)
However, such characterization does not hold even for complete pseudoconvex Hartogs do-
mains in C2 ([Ma97], see also [FSO01]). It was observed in [FS02] that compactness of the
8-Neumann operator on complete Hartogs domains in C? is intimately related to diamag-
netism and paramagnetism for certain Schrédinger operators with infinitely degenerating
magnetic fields. The desired paramagnetic property (in semi-classical limits) was finally es-
tablished in [CF05]. As a consequence, for smooth bounded pseudoconvex Hartogs domains
in €2, compactness of the -Neumann operator on (0, 1)-forms implies that the boundary
contains no pluripotentials (more precisely, it satisfies property (P) in the sense of Catlin
[Ca84b] or equivalently is B-regular in the sense of Sibony [Si87}). This, together with an
earlier result of Catlin [Ca84b] (compare {St97]), shows that one can determine whether or

This is the lecture notes at the 2005 Hayama conference in Japan. It is based on the paper [Fu05al.

Research supported in part by a grant from the NSF and an AMS Centennial Research Fellowship.
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not the boundary of a Hartogs domain in C? contains pluripotentials via the spectrum of
the d-Neumann Laplacian.

The main purpose of this note is to sketch the proof of the following theorem. We refer
the reader to [Fu05a] for the detail.
Theorem 1.1. Let Q be a smooth bounded domain in C2. Let N()) be the number of
eigenvalues of the 0-Neumann Laplacian that are less than or equal to A\. Then b8} is
pseudoconvez of finite type if and only if N(X) has at most polynomial growth.

Recall that the type of a smooth boundary b2 C C? (in the sense of Kohn [Ko72]) is the
maximal order of contact of a (regular) complex variety with b§2. (See [Ko79, D82, Ca84a,
D93] for more information on this and other notions of finite type.)

We divide the proof of Theorem 1.1 into two parts. For the sufficiency, we establish the
following result.

Theorem 1.2. Let & € C? be smooth bounded pseudoconvez domain of finite type 2m.
Then N(\) <A™+

The Weyl type asymptotic formula for A'()) for strictly pseudoconvex domains in C" was
established in [Me81] by Metivier via an analysis of the spectral kernel of the 8-Neumann
Laplacian. The heat kernel of the §-Neumann Laplacian on strictly pseudoconvex domains,
as well as that of the Kohn Laplacian on the boundary, were studied extensively in a
series of papers by Stanton, Beals-Greiner-Stanton, Stanton-Tartakoff, Beals-Stanton, and
others (see [S84, BGS84, ST84, BeS87, BeS88]). Metivier’s formula was recovered as a
consequence. Recently, the heat kernel of the Kohn Laplacian on finite type boundaries
in C? was studied by Nagel and Stein [NSO01}, from which one could also deduce a result
similar to Theorem 1.2 for the Kohn Laplacian on the boundary.

We follow Metivier’s approach in proving Theorem 1.2 by studying the spectral kernel.
We are also motivated by the work on the Bergman kernel by Catlin [Ca89], Nagel et
al [NRSW89] and McNeal [Mc89] as well as related work of Christ [Ch88] and Fefferman
and Kohn [FeK88]. Since the spectral kernel does not transform well under biholomor-
phic mappings, instead of (locally) rescaling the domain to unit scale and studying the
6-Neumann Laplacian on the rescaled domain as in the Bergman kernel case, we rescale
both the domain and the 8-Neumann Laplacian as in [Me81]. In doing so, we are led to
study anisotropic bidiscs that have larger radii in the complex normal direction. Roughly
speaking, at a boundary point of type 2m, the quotient of the radii in the complex tangen-
tial and normal directions for the bidiscs used here is 7 : 7™ while in the Bergman kernel
case it is 7 : 72™ (7 > 0 is small). To establish desirable properties, such as doubling and
engulfing properties, for these anisotropic bidiscs, we employ both pseudoconvexity and the
finite type condition. Note that only the finite type condition was used in establishing these
properties for the smaller bidiscs used in the Bergman kernel case. Here in our analysis
of these bidiscs, we make essential use of an observation by Forness and Sibony {FoS89].
Also crucial to our analysis is a uniform Kohn type Garding’s inequality on the rescaled
H-Neumann Laplacian.

By carefully flattening the boundary, we then reduce the problem to estimating eigen-
values of auxiliary operators on the half-space, which ultimately boils down to estimating
eigenvalues of certain Schrodinger operators with finitely degenerating magnetic fields.

For the necessity, we prove the following slightly more general result.

Theorem 1.3. Let Q be a smooth bounded pseudoconvez domain in C™. Let Ny(X) be the
number of eigenvalues of the 8-Neumann Laplacian on (0, q)-forms that are less than or
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equal to X. If Ng(A) has at most polynomial growth for some q, 1 < q < n — 1, then b§) is
of finite D,,_1-type.

Recall that the D,_;-type of bQ is the maximal order of contact of (n — 1)-dimensional
(regular) complex varieties with b2. It was observed by D’Angelo [D87] that the Dp_i-
type is identical to the second entry in Catlin’s multitype. An ingredient in the proof
of Theorem 1.3 is a wavelet construction of Lemarié and Meyer [LM86]. A result sim-
ilar to Theorem 1.3 for the Kohn Laplacian on the boundaries in C? is also known to
M. Christ [Ch].

2. PROOF OF NECESSITY
In this section, we sketch the proof of Theorem 1.3.
L Let Q(u,u) = (Bu, du) + (8'u, 8 u) be the quadratic form associated with the &-

Neumann Laplacian [J; on (0,g) forms. By the min-max principle, A; 2 j° implies that
there exist at most < j many orthogonal u; € Dom(Q) such that

Qug, ug) S 5 lurl?

Therefore, it suffices to prove that if b2 is of infinite D,,_;-type, then there exist > j many
such uy,.

II. It is not possible to construct many orthogonal uz’s without further symmetry as-
sumptions on 2. To overcome this difficulty, we use the following variation of the min-max
principle.

Lemma 2.1 (Min-Max). Suppose that ur, € Dom(Q), 1 < k < j, satisfies the following
Riesz type condition '

J J
I chuk“ 2 (Z lexl?)1/2. (Riesz)
k=1 k=1

Then
. > 4€ = max Q > 4€

III. To construct the v in the above lemma, we use the following wavelet lemma due to
Lemarié and Meyer.

Lemma 2.2 (Wavelet). Let b(t) be a smooth cut-off function supported in [-1/2, 1], =1
on [0, 1/2], and b2(t)+b2(t—1) =1 on [1/2, 1]. Then {b(t)e*™ V=1 |k € Z} are mutually
orthogonal.

IV. We will also need the following well-known normalized lemma:

Lemma 2.3 (Normalization). If the D,_1-type of bS) is > 2m at z;, then after local change
of coordinates, b§) is defined near zj = 0 by

r(z) = Re zn + f(2') + (Im 20)g(z) + O(| Im 2z |*),

where |f(2)] < |'*™, |g(z)] < |2]™.
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V. It follows from the Kohn-Morrey formula and the usual min-max principle that Ag; <
Ag+1,n;- Thus, it suffices to work on (0, n — 1)-forms.

VI. To construct the (0,n — 1)-forms that satisfy the condition in Lemma 2.1, we first

extend the Lemarié-Meyer wavelet b(t) from R to C: Let
B(w) = (b(t) — it/ (t)s — b"(t)s*/2)x(s/ (1 + [t]*))

where w = s + it and y is a cut-off function = 1 on [-1, 1]. Then B(0,t) = b(t) and
|Bs| < Is|*.

Now let ‘ _ . s

Fir(z) = k1607 Diq(1672/) B(16™ 2, )e 27K 1077w

for any j € N and 2™~ < k < 2™ where a(2’) is any smooth cut-off function in 2’. Let
wi,...,wn be an orthonormal basis for (1,0)-forms near the origin with w, = dr/{0r|. Let

Ujk = fj’kal A...Wnp-1.

Then it is not difficult to show that u; x satisfies the uniform Riesz condition in Lemma 2.1:
1Y eruinll® 2D lexl®
k k
Furthermore, it follows from direct computations that
Q(uj k> ujk) S 167
Thus, by Lemma 2.1, 3kg € [2™71, 2] such that

. Q(uj,kmuj,ko) 2 (zmj‘)e‘
Therefore, 2m < 16/e. We thus conclude the proof of Theorem 1.3.

3. PROOF OF SUFFICIENCY

We sketch the proof of Theorem 1.2 in this section.

I. Let A; be the eigenvalues of the 9-Neumann Laplacian O on (0, 1)-forms. Let ¢; be
the normalized eigenforms associated with A;. Throughout this section, we assume that [l
has purely discrete spectrum. In this case, the spectral resolution E(\) of O is given by

ENf= Y (feies
JA;SA
Let e(}; z,2') be the kernel of E()) (in the sense of Schwartz). Then

N = /tr e(X; z,2)dV (z).

II. We now recall the well-known setup for finite type domains in C2. Let Q@ = {z € C? |
r(z) < 0} and let 2’ € bQ. Let L = 1,,8,, — r,,0,,. For 5,k > 1, let

Lj80r(Zy= L...L I...L 69r(L,I)(2).
j—1times k— 1 times
For any 2 <1< 2m, let
! e 1) |2 1/2
4y = (Y 1£08r()E) "

F+k<l
7.k>0
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For any 7 > 0, let
2m
5, 7) = ZAl(z')Tl.
=2

It is evident that b2 is of finite type 2m <= &(2',7) 2 72 uniformly for all 2’ € bQ and
8(zh,7) < 7®™ for some 2z} € bQ2.

I1I. We now recall the special coordinates introduced by Fornaess and Sibony: 3¢ = &,/(2)
such that @,/(U, N Q) = {Re {2 + h(¢1,Im {2) < 0}, where h(¢1,Im ¢2) has the form of

2m m
D P(G) + (Im @) > Qu(¢) + O(IG ™ + | Im (|G ™ + [Im Gof?|Gr]).-
k=2 k=2

It is easy to see that

8(2,7) = Y |PillooT®,
k

where || Pl|oc = max)¢, =1 |P]- _
We will need the following key fact from [FoS89]: If 2 is pseudoconvex of finite type 2m,
then :

m 2m
S Il 5 Il (3 1Rlolcal?)
=2 =2

IV. We use the following construction of anisotropic “bidiscs”:
R.(z) = &1 (|G] < 7 1G] < (8(Z,7)M?).

Notice that the bidiscs here have radii §1/2 in the complex normal direction whereas those
in the study of the Bergman kernel have §. For this construction of anisotropic bidiscs to
be useful, we establish the following doubling and engulfing properties.

Lemma 3.1 (Doubling/Engulfing). If 2” € R,(2') NbQ, then
8(2',7) = 8(2",7); and R.(2') C Rer(2"), R (2") C Ro,(2).

V. We divide € into two regions: the blue and red regions. On the blue region
{zeQ: d(z) 2 (6(x(2),1/VN)?,
it follows from the interior ellipticity of (I that
tr e(X; 2, 2) < A(8(w(2), 1/VA)/2 < amHL,

VI. On the red region
{zeQ: d(z) S (5(n(2), 1/VN)/?},

/ tr e(); 2, 2) S A™FL,
Red Region

By Lemma 3.1, it suffices to prove: .
(31) [ wenzg) @@,
R, (z')N02

where 7 = 1/v/A.

we shall establish
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VIL. To prove the above estimate, we will use a rescaling method. We first flatten the
boundary: Let (11,72) = ®»((1,¢2):

(m,m2) = ((1, 2+ A(¢1, Im G2) ~ F((1,(2))

where

F(C1,G2) = ha(¢1)(Re G2 + h(Gr, Im (2))?/2
+i(h1(¢1) (Re ¢2) + ha(C1)(Re ¢2)(Im (2)).

We use this choice of F to make 87/ vanish to a desirable higher order.

VIII. The rescaling is the usual one defined by
(w1, w2) = Dy - (m1,m2) = (m/7,m2/6),

where § = 8(2',7). Let Q0 = QNU,. Let Uy, = D;0®0® and Q= ¥p () =
{Re wy < 0| ¥, (w) € Uy}. Let

G,: L2(9,) — L2(Q);G(u) = | det AT, |Tu o T.

The rescaling of the 5-Neumann Laplacian is done by rescaling the quadratic form via the
following formula.

Qr(u, u) = T2Q(g7‘u) Gru), SuppuC Qz','r-

Let O, be the operator associated with Q.. Roughly speaking, we have (J, = 267106, .
It remains to estimate the spectral kernel of U;.

IX. The estimation of the spectral kernel of 1, is based on the folliwng Kohn type
Garding inequality:

Lemma 3.2 (Kohn type Géirding inequality). 3¢ > 0 such that
9, OUu
Qr(u,u) 2 u |||§ +7%572 I _GE u2—l+s7
for all u supported in {|jwy] < 1, |ws| < 6-1/2}.
From the above lemma, we have
~ _14 Ou
Qr(aw) 2 Bsww) SHw I+ o P
2

where § = 8(2/,7). Thus, as § — 0, du/Ow, = 0. Using the Bergman projection and a
Payley-Wiener type theorem, we obtain

Aj(xsNs) S (1 + j6H%)=¢/4,

where xs(w1, w2) = x(ws, §1/2uw,) and Nj is the inverse of the operator-associated with Qg.
A commutator argument then yields that

/ tr e (1;w, w) < 672
P, (2")

where P, (2') = {|w1| < 1, |ws| < §~1/2}. This in turn yields our goal (3.1).
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INVARIANTS FOR HOLOMORPHIC/RATIONAL DYNAMICS:
A SURVEY

YUTAKA ISHII

Given a dynamical system f : X — X with some (topological, measurable,
differentiable, algebraic) structure, one can introduce an associated invariant.
For certain holomorphic/rational dynamical systems some of these invariants can
be defined, and one may ask how they are related to each other. In this talk I will
survey several recent results concerning the relationship between these invariants
for three classes of holomorphic/rational dynamical systems.

1. THE INVARIANTS

In this lecture, we will be interested in the following four invariants.

1.1. Topological Entropy. Let f: X — X be a continuous map of a compact
topological space X. For an open covering U of X, we denote by card*(f) the
minimum number of elements in 2/ to cover X. Given two coverings U and V, let
us write U VYV = {UNVveuvey and U, = UV f7HU) V- - -V F~O=D(U), where
71U = {f~(U)}veu. Then,

hiop(f) = sup lim % log card™(Us,)
u n—00

exists and is called the topological entropy of f. Topological entropy is shown to
be invariant under topological conjugacy.

Intuitively, the topological entropy represents the growth of the number of or-
bits generated by f. To see this, we give an alternative definition of the topological
entropy here. Let (X, d) be a compact metric space, and let f : X — X be a con-
tinuous map. Given € > 0 and n € N, we say that two distinct points x #y € X
are (n,e)-separated if there exists 0 < k < n — 1 so that d(f*(z), f*(y)) > «.
This means that the two strings {f'(z)}75 and {f(y)}7 of length n are “dis-
tinguishable” with the resolution of € > 0. Let N(n,¢) be the maximum number
of mutually (n, ¢)-separated points in X. Then, an alternative definition of the

topological entropy is given by
1
hiop(f) = lir% lim sup - log N(n,€).
€=U n—ooo

Thus, the topological entropy can be seen as the growth rate of the number of
n-strings up to the resolution of € — 0.

When X is a complex projective manifold and f : X --+ X is a rational
map given by its graph I'y C X x X, we define I'i’ = {z = (zo,71,-+) €
XN : (z;,2:41) € Ty} with the topology induced from the product topology in
XN, Then, the shift map oy : TP — TP, 00,21, ) = (21,22, --) becomes
continuous on the compact space I'Y, thus we can define the topological entropy
of a rational map f by hiop(f) = hiop(oy).

1
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1.2. Metric Entropy. Let (X, B,v) be a probability space, f : X — X be a
measurable map and v be a f-invariant probability measure, i.e. ¥(X) =1 and
f.v = v. For a finite partition ¢ = {Uy,--- ,Un} of X (this means that U’s are
mutually disjoint measurable sets and their union becomes X), we put

N
H,(U)= Z —v(U;) log v(U;)

with the convention 0log0 = 0. Keeping the previous definition of Uy,
1
h,(f) = sup lim —H,(Uy,),
Yy mn—ooe n

where the supremum is taken over all finite partitions of X, exists and is called
the metric (measure theoretic) entropy of f with respect to v.

1.3. Volume Growth Rate. Let X be a compact Riemannian manifold of di-
mension k, I' € X x X be an m—dimensional submanifold of X x X. Write
I ={z = (20, %1, ** ,Tn-1) € X" : (x;,%s11) € I'}. Then, we put

\ 1
lov(T") = limsup ~ log Vol (T'™),
where Vol,, is the m—dimensional Hausdorff measure in X™ induced from the
Riemannian metric in X. When f is a rational endomorphism of a projective
manifold X given by its graph 'y C X x X, we define lov(f) = lov(Ty) and call
it the volume growth rate of f.

1.4. Algebraic Entropy. Let X be a complex projective manifold of dimension
k with the standard Kahler form w (normalized as [, w* = 1) andlet f : X --» X
be a dominating rational map. For each 1 <[ < k, the dynamical degree of order
l is given by

a(n) = tim ([ 0 )7

The dynamical degrees are shown to be invariant under birational conjugacy.
Now, let f : CP¥ — CP* be a rational map of a complex projective space. We

let deg(f) be the maximum degree of the polynomials which express f in the

homogeneous coordinates. The algebraic entropy of f is then defined as

.1
hag(f) = lim —log deg(f").
One can show that ha(f) = log A1 (f).

1.5. Main Question. So far we have defined four kinds of invariants: topolog-
ical entropy h:op(f) (a topological invariant), metric entropy f,(f) (a measure
theoretic invariant), volume growth rate lov(f) (a geometric invariant) and alge-
braic entropy hae(f) (an algebraic invariant). Once some of these four invariants
are defined for certain class of dynamical systems, it is natural to ask how they
are related. In the next section, we discuss the relationship in three classes of
holomorphic/rational dynamical systems.
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2. THEIR RELATIONS

2.1. Topological versus Metric Entropies. We start with a general fact,
which is a main background of the results presented in this section. Consider
a dynamical system f : X — X under the topological and the measure theoretic
settings. Let M(f) be the set of all f-invariant Borel probability measures. Then,
a well-known classical fact is the so—called

Variational Principle:
htop(f) = Ssup hz/(f)
veM(f)
This fact then suggests the following two questions.

Question 1. Is the “sup” above attained by some measure? (If so, such a measure
is called a mazimal entropy measure.)

Question 2. If such a measure exists, is it unique? (If so, such a measure is called
the unigue maximal entropy measure)

2.2. Polynomial Diffeomorphisms of C2. One of the first recent results con-
cerning these questions in higher dimensional complex dynamical systems is

Theorem (Bedford—Smillie, Bedford-Lyubich—Smillie). Let f : C2 — C?
be a polynomial diffeomorphism of C* with algebraic degree d > 1.
(i) There ezists a unique mazimal entropy measure p for f, i.e. p is the
unique f-invariant probability measure with h,(f) = hip(f) [BS3, BLS1].
(ii) p describes the limit distribution of saddle periodic points of f, i.e.

n—»ood" Z 5"#

2€SP,(f)
in the weak topology, where SP,(f) denotes the set of saddle periodic points
of period n for f [BLS2].
(ili) There exists a positive closed (1,1)-current u* which describes the limit
distribution of preimages of a generic compler one—dimensional disk M
in C?, i.e. there is a constant ¢ = cp > 0 so that

lim L M| = cu’t

in the weak topology for a ‘“reasonably chosen” M, and [M] denotes its
current of integration. A similar result holds for p~ [BS1, BS2].

In fact, we define p = p* A = and the (1,1)-currents u* have been explicitly
constructed from the Green functions:

1 .
G*(z,y) = lim —log™ [|f*"(z, )|

as p* = =dd°G* (Bedford and Sibony; see Section 1 of [BS1]). Key ingredients of
the proof are pluripotential theory and Pesin theory for non—uniformly hyperbolic
dynamical systems. Similar results for holomorphic automorphisms of compact
complex surfaces have been recently obtained by Cantat [C].
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2.3. Holomorphic Endomorphisms of CP*. For holomorphic endomorphisms
of CP*, the following result has been established.

Theorem (Briend-Duval). Let f : CP* — CP* be a holomorphic endomor-
phism of CP* with algebraic degree d > 1.
(i) There ezists a unique mazimal entropy measure p for f, t.e. p is the
unique f-invariant probability measure with h,(f) = hyop(f) [BrDu2}.
(ii) p describes the limit distribution of repelling periodic points of f, i.e.

1
@y 2,
2€RP.(f)

in the weak topology, where RP,(f) is the set of repelling periodic points
of period n for f [BrDul].

(iii) p describes the limit distribution of preimages of a generic point w in CP*,
i.e. there exists a proper algebraic subset E C CP* so that

) 1
Jim (@) Z 0z = p

zef~™(w)

in the weak topology for all w € CP*\ E [BrDu2].

The measure p in the setting above has been again explicitly constructed from
the Green function:

G(z) = lim —log | F"(2)|

defined through the lift F : C*1\ {0} — C*\ {0} of f by the canonical
projection 7 : Ck*1\ {0} — CP* as p = dd*(G o s) Add*(Gos) A--- Add*(G o s),
where the wedge products are taken k times and s : CP¥ > U — C*1\ {0}
is a local holomorphic section (Hubbard-Papadopol [HP], Fornass-Sibony [FS1,
FS2]). Key ingredients of the proof are Bezout theorem and an argument a la
Lyubich [L] with area-diameter inequality.

2.4. Rational Endomorphisms of Projective Manifolds. Assume that X is
a complex projective manifold and consider a dominating rational map f : X --»
X. In this setting, all of the invariants introduced in the previous section except
for the metric entropy can be considered.

Theorem (Gromov, Dinh-Sibony). Let X be a complez projective manifold
of dimension k. If f : X --+ X is a dominating rational map, then

(i) heop(f) < lov(f) [G],
(i) lov(f) = maxig<x log Ni(f) [DS].

In fact, Gromov |G] has proved hiop(f) < lov(f) for holomorphic endomor-
phisms of CP*, but his proof applies to the setting of the theorem above as well
without modification. Key ingredients of the proofs of the theorem above are
an inequality of Lelong (for Gromov part) and careful analysis of positive closed
currents (for Dinh—Sibony part).

As an immediate consequence of this theorem, we have

Corollary. For a birational map f of CP?, we have hiop(f) < hag(f)-
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Suggested by this result, we propose the
Conjecture. For a birational map f of CP?, we have hiop(f) = hag(f).

A possible approach to this conjecture might be to employ the missing cast
“metric entropy” in this setting, that is, to construct a reasonable measure like z
in the previous theorems and show that h «(f) =log \1(f). This would then imply

hag(f) = Pop(f) = hu(f) > hag(f). Also consult recent partial results towards
this direction by Bedford-Diller [BeDi}, Dujardin [D], etc for some birational
maps of surfaces.

2.5. Non-Integrability of Discrete Systems. Several discrete systems such
as discrete Painlevé equations can be regarded as a non-autonomous iterations
of rational maps of CP?. Unlike the Liouville-Arnold formulation for continu-
ous systems, the concept of “integrability” is not yet well-established for such
discrete systems. There is a criterion for integrability of discrete systems called
the singularity confinement test. However, (i) there exists a system which passes
this test but which presents a chaotic behavior (Hietarinta—Viallet [HV]), and
(ii) there exists a system which is solvable by elementary functions but it does
not pass the test (Nakamura [N]). Note that the notion of algebraic entropy has
been introduced in this context and it is claimed that the positivity of algebraic
entropy should be related to non-integrability of a discrete system [BV].

Here, we have the following observation based on the conjecture in the previous
subsection. First recall that for a smooth dynamical system in dimension two,
we have

Theorem (Katok [K]). Let f : X — X be a C***—diffeomorphism of a two—
dimensional compact Riemannian manifold X for some o > 0. Then, hyop(f) > 0
if and only if fN has a horseshoe for some N > 0 (thus, the dynamics of f is
“chaotic”).

We can not immediately apply this theorem to rational dynamics under con-
sideration, since the smoothness of f is essential in the proof. However, if the
conjecture in the previous subsection holds, then the above theorem suggests that
the positivity of the algebraic entropy is equivalent to the existence of chaos for
rational dynamical systems in CP?.
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ANALOGUES OF THE HOLOMORPHIC MORSE INEQUALITIES
IN CR GEOMETRY

RAPHAEL PONGE

This talk is a preliminary report about a joint project with George Marinescu
on extending to the CR setting Demailly’s holomorphic Morse inequalities together
with some applications to complex geometry, including a generalization of the
Grauert-Riemenschneider criterion to the noncompact setting.

The talk is divided into 3 sections. In Section 1 we briefly review the holomor-
phic Morse inequalities. In Section 2 we recall the main definitions and properties
concerning CR manifolds, CR vector bundles, CR connections and the Eb-complex.
In Section 3 we present our main results.

1. HOLOMORPHIC MORSE INEQUALITIES

By Kodaira’s embedding theorem a compact complex manifold is projective alge-
braic iff it carries a positive holomorphic line bundle. The Grauert-Riemenschneider
conjecture was an attempt to generalize Kodaira’s embedding theorem to compact
Moishezon manifolds. Recall that the latter are compact complex manifolds which
are projective algebraic up to a proper modification or, equivalently, have maximal
Kodaira dimension.

Conjecture (Grauert-Riemenschneider). A compact complez manifold is Moishe-
zon if it carries a holomorphic line bundle which is positive on a dense open set.

This was conjecture was first proved by Siu ([Sil], [Si2]) using elliptic estimates
together with the Hirzbruch-Riemann-Roch formula. Subsequently, Demailly [De]
gave an alternative proof based on a holomorphic version of the classical Morse -
inequalities as follows.

Let M™ be a complex manifold and let L be a Hermitian holomorphic line bundle
over M with curvature FL. It is convenient to identify F¥ with the section of

EndTp,; such that 32 — F(z%, 5%)5?1,
For ¢ = 0,...,n we let O, denote the open set consisting of points € M such

that FL(z) has ¢ negative eigenvalues and n — ¢ positive eigenvalues and we set
OSQ =OQU...UOq.

Theorem 1.1 (Demailly). As k — oo the following asymptotics hold.
(i) Weak Holomorphic Morse Inegualities:

k
(L.1) dim H*Y(M, L¥) < (—1)4(%)"/ det FX + o(k™).
Oq
(it) Strong Holomorphic Morse Inequalities:
q
(L2) S (1) dim HO(M, L) < ()32 )" / det FE + o(k™).
j=0 2n O<q

1
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(iii) Asymptotic Hirzbruch-Riemann-Roch formula:
d ; . k

L8 x(M,IF) =S (~1) dim H(M, I¥) = (5-)" / det FL + o(k™),
s 27!' M

where x(M, L*) is the holomorphic Euler characteristic with coefficients in L*.

In particular, for g = 1 we get

-1,k
(14)  —dim H®O(M, L*) + H*' (M, L¥) < =" / det FL 4 o(k™).
. oSl
Thus,
(1.5) dim H%O(M, L¥) > l(-k—)" / det FL 4 o(k™).
n! 2 OSI

If ng; det FL > 0 (e.g. if L is semi-positive and is > 0 at a point) then we get:

(1.6) dim H*%(M, L*) > k™,

which implies that M has maximal Kodaira dimension, i.e., M is Moishezon.

In [Bi] Bismut gave a heat kernel proof of Demailly’s inequalities. Bismut’s
approach can be divided into 2 main steps.
Step 1: For ¢ = 0,...,n let A%ff denote the Dolbeault Laplacian acting on sec-
tions of A%T*M ® L*¥. We let FL be the Clifford lift of F'L, i.e, the section of
End(A%*T* M) so that locally we have F* = F(Z;, %,;)6(dzj )i{d2z¥). Then Bismut
proved:

Theorem 1.2 (Bismut). For any t > 0 we have

_tp0e k. n FL _eFL
1.7 Tre *21x =(—2-7—r) /Mdet[l_:ﬁ]ﬂ]“’“'e tF + o(k™).

Step 2: By taking the limit as ¢t — oo in the integral in (1.7) Bismut recovered the
inequalities (1.1)—(1.3), via linear-algebraic arguments similar to that of his earlier
proof of the Morse inequalities.

2. CR MANIFOLDS AND THE J5-COMPLEX

2.1. CR Manifolds. A CR structure on an orientable manifold M?"+? is given
by a rank n vector bundle Ty ¢ C TcM such that:

(i) T1,0 is integrable in Froebenius’ sense;

(ii) TioNTp1= {O}, where Tp 1 = .Tl_’o
The main examples of CR manifolds include:

- Boundaries of complex domains;

- Circle bundles over complex manifolds;

- Boundaries of complex hyperbolic spaces.

Given be a global non-vanishing real 1-form 6 annihilating 71,0 @ To,1 the asso-
ciated Levi form is given by
(2.1) Lo(Z,W) = —id8(Z, W), 2Z,W € C®(M,T1o)-

We say that M is strictly pseudoconvez when we can choose 6 so that at every
point Ly is positive definite. Similarly, we say M is «-strictly pseudoconver when
2
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we can choose § so that at every point Lg has exactly x-negative eigenvalues and
n — K positive eigenvalues.

2.2. The J,-complex. Let N be a supplement of T3 o @ 75,1 in TcM and define:
AP = annihilator in TEM of Ty1 ® N,
A%! = annihilator in TEM of Tio®N,
AP = (AYOYP A (AOHY pg=0,...,n.

This gives rise to the splitting,

(2.2) ATEM = (D A7) & (0 A A TEM).
P,g=0
If o € C°(M, A%9), then we can write
(2.3) da = Gpa+ Opa+ 0 A S,

with Gya € C°(M, AM9) and Bya € C®(M, A%9+1),

We have 5?, =0, 50 3p : C®°(M,A%) — C®(M,A%*+!) is a chain complex
whose cohomology groups are denoted H, 1? M), q=0,...,n.

Endowing Tc M with a Hermitian metric, the Kohn Laplacian is

(2.4) Op = (‘_9;51; + 5},5;
Proposition 2.1. We have HY'Y(M) =~ ker s .

For z € M let k4 {(z)and k_(z) be the number of positive and negative eigenval-
ues of the Levi form Ly at z.

Definition 2.2 (Condition Y(g)). The condition Y(q) is satisfied when for all
z € M we have:

(2.5) g ¢ {x_(x),...,n— K3 (@)} U {ss(z),...,n - k_(2)}.
FEzamples. 1) If M is strictly pseudoconvex then the condition Y {¢) means g # 0, n.

2) If M is k-strictly pseudoconvex then the condition Y(g) means q # k,n — k.

3) The condition Y(0) means that Ly has at least one positive and one negative
eigenvalue.

Proposition 2.3 (Kohn). Under condition Y(q) the operator Oy 4 is hypoelliptic
with gain of 1 derivative, i.e., for any compact K C M we have estimates,

(2.6) [ulls+1 < CrsllObqulls  Yu € CR(M,A™).
Corollary 2.4. If the condition Y (¢} holds then dim Hg‘q(M ) < oo,

2.3. CR vector bundles and CR connections. In the sequel we say that a map
¢ = (¢r1) : M — M,(C) is CR when Gy, = 0.

Definition 2.5. A CR wvector bundle £ over M is a vector bundle given by a
covering of M by trivializations 7; : SIUJ_ — U; x CP whose transition maps 7;; =

T;0 ‘rj‘1 :U;nU; — GL,(C) are CR maps.
Given a vector bundle £ over M for p,¢=0,...,n we let API(E) = APIQE.

3
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Proposition 2.6. If £ is a CR vector bundle then there ezists a unique operator,

(2.7 Bog : C(M, A (E)) — C=(M,A>"F1(E)),

such that 525 = 0 and for any local CR frame ey,...,e, of £ and any section
s =Y sie; we have

(2.8) Tres =Y _(Bbsi) ®e.

The cohomology groups of the complex 3, : C®(M, A%*(€)) — C=(M, A>**1(£))
are denoted H, O9(M E), ¢ =0,...,n. As before if the condition Y(g) holds then
dim H (M, 5) < o0.

Next, let £ be a CR vector bundle endowed with a Hermitian metric and let
V : C®(M,E) = C®°(M,T*M ® £) be a connection. Recall that V is said to be
unitary when we have

(2.9) d(€,m) = (V&) + (& V)

for sections £ and 7 of £.
On the other hand, thanks to the splitting we can write:

(2.10) V=1V 4+oAD,
where = V10 and V%! map to sections of A%(£) and A%1(£) respectively.
Definition 2.7. V is a CR connection when V%! =3y ¢.

Now, let Endg, £ the bundle of selfadjoint endomorphisms of £. Then we have:

Proposition 2.8. The space of unitary CR connections is a non-empty affine space
modelled on 10 ® C°(M,Ends, £).

3. CR MORSE INEQUALITIES

Let M?"*+1 be a compact CR manifold together with a Hermitian metric on
TcM (not necessarily a Levi metric) and with a global real non-vanishing 1-form
6 annihilating T 9 & Tp,1 and let L is a Hermitian CR line bundle over M with
unitary CR connection of curvature FL.

Our goal is to obtain analogues of the a,symptotlcs (1.1)—(1.7) in this setting.
There are several earlier related results in this direction.

First, in [Ge] Getzler proved an analogue of heat kernel asymptotics (1.7) for
strictly pseudoconvex CR manifolds with Levi metric and conjectured that such an
asymptotics should hold for more general CR manifolds. Nevertheless, he didn’t
derive asymptotic inequalities for dim Hb 9(M, L¥). There seems to be a mistake
in Getzler’s final formula (compare Theorem 3.1 below).

Later on, as a consequence of his version of the holomorphic Morse inequalities
for pseudoconcave complex manifolds, Marinescu [Ma] obtained a lower bound for
Hg’O(M, L®k) when M is the boundary of a strictly g-concave domain on a g-
concave complex manifold X" withn >3 and ¢ < n—2.

In addition, Berman [Be] proved a version of Demailly’s inequalities for complex
manifold with nondegenerate boundary and Fu has announced during his talk at the
symposium analogues of the weak holomorphic Morse inequalities (1.1) on bounded
finite type pseudoconvex domains in C2.

4
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3.1. Heat kernel version. Let Dg’zk be the Kohn Laplacian acting on sections

of A%9(L¥). As before it will be convenient to identify F'~ and Ly with the sections
of Endc T3 0 such that, for any orthonormal frame Zi,...,Z, of T} ¢, we have:

(3.1) FLZ; = FM(Z;,Z5)Zx, LeZ; = Lo(Z;, Zk) 2.
Furthermore, for u € R we set
(32) Fy(u) = FF — pL,

and we let F}(u) denote the Clifford lift of Ff(u) to A%, i.e., the section of
End¢ A%* such that, for any orthonormal frame Z1, ..., Z, of T} ¢ with dual coframe
6t,...,6™, we have

(3.3) FH(u) = FH(Z;,Z%) — uLe(Z;, Zx))e(67)u(6%).

Theorem 3.1 (GM+RP). Assume that the condition Y (q) holds. Then for any
t > 0 we have

0,9 )
(3.4) TreDir = (Eyn / GO (z, £)du(z) + O(k™),
475' M
* Ff (W ‘
0,q _ ] —tFy (u)
(3.5) GO (z, 1) /_ de ] T dp,

where dv(z) denotes the volume form of M.

Remark 3.2. We actually have a complete and local asymptotics in k, so this might
yield a CR analogue of the Tian-Yau-Zelditch-Catlin asymptotics on (0, g)-forms.

3.2. Cohomological version (in progress). We make the following extra as-
sumptions:

- M is k-strictly pseudoconvex;

- We can choose FL and df and the Hermitian metric of Tc M so that we have

(3.6) [FL, L) =0.

This condition is automatically satisfied when M is strictly pseudoconvex by taking
the metric to be the Levi metric.

Proposition 3.3 (GM+RP). Under the above assumptions for ¢ # k,n — Kk we
have:

Ag+1(2)
(8.7 Jim G%(z,t) = (-1)¢ / det(Ly ' FL(z) — p)dy,

Aglx
where \;{(z) denotes the j’th eigenvalue of Ly FL(z) counted with multiplicity.
Thanks to this result we may argue as in [Bi] to get:

Proposition 3.4 (GM+RP). Under the same assumptions for ¢ # r,n — xk we
have:
1) If Ag+1(zo) > Ag(zo) for some zo € M, then we have:

(3.8) dim H%9(M, L¥) > "+,
2) If Ag41(z) = My(z) at every point, then we have:
(3.9) dim H%9(M, LF) = 0(k™).

5
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3.3. Application to complex geometry (in progress). As an application to
the previous results we obtain:

Theorem 3.5. Let M be a complex manifold (not necessarily compact) together
with a Hermitian holomorphic line bundle L such that:
(i) L is positive outside a Stein domain;

(ii) FL degenerates with multiplicity at least 2 on 8D.
Then M is Moishezon.
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SPECTRAL ANALYSIS ON COMPLEX HYPERBOLIC SPACES

GABOR FRANCSICS AND PETER D. LAX

Hayama Symposium on
‘Complex Analysis in Several Variables
December 18-21, 2005

1. INTRODUCTION

Our main goal is to develop a spectral and scattering analysis of the automor-
phic Laplace-Beltrami operator on discrete quotients of the complex hyperbolic space
CH?". The complex hyperbolic space CH" is the rank one Hermitian symmetric space
of noncompact type, SU(n,1)/S(U(1) x U(n)). A standard model of the complex hy-
perbolic space is the complex unit ball B* = {z € C"; |z| < 1} with the Bergman
metric g = 3 74 95x(2)d2; ® dZx, where g;x = const - 8;8x log(1 — |2[?). This model
is the bounded realization of the Hermitian symmetric space CH". We shall use
mainly the unbounded hyperquadric model of the complex hyperbolic space, that is
D" = {z € C* Smz, > 3721 |%*}. The complex hyperbolic Laplace-Beltrami
operator on the unit ball is given by

4 i _
ACH" = m(l — IZ|2) Z (djk - ijk)

Jik=1

2
62j62k )

The quotient, CH" /T, is formed by a discrete subgroup T of the holomorphic auto-
morphism group of the complex hyperbolic space. We mainly interested in subgroups
with a noncompact fundamental domain of finite invariant volume or geometrically
finite subgroups with infinite volume. Our starting point is the simplest, but realistic
example for a automorphism subgroup with a noncompact fundamental domain of
finite invariant volume: the Picard modular groups.

The Picard modular groups are

SU(n,1;0,),

where Oj is the ring of algebraic integers of the imaginary quadratic extension Q(iv/d)
for any positive square-free integer d (see [H1]). We are interested in the simplest
case perhaps: d = 1, that is, O; = Z[i], the Picard modular group with Gaussian
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2 GABOR FRANCSICS AND PETER D. LAX

integer entries. The Picard modular group SU(n, 1; Z[i]) is a discontinuous holomor-
phic automorphism subgroup of CH" with Gaussian integer entries. It is a higher
dimensional analogue of the modular group, PSL(2,Z), in C"*. Our first goal in this
direction is to analyze the geometric and spectral properties of the Picard modular
group I' = SU(2, 1;Z[i]) acting on the complex hyperbolic space CH?.

Geometric and spectral properties of lattices in symmetric spaces attracted much
attention during the last decades. Although remarkable progress has beeh achieved,
several important problems related to arithmeticity, existence of embedded eigenval-
ues in the continuous spectrum etc., are still open. The general structure of a fun-
damental domain for lattices is well known since the work of Garland-Raghunathan
[GRY], for example. However there are very few fundamental domains known com-
pletely explicitly. This is especially true for complex hyperbolic spaces. The case of
complex hyperbolic spaces is a particularly difficult case. This phenomenon is well
known since the work of Mostow [M]. Recently very strong progress has been made
in constructing explicit fundamental domains for discrete subgroups of complex hy-
perbolic spaces; see for example, the work of Cohn [C], Holzapfel [H1], [H2], Goldman
[G], Goldman-Parker [GP], Falbel-Parker [FP1], [FP2], Schwartz [Sch], Francsics-Lax
[FL1], [FL2]. However, explicit fundamental domains do not seem to be known in
the literature for the Picard modular groups, except in the case d = 3 (Falbel-Parker
[FP2]), see the comment in [FP2], on page 2. Moreover, very little is known about
the spectral properties of the automorphic complex hyperbolic Laplace-Beltrami op-
erator, see the work of [EMM], [R], [LV]. v

The holomorphic automorphism group of CH", Aut(CH"), consists of rational
functions g = (g1,...,9n) : D" +— D™,

n+1
Q41,1 + 2pmo Gj+1,k%k—1

9i(2) =
i(2) G131 + Tt a1 kZk-1
j = 1,...,n. These automorphisms act linearly in homogeneous coordinates (o, ...,
Cny 25 = -%, j = 1,...,n. The corresponding matrix A = [ajk]?;}:il satisfies the
condition
A*CA=C, (1)
where
0 0 1
C= 0 In—l 0
- 0 0

and I,,_; is the (n — 1) x (n — 1) identity matrix. The determinant of the matrix A
is normalized to be equal to 1. The matrix C is the matrix of the quadratic form of
the defining function of D™ written in homogeneous coordinates. Three important
classes of holomorphic automorphisms are Heisenberg translations, dilations, and
rotations. The Heisenberg translation by a € 8D% N, € Aut(CH?) is defined as
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ANALYSIS OF A PICARD MODULAR GROUP 3

Na(21, 22) = (21401, 22+ a3 +121G1). The holomorphic automorphism of D2, As(z) =
(6z1,0%2,) is called dilation with parameter 6 > 0. Rotation in the first variable by
€, Meo(21,22) = (€"21, 22) is a holomorphic automorphism of D? with ¢ € R. The
holomorphic involution J(2y, 22) = (iz1/29, —1/22) will also play significant role.

In a metric space (X, d) the subset S C X is a Siegel set for an isometry group G of
X if (i) for all z € X thereis g € G such that gz € S, (ii) the set {g € G; g(S)NS # 0}
is finite. Let Sy/4 be the set

Sis = {z¢€ D0 <Rz, 0< Sz, Ry + Sz < 1, [Rz| < %

Sma — %w? > %}. @)

We introduce horoshperical coordinates (z1, z2, 3,y) € R® x R, as 21 = 27 + izo,
2 = 3+ i(y + (23 + 23)/2) on D?. Then the complex hyperbolic Laplace-Beltrami
operator in horospherical coordinates is given by

Acms = g(agl +02) + %(23; +22+22)02, +
3/283 + yx28:018z3 ~ y210:,0z; — yay'
We will use the notation .
_ 2
Hr(f) =2 [ |1 5dzdy

for the invariant Lo-integral, and D for the corresponding invariant Dirichlet integral,
that is

Ds(f) = /f [W1fea + 9l fea? + 0(2y + 2+ 29) | fo 2 + 2071 £, [P+
wa(fo T+ FoTon) = o1t e To + Fu )] 5y

2. STATEMENT OF THE RESULTS

Our first result is a semi-explicit fundamental domain for the Picard modular group
with Gaussian integers.

Theorem 1. The set Sy4 is a Siegel set for the Picard modular group T in C2. Let

Hy = J, Hy, ..., Hy be all the holomorphic automorphisms H € T' \ 'y, such that
S1/a N H(Sy/4) # 0. Then the set
F={z€8ys |det Hj(2)? <1, 1<j< N} (3)

s a fundamental domain of the Picard modular group with Gaussian integers.

At this point the transformations H,, ..., Hy are not known explicitly, moreover
not all of them are necessary for defining the fundamental domain F. However, this
form of the fundamental domain is already useful for obtaining important geometric
and spectral properties.
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4 GABOR FRANCSICS AND PETER D. LAX

Three important geometric properties of the fundamental domain F are stated in
the following theorem.

Theorem 2. (i) The Siegel set Sy4 is invariant under the involutive transformation
S(z1,22) = (iz1, —%2). Moreover, the set of transformations Hi, ..., Hy is invariant
under the conjugation

H— SHS.

Therefore the fundamental domain F is invariant under the involutive transformation
S(z1,22) = (i21, —%2)-

(ii) The two dimensional edge of the fundamental domain F at 21 = 0 is identical
to the standard fundamental domain for the modular group.

(i4) The fundamental domain F has a product structure near infinity, that is,

Fn{ze C? Smz, >a} = SyaN{z € C?; Qmz, > a}
for large a > 0.
We exploit the involutive transformation S to obtain spectral information on the
Laplace operator of the Picard modular group I' in the next theorem We recall
that the continuous spectrum of the Laplace-Beltrami operator Ar is ( ~-,00) and an

eigenvalue in the continuous spectrum is called embedded eigenvalue or Maass cusp
form.

Theorem 3. The invariance of the fundamental domain F under the transformation
S in Theorem 2 implies the existence of infinitely many embedded eigenvalues in
the continuous spectrum of the associated automorphic complez hyperbolic Laplace-
Beltrami operator.

Our next goal is to determine a completely explicit fundamental domain for the
Picard modular group I' based on Theorem 1. In the next theorem we obtain a
surprisingly simple description of F in terms of boundary defining functions.

Theorem 4. A fundamental domain for the Picard modular group is
F = {z€ 8y |2 >1,
r+i—(1+d)z+2>>1, r=-10,1,
|r+4 — 2821 + 22> > 2, r=—1,1,
|r+i—22 +22*>2, r=-1,1}

Theorem 5 contains more precise description of the structure of the fundamental
domain F.

Theorem 5. There are eight holomorphic automorphims Gy = J,Gy,...,Gg in the
Picard modular group T, described below in equations (4), (5), (6), (7), such that the
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ANALYSIS OF A PICARD MODULAR GROUP 5

set
F = {z€8y4 |22)% > 1,
|detG5(2)° <1, j=2,...,8}
is a fundamental domain of the Picard modular group acting on the complex hyperbolic
space CH?. All eight transformations are needed. The holomorphic transformations

Gy,...,Gs can be described as follows:
There are four transformations with dilation parameter 1:

Gl(zl, 22) = J(Zl, 22)

_ 'iZl 1
= (o2 @
Gris = Jo Py
= Jo N(1+i,r+1l) oM_y, (5)

with r = -1,0,1.
There are four transformations with dilation parameter /2:

G5+1+r = N(l,r_;-_i)OJOP's_*_l_;ﬁ
= N(I,TT-H‘) oJo N(—l+ri,r+i) ©
M— T
A\/’z' (o] 1+2 5 (6)
and

G7+1+T = N(i,rT-H)OJOP'z_*__l:_g_T

N|

= N(i,rT%—i) oJo N(—r—i,r+i) o
A\/§ (o] M—i;-iri s (7)
where r = ~1, 1.

The precise definition of the holomorphic automorphisms P, J, N, A, and M is
described in the introduction. We mention that the inequalities in the description of
F in Theorem 4 are simplified explicit versions of the inequalities :

|det G5(2)]? < 1

of Theorem 5. .

We mention that the method used in Theorem 3 for analyzing the discrete spectrum
can be extended for a class of automorphism groups containing the Picard modular
group with Gaussian integer entries.

Definition 1. The class G of automorphism groups consists of holomorphic automor-
phism groups T C Aut(CH?) with the following properties:
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(1) T has a fundamental domain F with finite invariant volume and with one cusp
at infinity.

(2) There is a nonholomorphic isometry S : D* — D? such that S* = I, S preserves
the height function h(z) = Sz — 1|z1|%, that is h(S(z)) = h(z), S(F) C F, and
STS cT.

Theorem 6. Let T be a holomorphic automorphism group in the class G. The complez
hyperbolic Laplace-Beltrami operator Agyz acting on I'-automorphic functions has
infinitely many embedded eigenvalues in the continuous spectrum.

The restriction that ' has only one cusp is not important. We expect that the class
of automorphism groups, G, contains more groups than the Picard modulr group with
Gaussian integers. It is likely that the conditions defining G can be weakened, it may
be enough to assume that " has finite invariant volume and there is a nonholomorphic
isometry of CH2, S such that S? = I, and STS C T.

3. OUTLINE OF THE METHOD

The main building block in our fundamental domain construction is the Siegel
S1/4. The triangular shape of Sy in the z; variable is the consequence of the fact
that a Heisenberg translation N, is in I if and only if Ray, Sa;, Rap € Z and |a;|? is
even. The finitness property of Sy/4 is obtained by using the transformation formula
of the Bergman kernel function and the the involution J. We build a semi-explicit
fundamental domain F from the Siegel set Sy /4 in the following way. Let H; = J, Hy,
..., Hy be all the holomorphic automorphisms H € I'\I'y, such that Sy /sNH(S1/4) #
(. Then we prove that the set

{z € Si/4; ldetHJ'-(z)I2 <1, 1<j<N}L

is a fundamental domain for the Picard modular group acting on the complex hyper-
bolic space CH2. At this point the transformations H;, j=2,...,N are not known
explicitly, moreover not all of them contribute to the fundamental domain F.

The key observation in obtaining the spectral properties of Ar is that the trans-
formation S splits the space of Ly, automorphic functions into even and odd auto-
morphic functions with respect to the transformation S. One can prove that the
resolvent of Ar is compact on the space of odd automorphic functions. This step uses
a Poincaré inequality in the z-variables. Near infinity the fundamental domain has a
compact cross section, that is, the cross section written in horospherical coordinates,
K, = Fn{y=a}, is compact for large a > 0. The Poincaré inequality is applied on
the cross section K,. v

The basic idea of the explicit construction in Theorems 4 and 5 can be described
easily.

Let 71 = S(L)N{z € C% 2| > 1} = S(L) N {z € C% | det Hi(2)|*> < 1}. Clearly
F C F1. We will prove that if H is one of the transformations Hs,..., Hy in the
description of F in (1) then either
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(1) |det H'(z)| <1 for all z € Fi;

or

(2) there is a transformation G;, j = 2,...,8 appearing in (5), (6) and (7) such
that |det H'(z)| < |det G}(2)| for all z € Fi. In either case, the transformation H
does not contribute to the fundamental domain F.
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