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COMPACTNESS IN THE ∂-NEUMANN PROBLEM.

FRIEDRICH HASLINGER

Let Ω be a bounded pseudoconvex domain in Cn. We consider the ∂-complex

L2(Ω)
∂−→ L2

(0,1)(Ω)
∂−→ . . .

∂−→ L2
(0,n)(Ω)

∂−→ 0,

where L2
(0,q)(Ω) denotes the space of (0, q)-forms on Ω with coefficients in L2(Ω). The

∂-operator on (0, q)-forms is given by

∂

(∑
J

′
aJdzJ

)
=

n∑
j=1

∑
J

′ ∂aJ

∂zj

dzj ∧ dzJ .

The derivatives are taken in the sense of distributions, and the domain of ∂ consists
of those (0, q)-forms for which the right hand side belongs to L2

(0,q+1)(Ω). Then ∂ is a

densely defined closed operator, and therefore has an adjoint operator from L2
(0,q+1)(Ω)

into L2
(0,q)(Ω) denoted by ∂

∗
.

The complex Laplacian

2 = ∂ ∂
∗
+ ∂

∗
∂

acts as an unbounded selfadjoint operator on

L2
(0,q)(Ω), 1 ≤ q ≤ n,

it is surjective and therefore has a continuous inverse, the ∂-Neumann operator Nq. If

v is a closed (0, q + 1)-form, then ∂
∗
Nq+1v provides the canonical solution to ∂u = v,

which is orthogonal to the kernel of ∂ and so has minimal norm.

A survey of the L2-Sobolev theory of the ∂-Neumann problem is given in [BS].

The question of compactness of Nq is of interest for various reasons. For example, com-
pactness of Nq implies global regularity in the sense of preservation of Sobolev spaces
[KN]. Also, the Fredholm theory of Toeplitz operators is an immediate consequence of
compactness in the ∂-Neumann problem [V], [HI], [CD]. There are additional ramifi-
cations for certain C∗-algebras naturally associated to a domain in Cn [SSU]. Finally,
compactness is a more robust property than global regularity - for example, it localizes,
whereas global regularity does not - and it is generally believed to be more tractable
than global regularity.
A thourough discussion of compactness in the ∂-Neumann problem can be found in [FS2].

2000 Mathematics Subject Classification. Primary 32W05; Secondary 32A36, 35J10, 35P05.
Key words and phrases. ∂-equation, Schrödinger operator, compactness.
Partially supported by the FWF grant P15279.
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2 FRIEDRICH HASLINGER

Catlin [Ca1] showed that for sufficiently smooth bounded pseudoconvex domains satis-
fying what he called property(P), the ∂ - Neumann problem is compact, and that all
domains of finite type in the sense of D’Angelo [D’A] satisfy property(P). In this con-
nection earlier work of Diederich and Fornæss [DF] and Diederich and Pflug [DP] is of
importance.
The condition on boundary smoothness was removed by Straube in [S].
Property(P) for a domain Ω is the condition that for all M > 0 there should exist a
function λM ∈ C∞(Ω) with 0 ≤ λM ≤ 1 such that

n∑
j,k=1

∂2λM

∂zj∂zk

(z) tjtk ≥M |t|2,

for all z ∈ bΩ and for all complex vectors t ∈ Cn. A systematic and very useful study of
property(P) (under the name of B-regularity) in the context of arbitrary compact sets in
Cn is in [Si]. More recently, McNeal [Mc] introduced an intriguing variant of property(P)
which still implies compactness.

Compactness is completely understood on (bounded) locally convexifiable domains. On
such domains, the following are equivalent [FS1], [FS2]:
(i)Nq is compact,
(ii) the boundary of the domain satisfies (an analogue of) property(P) (for q-forms),
(iii) the boundary contains no q-dimensional analytic variety.

In general, however, the situation is not understood at all.

Discs in the boundary are the most obvious violation of property(P). It is therefore
natural to ask whether there is a corresponding failure of compactness in this case. In
C2, this has been known for many years to be the case (assuming the boundary of the
domain is at least Lipschitz) [Ca2], [FS2] . In higher dimensions, this is open.

There are interesting connections between ∂ and Schrödinger operators, see for example
the discussion in [B] and between compactness in the ∂-Neumann problem and prop-
erty(P) on the one hand, and the asymptotic behavior, in a semi-classical limit, of the
lowest eigenvalues of certain magnetic Schrödinger operators and of their non-magnetic
counterparts, respectively, on the other ([FS3]).

The study of the ∂-Neumann problem is essentially equivalent (in a sense that can be
made precise) to the study of the canonical solution operator to ∂. Interestingly, in many
situations, the restriction of the canonical solution operator to forms with holomorphic
coefficients arises naturally [SSU], [FS1].

The restriction of the canonical solution operator to forms with holomorphic coefficients
has many interesting aspects, which in most cases correspond to certain growth properties
of the Bergman kernel. It is also of great interest to clarify to what extent compactness
of the restriction already implies compactness of the original solution operator to ∂.
This is the case for convex domains, see [FS1]. There are many other examples of non-
compactness where the obstruction already occurs for forms with holomorphic coefficients
(see [L], [Kr]).

In [Has1] the canonical solution operator S1 to ∂ restricted to (0, 1)-forms with holo-
morphic coefficients is investigated. Let A2

(0,1)(Ω) denote the space of all (0, 1)-forms

2



COMPACTNESS IN THE ∂-NEUMANN PROBLEM. 3

with holomorphic coefficients belonging to L2(Ω). It is shown that the canonical solution
operator S1 : A2

(0,1)(Ω) −→ L2(Ω) has the form

S1(g)(z) =

∫
Ω

B(z, w) < g(w), z − w > dλ(w),

where B denotes the Bergman kernel of Ω and

< g(w), z − w >=
n∑

j=1

gj(w)(zj − wj),

for z = (z1, . . . , zn) and w = (w1, . . . , wn). It follows that the canonical solution operator
is a Hilbert Schmidt operator for the unit disc D in C, but fails to be Hilbert Schmidt
for the unit ball in Cn, n ≥ 2.

Not very much is known in the case of unbounded domains.

In [Has2] it is shown that the canonical solution operator to ∂ restricted to the Fock space
A2

ϕ, where ϕ(z) = |z|2 fails to be compact, whereas in the case ϕ(z) = |z|m , m > 2

the canonical solution operator to ∂ restricted to A2
ϕ is compact but fails to be Hilbert

Schmidt. See also [Sch], where in this context the situation in several variables is inves-
tigated.
These results were generalized to Schatten p-classes by Lovera and Youssfi [LY].

The connection between ∂ and Schrödinger operators [B], [Ch] , [FS3], [Has3], is of
considerable interest from the point of view of complex analysis as well as from that of
the theory of Schrödinger operators. For example, the main result in [FS3] implies that
(for certain Hartogs domains in C2) the implication property(P) ⇒ compactness may
be interpreted as a consequence of well known diamagnetic inequalities in the theory of
Schrödinger operators [He]. Another example arises in [Has3], where it is shown how
known properties of magnetic Schrödinger operators easily give compactness results for
the canonical solution operator restricted to certain weighted L2 - spaces on C.
For this purpose let ϕ : C −→ R be a C2-weight function and consider the Hilbert spaces

L2
ϕ = {f : C −→ C measureable : ‖f‖2

ϕ :=

∫
C
|f(z)|2 e−2ϕ(z) dλ(z) <∞}.

It is essentially due to L. Hörmander [H] that for a suitable weight function ϕ and for
every f ∈ L2

ϕ there exists u ∈ L2
ϕ satisfying

∂u = f.

In fact there exists a continuous solution operator S̃ : L2
ϕ −→ L2

ϕ for ∂, i.e.

‖S̃(f)‖ϕ ≤ C‖f‖ϕ

and ∂S̃(f) = f, see also [Ch] .
Let Pϕ : L2

ϕ −→ A2
ϕ denote the Bergman projection. Then S = (I−Pϕ)S̃ is the uniquely

determined canonical solution operator to ∂, i.e.
∂S(f) = f and S(f) ⊥ A2

ϕ.

A nonnegative Borel measure ν defined on C is said to be doubling if there exists a
constant C such that for all z ∈ C and r ∈ R+,

ν(B(z, 2r)) ≤ Cν(B(z, r)).

3



4 FRIEDRICH HASLINGER

D denotes the set of all doubling measures ν for which there exists a constant δ such
that for all z ∈ C,

ν(B(z, 1)) ≥ δ.

Let ϕ : C −→ R be a subharmonic function. Then ∆ϕ defines a nonnegative Borel
measure, which is finite on compact sets.
Let W denote the set of all subharmonic functions ϕ : C −→ R such that ∆ϕ ∈ D.
Let ϕ be a C2-function. We want to solve ∂u = f for f ∈ L2

ϕ. The canonical solution

operator to ∂ gives a solution with minimal L2
ϕ-norm. Following [Ch] we substitute

v = u e−ϕ and g = f e−ϕ and the equation becomes

Dv = g , where D = e−ϕ ∂

∂z
eϕ.

u is the minimal solution to the ∂-equation in L2
ϕ if and only if v is the solution to Dv = g

which is minimal in L2(C).
The formal adjoint of D is

D = −eϕ ∂

∂z
e−ϕ.

As in [Ch] we define

Dom(D) = {f ∈ L2(C) : Df ∈ L2(C)}

and likewise for D. Then D and D are closed unbounded linear operators from L2(C) to
itself.
Further we define

Dom(DD) = {u ∈ Dom(D) : Du ∈ Dom(D)}

and we define DD as D ◦D on this domain. Any function of the form eϕ g, with g ∈ C2
0

belongs to Dom(DD) and hence Dom(DD) is dense in L2(C).
Since

D =
∂

∂z
+
∂ϕ

∂z
and

D = − ∂

∂z
+
∂ϕ

∂z
we see that

DD = − ∂2

∂z∂z
− ∂ϕ

∂z

∂

∂z
+
∂ϕ

∂z

∂

∂z
+

∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∂2ϕ

∂z∂z

= −1

4
((d− iA)2 −∆ϕ),

where A = A1 dx+ A2 dy = −ϕy dx+ ϕx dy.
Hence DD is a Schrödinger operator with electric potential ∆ϕ and with magnetic field
B = dA.

Now let ‖u‖2 =
∫

C |u(z)|
2 dλ(z) for u ∈ L2(C) and

(u, v) =

∫
C
u(z)v(z) dλ(z)

denote the inner product of L2(C).

4



COMPACTNESS IN THE ∂-NEUMANN PROBLEM. 5

For φ, ψ ∈ C∞0 (C) we set

hA,ϕ(φ, ψ) = (−1

4
((d− iA)2 −∆ϕ)φ, ψ) =

2∑
j=1

(
1

4
(Πj(A)φ,Πj(A)ψ) + ((∆ϕ)φ, ψ),

where

Πj(A) =
1

i
(
∂

∂xj

− Aj) , j = 1, 2,

hence hA,ϕ is a nonnegative symmetric form on C∞0 (C).

In [Ch] the following results are proved

Lemma 1. Let ϕ ∈ W . If u ∈ Dom(D) and Du ∈ Dom(D), then

‖Du‖2 = (D(Du), u).

DD is a closed operator and

‖u‖ ≤ C‖DDu‖
for all u ∈ Dom(DD). Moreover, for any f ∈ L2(C) there exists a unique u ∈ Dom(DD)
satisfying

DDu = f.

Hence (DD)−1 is a bounded operator on L2(C).

The closure hA,ϕ of the form hA,ϕ is a nonnegative symmetric form. The selfadjoint

operator associated with hA,ϕ is the operator DD from the above Lemma 1 (see [I] and
[CFKS]).
The next lemma follows from the fact that a bounded operator T is compact if and only
if T ∗T is compact (see [W]).

Lemma 2. Let ϕ ∈ W . The canonical solution operator S : L2
ϕ −→ L2

ϕ to ∂ is compact

if and only if (DD)−1 : L2(C) −→ L2(C) is compact.

Using the main theorem in [I] we get

Theorem 1. Let ϕ ∈ W . The canonical solution operator S : L2
ϕ −→ L2

ϕ to ∂ is compact
if and only if there exists a real valued continuous function µ on C such that µ(z) →∞
as |z| → ∞ and

hA,ϕ(φ, φ) ≥
∫

C
µ(z) |φ(z)|2 dλ(z)

for all φ ∈ C∞0 (C).

Theorem 2. If ϕ(z) = |z|2, then the canonical solution operator S : L2
ϕ −→ L2

ϕ to ∂
fails to be compact.

Theorem 3. Let ϕ ∈ W and suppose that ∆ϕ(z) →∞ as |z| → ∞. Then the canonical
solution operator S : L2

ϕ −→ L2
ϕ to ∂ is compact.

5



6 FRIEDRICH HASLINGER

Remark. In [Has2] it shown that for ϕ(z) = |z|2 even the restriction of the canonical
solution operator S to the Fock space A2

ϕ fails to be compact and that for ϕ(z) =

|z|m , m > 2 the restriction of S to A2
ϕ fails to be Hilbert Schmidt.

Several complex variables.

In [Sch] it is shown that the restriction of the canonical solution operator to the Fock
space A2

ϕ fails to be compact, where

ϕ(z) = |z1|m + · · ·+ |zn|m,

for m ≥ 2 and n ≥ 2. Hence the canonical solution operator cannot be compact on the
corresponding L2-spaces.
Here we investigate the solution operator on L2-spaces and try to generalize the method
from above for several complex variables.
Let ϕ : Cn −→ R be a C2-weight function and consider the space

L2(Cn, ϕ) = {f : Cn −→ C :

∫
Cn

|f |2 e−2ϕ dλ <∞}

and the space L2
(0,1)(Cn, ϕ) of (0, 1)-forms with coefficients in L2(Cn, ϕ).

For v ∈ L2(Cn) let

Dv =
n∑

k=1

(
∂v

∂zk

+
∂ϕ

∂zk

v

)
dzk

and for g =
∑n

j=1 gj dzj ∈ L2
(0,1)(Cn) let

D
∗
g =

n∑
j=1

(
∂ϕ

∂zj

gj −
∂gj

∂zj

)
,

where the derivatives are taken in the sense of distributions. It is easy to see that
∂u = f for u ∈ L2(Cn, ϕ) and f ∈ L2

(0,1)(Cn, ϕ) if and only if Dv = g, where v = u e−ϕ

and g = f e−ϕ. It is also clear that the necessary condition ∂f = 0 for solvability holds
if and only if Dg = 0 holds. Here

Dg =
n∑

j,k=1

(
∂gj

∂zk

+
∂ϕ

∂zk

gj

)
dzk ∧ dzj.

Then

DD
∗
g = D

(
n∑

j=1

(
∂ϕ

∂zj

gj −
∂gj

∂zj

))

=
n∑

k=1

[
n∑

j=1

(
∂2ϕ

∂zj∂zk

gj −
∂2gj

∂zj∂zk

+
∂gj

∂zk

∂ϕ

∂zj

−∂gj

∂zj

∂ϕ

∂zk

+
∂ϕ

∂zj

∂ϕ

∂zk

gj

)]
dzk.

6



COMPACTNESS IN THE ∂-NEUMANN PROBLEM. 7

Proposition 1. The operator DD
∗

defined on

DomD
∗ ∩ kerD

has the form

n∑
k=1

[
n∑

j=1

(
2
∂2ϕ

∂zj∂zk

gj −
∂2ϕ

∂zj∂zj

gk −
∂2gk

∂zj∂zj

+
∂gk

∂zj

∂ϕ

∂zj

− ∂gk

∂zj

∂ϕ

∂zj

+
∂ϕ

∂zj

∂ϕ

∂zj

gk

)]
dzk.

Remark. The only term where gj appears in the last line is

2
∂2ϕ

∂zj∂zk

gj,

and we will get a diagonal system if we restrict to weight functions of a special form, for
instance

ϕ(z) = |z1|2 + · · ·+ |zn|2,

the case of the Fock space.

Proposition 2. Suppose that the weight function ϕ is of the form

ϕ(z1, . . . , zn) = ϕ1(z1) + · · ·+ ϕn(zn),

where ϕj : C −→ R are C2-functions for j = 1, . . . , n.

Then the equation DD
∗
g = h, for h =

∑n
k=1 hk dzk, splits into the n-equations

2
∂2ϕ

∂zk∂zk

gk +
n∑

j=1

(
− ∂2ϕ

∂zj∂zj

gk −
∂2gk

∂zj∂zj

+
∂gk

∂zj

∂ϕ

∂zj

− ∂gk

∂zj

∂ϕ

∂zj

+
∂ϕ

∂zj

∂ϕ

∂zj

gk

)
= hk,

for k = 1, . . . , n. These equations can be represented as Schrödinger operators Sk with
magnetic fields, where

Skv = 2
∂2ϕ

∂zk∂zk

v +
n∑

j=1

(
− ∂2ϕ

∂zj∂zj

v − ∂2v

∂zj∂zj

+
∂v

∂zj

∂ϕ

∂zj

− ∂v

∂zj

∂ϕ

∂zj

+
∂ϕ

∂zj

∂ϕ

∂zj

v

)
and v is a C2-function. The operators Sk can be written in the form

Sk =
1

4

[
−

n∑
j=1

(
∂

∂xj

− iaj

)2

−
n∑

j=1

(
∂

∂yj

− ibj

)2
]

+ Vk,

where zj = xj + iyj and aj = − ∂ϕ
∂yj

, bj = ∂ϕ
∂xj
, for j = 1, . . . , n and

Vk = 2
∂2ϕ

∂zk∂zk

−
n∑

j=1

∂2ϕ

∂zj∂zj

,

for k = 1, . . . , n.

7
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A group-theoretic characterization of the direct product
of a ball and a Euclidean space

Jisoo BYUN, Akio KODAMA and Satoru SHIMIZU

Introduction. This is the outgrouth of the talk given by the second author at the
Hayama Symposium on Complex Analysis in Several Variables 2004.

Let M be a connected complex manifold and let Aut(M) be the group of all holo-
morphic automorphisms of M equipped with the compact-open topology. Then one
of the fundamental problems in complex geometric analysis is to determine the com-
plex analytic structure of M by its holomorphic automorphism group Aut(M). Of
course, in many cases, this is a very difficult problem. One reason may be that
Aut(M) cannot have the structure of a Lie group, in general. However, even when
Aut(M) is not a Lie group, one can sometimes use techniques developed in the Lie
group theory. For instance, consider the space Ck × (C∗)�. Then Aut(Ck × (C∗)�)
is terribly big when k + � ≥ 2, and cannot have the structure of a Lie group with
respect to the compact-open topology. In the previous paper [3], by looking at
some topological subgroups with Lie group structures of Aut(Ck × (C∗)�), we ob-
tained an interesting theorem on characterization of Ck× (C∗)� by its holomorphic
automorphism group. And, as an application of the method used in the proof of
this, we proved that if a connected Stein manifold M of dimension n ≥ 2 admits
an effective continuous action of U(n) by holomorphic automorphisms, then M is
biholomorphically equivalent to either Bn or Cn, where Bn is the open unit ball
in Cn and U(n) is the unitary group of degree n. In view of this, it would be
natural to ask what happens when M admits an effective continuous action of the
direct product U(n1)×· · ·×U(ns) of unitary groups by holomorphic automorphisms,
where n1 + · · ·+ns = dimM . As a typical example of such a manifold M , we have
the direct product space Bn1 × · · · × Bns−1 × Cns . Notice that the holomorphic
automorphism group of this model space does not have the structure of a Lie group
with respect to the compact-open topology in the case where ns ≥ 2, or ns ≥ 1 and
n1 + · · · + ns−1 ≥ 1.

The purpose of this article is to study exclusively the product space Bk ×C� in
connection with the question above and give the following group-theoretic charac-
terization of it. The details can be found in [2]:

Theorem. Let M be a connected Stein manifold of dimension n. Assume that
Aut(M) is isomorphic to Aut(Bk ×Cn−k) as topological groups for some integer k
with 0 ≤ k ≤ n. Then M itself is biholomorphically equivalent to Bk ×Cn−k.

As a consequence of this theorem, we can obtain the following fundamental result
on the topological group structure of Aut(Bk ×C�).

1
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Corollary. If two pairs (k, �) and (k′, �′) of nonnegative integers do not coincide,
then the groups Aut(Bk×C�) and Aut(Bk

′ ×C�′) are not isomorphic as topological
groups.

After some preliminaries in Section 1, we will give only an outline of the proof of
our Theorem in Section 2.

1. Preliminaries. In this Section, we shall recall basic concepts and results on
Reinhardt domains (cf. [4], [5]). For an element α = (α1, . . . , αn) of (C∗)n, we
denote by πα an element of Aut(Cn) given by

πα(z1, . . . , zn) = (α1z1, . . . , αnzn), (zi) ∈ Cn.

We may regard the multiplicative group (C∗)n as a closed subgroup of Aut(Cn).
Let D be a Reinhardt domain in Cn. Then, πα maps D onto itself and induces
a holomorphic automorphism of D for every element α of the n-dimensional torus
Tn = (U(1))n. The mapping ρD sending α to πα is an injective continuous group
homomorphism of Tn into the topological group Aut(D). The subgroup ρD(Tn)
of Aut(D) is denoted by T (D). Furthermore, we denote by Π(D) the topological
subgroup of Aut(D) consisting of all elements ϕ of Aut(D) such that ϕ has the
form ϕ = πγ , where γ is an element of (C∗)n. And we denote by Autalg(D) the
topological subgroup of Aut(D) consisting of all elements ϕ of Aut(D) such that
each component of ϕ is given by a Laurent monomial, that is, ϕ has the form

(1.1) ϕ(z1, . . . , zn) = (w1, . . . , wn) with wi = αiz
ai1
1 · · · zainn , i = 1, . . . , n,

where (aij) ∈ GL(n,Z) and (αi) ∈ (C∗)n. Each element of Autalg(D) is called an
algebraic automorphism of D. The groups Π(D) and Autalg(D) can be character-
ized group-theoretically as follows:

Lemma 1.1. The centralizer of the torus T (D) in Aut(D) is given by Π(D), while
the normalizer of T (D) in Aut(D) is given by Autalg(D).

Here consider the mapping � : Autalg(D) → GL(n,Z) that sends an element ϕ of
Autalg(D) written in the form (1.1) into the element (aij) ∈ GL(n,Z). Then � is a
group homomorphism with ker� = Π(D); and so it induces a group isomorphism

(1.2) Autalg(D)/Π(D)
∼=−→ G(D) := �(Autalg(D)) ⊂ GL(n,Z).

Now let us consider the special case where D = Bk × C�. Then, denoting
by (z1, . . . , zk, w1, . . . , w�) the coordinate system of Ck × C� and putting z =
(z1, . . . , zk), w = (w1, . . . , w�) for simplicity, we can show the following fact:

2
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Proposition 1.1. (1) Each element F of Aut(Bk × C�) has the form F (z, w) =
(f(z), g(z, w) + h(z)), where f ∈ Aut(Bk), h : Bk → C� is a holomorphic mapping
and g : Bk ×C� → C� is a holomorphic mapping such that g(z, · ) ∈ Aut(C�) and
g(z, 0) = 0 for each fixed point z ∈ Bk.

(2) Each element F of Autalg(Bk ×C�) has the form

F (z1, . . . , zk, w1, . . . , w�) =
(
α1zσ(1), . . . , αkzσ(k), β1wτ(1), . . . , β�wτ(�)

)
,

where (αi) ∈ T k, (βj) ∈ (C∗)� and σ, τ are permutations of {1, . . . , k}, {1, . . . , �},
respectively. In particular, the group G(Bk×C�) is isomorphic to the direct product
Sk×S� of the symmetric groups Sk and S� of degrees k and �; so that its cardinality
is equal to k!�!.

2. Proof of the Theorem. Throughout this Section, we use the following no-
tation: For the given integer k and a point (z1, . . . , zn) ∈ Cn, we set

� = n− k, Ωk,� = Bk ×C�, z = (z1, . . . , zk) ∈ Ck

and w = (w1, . . . , w�) = (zk+1, . . . , zn) ∈ C�.

For a set S, we denote by �S the cardinality of S. Let W be a domain in Cn and
Γ a subgroup of Aut(W ). Then we denote by

CW (Γ ) the centralizer of Γ in Aut(W ), and

ZW (Γ ) the commutator group of CW (Γ ) in Aut(W ).

Now let M be a connected Stein manifold of dimension n, and assume that there
exists a topological group isomorphism Φ: Aut(Ωk,�) → Aut(M). Since Ωk,� is a
Reinhardt domain in Cn, we have the injective continuous group homomorphism
ρΩk,� : T

n → Aut(Ωk,�). Thus we obtain an injective continuous group homomor-
phism Φ ◦ ρΩk,� : T

n → Aut(M). Then, by a result of Barrett-Bedford-Dadok [1,
Theorem 1], there exists a biholomorphic mapping F of M into Cn such that
D := F (M) is a Reinhardt domain in Cn and F (Φ ◦ ρΩk,�)(T

n)F−1 = T (D).
Therefore we may assume that M is a Reinhardt domain D in Cn and we have an
isomorphism Φ: Aut(Ωk,�) → Aut(D) such that Φ(T (Ωk,�)) = T (D). In particular,
Φ(Π(Ωk,�)) = Π(D) and Φ(Autalg(Ωk,�)) = Autalg(D) by Lemma 1.1; and accord-
ingly, we see that the groups G(Ωk,�) and G(D) defined in (1.2) are isomorphic.

When n = 1, it is easy to prove our Theorem. So, let us consider the case where
n ≥ 2. Assume that k = 0 or � = 0. Then D admits an effective continuous
action of U(n) by holomorphic automorphisms. Consequently, D is biholomorphi-
cally equivalent to Bn or Cn, as stated in the introduction. Since Aut(Bn) is not
isomorphic to Aut(Cn) as topological groups, this shows our Theorem. Therefore,
we have only to prove the Theorem under the assumption that n ≥ 2 and k, � ≥ 1.

3
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2.1. The case n = 2. Throughout this Subsection, we put Ω = Ω1,1.
Recall that Φ(T (Ω)) = T (D) and Φ(Π(Ω)) = Π(D). Our first task is to de-

termine the form of the isomorphism Φ: Π(Ω) → Π(D). To this end, notice that
Π(Ω) consists of all elements ϕ of Aut(Ω) having the form ϕ(z, w) = (αz, βw)
with |α| = 1, β ∈ C∗. Hence Π(Ω) is a real Lie group of dimension 3 that can be
identified with the subgroup T 1×C∗ of C∗×C∗. Also, one may identify Π(D) with
a closed subgroup of C∗ × C∗. Accordingly, by considering the new coordinates
(z̃, w̃) = (w, z) in the space C2 containing D, if necessary, Φ: Π(Ω) → Π(D) can
be written in the form

(2.1) Φ
(
e2πiθ, e2πi(φ+iψ)

)
=(

e2πi(a11θ+a12φ+a13ψ+iaψ), e2πi(a21θ+a22φ+a23ψ+iaλψ)
)

for all θ, φ, ψ ∈ R, where
(
a11 a12

a21 a22

)
∈ GL(2,Z), a13, a23, a, λ ∈ R and a �= 0.

Here let us consider a one-parameter subgroup

Γ = {(1, e−2πψ) | ψ ∈ R}

of Π(Ω) and put Λ = Φ(Γ ). Then, since Φ: Aut(Ω) → Aut(D) is a group iso-
morphism, it induces a group isomorphism CΩ(Γ ) ∼= CD(Λ); and accordingly
ZΩ(Γ ) ∼= ZD(Λ). By (2.1) we have

Λ =
{(
e2πi(a13+ia)ψ, e2πi(a23+iaλ)ψ

) ∣∣ ψ ∈ R
}
.

With this notation, we can prove the following:

Lemma 2.1. (1) Let λ be the real number appearing in (2.1). Then λ ∈ Q.
(2) The group CΩ(Γ ) consists af all elements F in Aut(Ω) of the form F (z, w) =

(α(z), β(z)w), where α ∈ Aut(B1) and β is a nowhere vanishing holomorphic func-
tion on B1. In particular, ZΩ(Γ ) as well as CΩ(Γ ) is not an abelian group.

Moreover, noting that D is a pseudoconvex Reinhardt domain, we obtain that:

Lemma 2.2. There exists a boundary point (zo, wo) of D with zowo �= 0.

Therefore, for every point (zo, wo) ∈ ∂D with zowo �= 0, the orbit Λ·(zo, wo) of Λ
passing through the point (zo, wo) must lie in the boundary ∂D; and accordingly

(2.2) ∂|D| ⊃ {(e−2πaψ|zo|, e−2πaλψ|wo|
) ∣∣ ψ ∈ R

}
,

where |D| denotes the real representative domain of the Reinhardt domain D.

4

13



In the following, we wish to list up all the possible cases where D satisfies the
condition (2.2), and then we will eliminate all the possibilities except in the case
where D is biholomorphically equivalent to Ω.

CASE I. λ = 0.

Since D is a pseudoconvex Reinhardt domain in C2 satisfying the condition (2.2),
one can see that there are eight possibilities as follows:

(I.1) D = {(z, w) | z ∈ C, |w| < R} (I.5) D = {(z, w) | z ∈ C, |w| > R}
(I.2) D = {(z, w) | z ∈ C∗, |w| < R} (I.6) D = {(z, w) | z ∈ C∗, |w| > R}
(I.3) D = {(z, w) | z ∈ C, 0 < |w| < R} (I.7) D = {(z, w) | z ∈ C, r < |w| < R}
(I.4) D = {(z, w) | z ∈ C∗, 0 < |w| < R} (I.8) D = {(z, w) | z ∈ C∗, r < |w| < R}

where r and R are some positive real numbers.

Lemma 2.3. In Case I, D is biholomorphically equivalent to Ω.

Proof. Clearly, D is biholomorphically equivalent to Ω in the case (I.1). We here as-
sert that all the others do not occur. Indeed, assume that one of them occurs. Then,
defining ϕ(z, w) := (z−1, w), (z, w) ∈ C∗ × C, and ψ(z, w) := (zwµ, w), (z, w) ∈
C × C∗, for µ ∈ Z, we have ϕ ∈ Autalg(D) in the case (I.2) and ψ ∈ Autalg(D) in
the cases (I.3)−(I.8). Thus �G(D) ≥ 2. On the other hand, �G(Ω) = 1 by Propo-
sition 1.1. Since G(D) is isomorphic to G(Ω), this is a contradiction. Therefore we
conclude that D is biholomorphically equivalent to Ω in CASE I. �

CASE II. λ < 0.

By Lemma 2.1, the number λ can be written uniquely in the form λ = −p/q with
p, q ∈ N, (p, q) = 1. We wish to prove that CASE II does not occur. For this
purpose, let us set

Dp,q = {(z, w) | |z|p|w|q < 1}, Dz
p,q = {(z, w) | |z|p|w|q < 1, z �= 0},

and Dw
p,q = {(z, w) | |z|p|w|q < 1, w �= 0}.

Then, after a suitable change of coordinates of the form (z̃, w̃) = (z, βw) with
β ∈ C∗, if necessary, we have the following six possibilities by (2.2):

(II.1) D = Dp,q (II.4) D = {(z, w) | 0 < |z|p|w|q < 1}
(II.2) D = Dz

p,q (II.5) D = {(z, w) | |z|p|w|q > 1}
(II.3) D = Dw

p,q (II.6) D = {(z, w) | r < |z|p|w|q < 1}

where r is a real number with 0 < r < 1. Noting that D ⊂ C∗ × C∗ in the cases
(II.4)−(II.6), we can first prove the following:

5
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Lemma 2.4. The cases (II.4) − (II.6) do not occur.

Now we wish to eliminate the possibility of CASE II by showing the following:

Lemma 2.5. The cases (II.1) − (II.3) also do not occur.

Proof. We assume contrarily that one of these cases occurs, and we would like to
derive a contradiction. The proof will be divided into two steps.

Step 1. Every element F of CD(Λ) has the form

F (z, w) =
(
α(zpwq)z, β(zpwq)w

)
, (z, w) ∈ D,

where α(u), β(u) are nowhere vanishing holomorphic functions on B1. In particular,
in the cases (II.2) and (II.3), every element F ∈ CD(Λ) extends to a holomorphic
automorphism of Dp,q.

Step 2. The cases (II.1), (II.2) and (II.3) do not occur : Assume that one of
these cases occurs. Since ZΩ(Γ ) is not an abelian group by Lemma 2.1 and ZD(Λ)
is isomorphic to ZΩ(Γ ), it is enough to show that ZD(Λ) is abelian. For this
purpose, take an arbitrary element F of CD(Λ). Then F can be expressed in the
form F (z, w) = (α(u)z, β(u)w), u = zpwq, as in Step 1; and moreover, F can be
regarded as a holomorphic automorphism of Dp,q. Here we assert that

(2.3) α(u)pβ(u)q = α(0)pβ(0)q for all u ∈ B1 and |α(0)pβ(0)q| = 1.

Indeed, define a holomorphic function f on B1 by setting f(u) = α(u)pβ(u)qu, u ∈
B1. Then we can prove that f(B1) ⊂ B1 and f gives rise to an automorphism of
B1 with f(0) = 0. Consequently, f has to be of the form f(u) = Au with |A| = 1,
showing our assertion (2.3). Thanks to (2.3), if we set A = α(0)pβ(0)q, the inverse
element F−1 of F is given by F−1(z, w) =

(
α(A−1u)−1z, β(A−1u)−1w

)
, u = zpwq.

Then, direct computations show that ZD(Λ) is, in fact, abelian; completing the
proof of the assertion in Step 2. Therefore the proof of Lemma 2.5 is completed. �

By Lemmas 2.4 and 2.5, we have shown that CASE II does not occur.

CASE III. λ > 0.

We want to show that this case also does not occur. As before, we can write
λ = p/q with p, q ∈ N, (p, q) = 1. Since the group Λ leaves ∂D invariant, we now
have five possibilities as follows:

(III.1) D = {(z, w) | |w| > k|z|λ} (III.4) D = {(z, w) | 0 < |w| < k|z|λ}
(III.2) D = {(z, w) | |w| < k|z|λ} (III.5) D = {(z, w) | k|z|λ < |w| < K|z|λ}
(III.3) D = {(z, w) | |w| > k|z|λ > 0}

6

15



where 0 < k, K ∈ R. Note that in the cases (III.1), (III.2), and (III.3)−(III.5), D
is contained in C ×C∗, C∗ ×C, and C∗ ×C∗, respectively.

Lemma 2.6. Case III does not occur.

Proof. Assuming that this case does occur, we define the algebraic automorphisms
ϕ of C×C∗ and ψ of C∗×C by ϕ(z, w) := (z, w−1) and ψ(z, w) := (z−1, w), respec-
tively. Then, after a change of coordinates of the form (z̃, w̃) = (z, βw), β ∈ C∗, if
necessary, it can be seen that the images of the domains of the form (III.1)−(III.5)
under the mappings ϕ or ψ coincide with the domains

Dw
p,q, D

z
p,q, {(z, w) | 0 < |z|p|w|q < 1} or {(z, w) | r < |z|p|w|q < 1},

where 0 < r < 1 and Dw
p,q, D

z
p,q are the same domains defined in CASE II. But, as

we have already shown in CASE II, none of these domains can arise as D. Therefore
we arrive at a contradiction; thereby completing the proof. �

Therefore, we have proved the Theorem in the case n = 2.

2.2. The case n ≥ 3. Throughout this Subsection, we write Ω = Ωk,�.
As stated before, we have only to prove the Theorem under the assumption that

k, � ≥ 1. Note that the direct product U(k)×U(�) of the unitary groups is contained
in Aut(Ω). In the following part, denoting by Ed the identity matrix of degree d
and SU(k) the special unitary group of degree k, we use the natural identification
given by SU(k) = SU(k) × {E�} ⊂ U(k) × U(�). By using a result on the normal
form of some compact group action on a Reinhardt domain due to Shimizu (cf. [3,
Proposition 1.1]), we can first show the following:

Lemma 2.7. By considering the image of D under a suitable algebraic automor-
phism, if necessary, one may assume that Φ(U(k) × U(�)) = U(k) × U(�); and
consequently, D is invariant under the standard action on Cn of U(k) × U(�).

Thus the isomorphism Φ: Aut(Ω) → Aut(D) induces an isomorphism between the
centralizers CΩ(U(k) × U(�)) and CD(U(k) × U(�)) of U(k) × U(�) in Aut(Ω) and
in Aut(D). Here we wish to determine the form of this isomorphism Φ: CΩ(U(k)×
U(�)) → CD(U(k) × U(�)). For this purpose, we need the following:

Lemma 2.8. The group CΩ(U(k)×U(�)) consists of all elements ϕ having the form
ϕ(z, w) = (αz, βw) with |α| = 1, β ∈ C∗. Also, the group CD(U(k)×U(�)) consists
of all elements ϕ ∈ Aut(D) having the form ϕ(z, w) = (αz, βw) with α, β ∈ C∗.

Hence, both groups CΩ(U(k) × U(�)) and CD(U(k) × U(�)) are real Lie groups
of dimension 3 that can be naturally identified with subgroups of

{
(αEk, βE�)

∣∣
α, β ∈ C∗} ⊂ Aut(Cn). Just as in the case n = 2, this together with the fact that

7
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Φ(T (Ω)) = T (D) implies the following: The isomorphism Φ: CΩ(U(k) × U(�)) →
CD(U(k) × U(�)) can be written in the form

Φ
(
e2πiθEk, e

2πi(φ+iψ)E�
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
e2πi(a11θ+a12φ+a13ψ+iaψ)Ek,

e2πi(a21θ+a22φ+a23ψ+iaλψ)E�
) · · · (Type A)

or(
e2πi(a11θ+a12φ+a13ψ+iaλψ)Ek,

e2πi(a21θ+a22φ+a23ψ+iaψ)E�
) · · · (Type B)

for all θ, φ, ψ ∈ R, where
(
a11 a12

a21 a22

)
∈ GL(2,Z), a13, a23, a, λ ∈ R and a �= 0.

It should be remarked that, when k = �, we may assume that Φ is of Type A.
However, in the case when k �= �, the situation is quite different. So, for the proof
of the Theorem, we need to treat two cases where Φ is of Type A and of Type B
separately. Now, as in the case of n = 2, it can be seen easily the following:

Lemma 2.9. There exists a boundary point (zo, wo) of D with ‖zo‖‖wo‖ �= 0.

We now consider the subgroup Λ of Aut(D) defined by

Λ =

⎧⎪⎪⎨
⎪⎪⎩

{(
e−2πaψA, e−2πaλψB

) ∣∣ ψ ∈ R, A ∈ U(k), B ∈ U(�)
}

or{(
e−2πaλψA, e−2πaψB

) ∣∣ ψ ∈ R, A ∈ U(k), B ∈ U(�)
}

according to Φ is of Type A or of Type B.
Since Λ can be regarded as a subgroup of Aut(Cn), it leaves ∂D invariant. Thus,

for every point (zo, wo) ∈ ∂D with ‖zo‖‖wo‖ �= 0, we have Λ ·(zo, wo) ⊂ ∂D. As
in the case n = 2, by making use of this fact, we shall prove our Theorem in the
general case n ≥ 3. Again we have three cases to consider:

CASE I. λ = 0.

We want to prove that D is biholomorphically equivalent to Ω in this case. The
proof of this will be divided into two cases where Φ is of Type A or of Type B.

Case (I.A). Φ is of Type A: In this case, having the boundary invariant under
the action of Λ, D may coincide with one of the following domains:

(I.A.1) {(z, w) | z ∈ Ck, ‖w‖ < R} (I.A.5) {(z, w) | z ∈ Ck, ‖w‖ > R}
(I.A.2) {(z, w) | ‖z‖ > 0, ‖w‖ < R} (I.A.6) {(z, w) | ‖z‖ > 0, ‖w‖ > R}
(I.A.3) {(z, w) | z ∈ Ck, 0 < ‖w‖ < R} (I.A.7) {(z, w) | z ∈ Ck, r < ‖w‖ < R}
(I.A.4) {(z, w) | ‖z‖ > 0, 0 < ‖w‖ < R} (I.A.8) {(z, w) | ‖z‖ > 0, r < ‖w‖ < R}
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where r and R are some positive real numbers. Then, by considering the structure
of the group G(D) defined in (1.2), one can prove the following:

Lemma 2.10. The case (I.A.1) occurs only when k = �, and D is biholomorphically
equivalent to Ω in this case. And, the cases (I.A.2) − (I.A.8) do not occur.

Case (I.B). Φ is of Type B: In this case, interchanging the role of z and w in
Case (I.A), we have also eight possible cases. However, in exactly the same way as
in Case (I.A), it can be shown that the domain {(z, w) | w ∈ C�, ‖z‖ < R} has only
the possibility for D, where R is a positive real number. Of course, this domain is
actually biholomorphically equivalent to Ω.
Therefore, we conclude that D is biholomorphically equivalent to Ω in CASE I.

CASE II. λ < 0.

We want to show this case does not occur. The proof will be divided into two cases.

Case (II.A). Φ is of Type A: First we set DA(k, �) =
{
(z, w)

∣∣ ‖z‖−λ‖w‖ <
1
}
, Dz

A(k, �) =
{
(z, w)

∣∣ ‖z‖−λ‖w‖ < 1, z �= 0
}

and Dw
A(k, �) =

{
(z, w)

∣∣
‖z‖−λ‖w‖ < 1, w �= 0

}
in Ck × C�. Then, recalling that D is pseudoconvex and

Λ·∂D = ∂D and (U(k)×U(�))·D = D, one can see that there exist only three cases
as follows among them (after a change of coordinates of the form (z̃, w̃) = (z, βw)
with β ∈ C∗, if necessary):

D = DA(k, �), D = Dz
A(1, �) (� ≥ 2) or D = Dw

A(k, 1) (k ≥ 2).

Assuming that one of these cases does occur, we fix an arbitrary point (zo, wo) ∈ ∂D

with ‖zo‖−λ‖wo‖ = 1. Take an arbitrary element ϕ ∈ Π(D) and write ϕ(z, w) =
(ζ1z1, . . . , ζkzk, η1w1, . . . , η�w�) with ζi, ηj ∈ C∗. Then, since (‖zo‖u, ‖wo‖v) ∈
∂D and ϕ(‖zo‖u, ‖wo‖v) ∈ ∂D for each u = (ui) ∈ Ck, v = (vj) ∈ C� with
‖u‖ = 1, ‖v‖ = 1, a simple computation shows that

(|ζ1u1|2 + · · · + |ζkuk|2
)−λ(|η1v1|2 + · · · + |η�v�|2

)
= 1.

Thus |ζ1| = · · · = |ζk| =: r, |η1| = · · · = |η�| =: R and r−λR = 1. Therefore, Π(D)
is a real Lie group of dimension k + � + 1 = n + 1. On the other hand, we know
that Π(D) is isomorphic to the real Lie group Π(Ω) of dimension k + 2� = n+ �;
and hence, � = 1. Therefore we have obtained the following:

Lemma 2.11. In Case (II.A), we have only two possibilities of D = DA(k, 1) or
D = Dw

A(k, 1) for k = n− 1 ≥ 2.

In the both cases in Lemma 2.11, Φ(SU(k)) = SU(k) by Lemma 2.7; and so
CΩ(SU(k)) is isomorphic to CD(SU(k)). On the other hand, CΩ(SU(k)) is a real
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Lie group of dimension 5, while CD(SU(k)) is of dimension 3 by the following
lemmas. Therefore we can eliminate the possibility of Case (II.A):

Lemma 2.12. For k = n− 1 ≥ 2, we have

CΩ(SU(k)) =
{
(z, w) �→ (αz, βw + γ)

∣∣ |α| = 1, β ∈ C∗, γ ∈ C
}
.

Hence, CΩ(SU(k)) is a real Lie group of dimension 5.

Lemma 2.13. (1) In the case D = DA(k, 1) for k = n− 1 ≥ 2, we have

CD(SU(k)) =
{
(z, w) �→ (αz, βw)

∣∣ |α|−λ|β| = 1
}
.

(2) In the case D = Dw
A(k, 1) for k = n− 1 ≥ 2, we have the following:

(i) If −2/λ /∈ N, then CD(SU(k)) =
{
(z, w) �→ (αz, βw)

∣∣ |α|−λ|β| = 1
}
.

(ii) If −2/λ ∈ N, then

CD(SU(k)) =
{
(z, w) �→ (αz, βw)

∣∣ |α|−λ|β| = 1
}

⋃{
(z, w) �→ (αw−2/λz, βw−1)

∣∣ |α|−λ|β| = 1
}
.

Hence, CD(SU(k)) is a real Lie group of dimension 3 in any case.

Case (II.B). Φ is of Type B: We assert that this case also does not occur.
Indeed, putting

DB(k, �) =
{
(z, w)

∣∣ ‖z‖‖w‖−λ < 1
}
, Dw

B(k, �) =
{
(z, w)

∣∣ ‖z‖‖w‖−λ < 1, w �= 0
}

in Ck × C�, we can show that, after a change of coordinates of the form (z̃, w̃) =
(αz,w) with α ∈ C∗, if necessary, there are only two possibilities for D:

D = DB(k, 1) or D = Dw
B(k, 1) for k = n− 1 ≥ 2.

Assume that one of these cases occurs. Then we have Φ(SU(k)) = SU(k) in each
case. Thus the groups CΩ(SU(k)) and CD(SU(k)) are isomorphic. Recall that
CΩ(SU(k)) is a real Lie group of dimension 5 by Lemma 2.12. However, with
exactly the same argument as in Case (II.A), one can verify the following:

Lemma 2.15. (1) In the case D = DB(k, 1) for k = n− 1 ≥ 2, we have

CD(SU(k)) =
{
(z, w) �→ (αz, βw)

∣∣ |α||β|−λ = 1
}
.

(2) In the case D = Dw
B(k, 1) for k = n− 1 ≥ 2, we have the following:

(i) If −2λ /∈ N, then CD(SU(k)) =
{
(z, w) �→ (αz, βw)

∣∣ |α||β|−λ = 1
}
.
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(ii) If −2λ ∈ N, then

CD(SU(k)) =
{
(z, w) �→ (αz, βw)

∣∣ |α||β|−λ = 1
}

⋃{
(z, w) �→ (αw−2λz, βw−1)

∣∣ |α||β|−λ = 1
}
.

Hence, CD(SU(k)) is a real Lie group of dimension 3 in any case.

By this contradiction, we conclude that CASE II does not occur, as required.

CASE III. λ > 0.

We claim that this case is impossible. To this end, we first consider the following:

Case (III.A). Φ is of Type A: By the same reasoning as in Case (II.A), we may
have the following two possible cases for D, after a change of coordinates of the
form (z̃, w̃) = (z, βw), if necessary:

(III.A.1) D =
{
(z, w) ∈ C× Cn−1

∣∣ ‖w‖ < |z|λ} ⊂ C∗ ×Cn−1, and

(III.A.2) D =
{
(z, w) ∈ Cn−1 ×C

∣∣ |w| > ‖z‖λ} ⊂ Cn−1 ×C∗.

Here, consider the algebraic automorphisms ϕ of C∗ × Cn−1 and ψ of Cn−1 × C∗

defined by ϕ(z, w) := (z−1, w) and ψ(z, w) := (z, w−1). Then, for the domains D
in (III.A.1) and (III.A.2), we see that ϕ(D) and ψ(D) coincide with the domains

{
(u, v)

∣∣ |u|λ‖v‖ < 1, u �= 0
}

and
{
(u, v)

∣∣ ‖u‖λ|v| < 1, v �= 0
}
,

respectively. However, we have already shown in Case (II.A) that these domains
do not arise as D; and consequently, Case (III.A) does not occur, as asserted.

Case (III.B). Φ is of Type B: In this case, after a suitable change of coordinates
if necessary, we again have two possibilities as follows:

(III.B.1) D =
{
(z, w) ∈ Cn−1 ×C

∣∣ ‖z‖ < |w|λ} ⊂ Cn−1 ×C∗, and

(III.B.2) D =
{
(z, w) ∈ C× Cn−1

∣∣ |z| > ‖w‖λ} ⊂ C∗ ×Cn−1.

Notice that, by the algebraic automorphisms ψ or ϕ defined in Case (III.A), these
domains are transformed onto the domains

{
(u, v)

∣∣ ‖u‖|v|λ < 1, v �= 0
}

and
{
(u, v)

∣∣ |u|‖v‖λ < 1, u �= 0
}

which were already studied in Case (II.B). Then the conclusion in Case (II.B)
implies that Case (III.B) is also impossible.
Therefore CASE III is impossible, as claimed.

Summarizing our results obtained in the above, we have shown that only CASE I
occurs and the domain D is biholomorphically equivalent to the model space Ω;
thereby completing the proof of our Theorem in the case n ≥ 3. �
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A statement of Weierstrass

Yukitaka Abe

(Toyama University, Japan)

1 Weierstrass’ statement and the main theorem

Weierstrass frequently stated the following in his lectures at Berlin:

Every system of n (independent) functions with n variables which admits an addition

theorem is algebraic combination of n abelian (or degenerate) functions with the same

periods.

But his proof was meither published nor taught (see [13], other episodes are stated

there).

In the case n = 1, a degenerate elliptic function is a rational function or a rational

function of an exponential function (see [19]), and the statement is true. We can see

its proof due to Osgood in [5]. I gave another proof in the previous paper [2].

On the other hand, it is not clear what are degenerate abelian functions or quasi-

abelian functions when n � 2. If we consider the field of meromorphic functions on

C
n with period Γ of rank Γ < 2n, its transcendence degree over C is not always

finite even when Cn/Γ does not contain C or C∗ as a direct summand. Then, we

can not consider degenerate abelian functions merely as meromorphic functions with

degenerate periods.
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Our main theorem is the following.

Theorem 1.1 Let K ⊂ M(Cn) be a non-degenerate algebraic function field of n

variables over C which admits an algebraic addition theorem. Then K is considered

as a subfield of C(z1, . . . , zp, w1, . . . , wq, g0, . . . , gr), where z1, . . . , zp are coordinate

functions of Cp, w1, . . . , wq are those of (C∗)q and g0, . . . , gr are generators of an

abelian function field of dimension r, p+ q + r = n.

We state the outline of its proof. The details will appear in [3].

2 Definitions

Let M(Cn) be the field of meromorphic functions on C
n. We consider a subfield K

of M(Cn). We assume that K is finitely generated over C and Trans K = n, where

Trans K is the transcendence degree of K over C. Such a field K is called an algebraic

function field of n variables over C. Let f0, . . . , fn be generators of K.

Definition 2.1 We say that f0, . . . , fn admit an algebraic addition theorem (we ab-

breviate it (AAT)) if for any j = 0, . . . , n there exists a rational function Rj such

that

(1) fj(x+ y) = Rj(f0(x), . . . , fn(x), f0(y), . . . , fn(y))

for all x, y ∈ C
n. An algebraic function field K of n variables over C admits the

(AAT) if it has generators f0, . . . , fn which admit the (AAT).

We note that if K admits the (AAT), then any generators g0, . . . , gn of K admit

the (AAT).
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Definition 2.2 An algebraic function field K of n variables over C admits another

addition theorem (AAT∗) if there exist algebraically independent f1, . . . , fn ∈ K such

that for any j = 1, . . . , n we have a non-zero polynomial Pj with

(2) Pj(fj(x+ y), f1(x), . . . , fn(x), f1(y), . . . , fn(y)) = 0

for all x, y ∈ Cn.

By an elementary algebraic argument, we see that K admits the (AAT) if and

only if it admits the (AAT∗).

A function f ∈ M(Cn) is degenerate if there exist an invertible linear transfor-

mation L : Cn −→ Cn, x = L(y) and a non-negative integer r with r < n such that

f(L(y)) does not depend on yr+1, . . . , yn. We say that f is non-degenerate if it is not

degenerate.

Definition 2.3 A subfield K of M(Cn) is said to be non-degenerate if there exists a

non-degenerate function in K.

We assume that K is a non-degenerate algebraic function field of n variables over

C which admits the (AAT).

3 Picard varieties

Let f ∈ K be a non-degenerate function. Since ∂f
∂z1

, . . . , ∂f∂zn are linearly independent,

there exist a(1), . . . , a(n) ∈ Cn such that

rank

⎛
⎜⎜⎜⎜⎜⎜⎝

∂f
∂z1

(a(1)) · · · ∂f
∂zn

(a(1))

. . . . . . . . . . . . . . . . . . . . . . . . .

∂f
∂z1

(a(n)) · · · ∂f
∂zn

(a(n))

⎞
⎟⎟⎟⎟⎟⎟⎠

= n.
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Let gi(z) := f(z + a(i)), i = 1, . . . , n. Then gi ∈ K and (g1, . . . , gn) is a locally

biholomorphic mapping on C
n except an analytic subset. Then we can take b(0) :=

0, b(1), . . . , b(r) ∈ Cn such that if we set

gij(z) := gj(z + b(i)), i = 0, 1, . . . , r; j = 1, . . . , n,

then (gij) is locally biholomorphic at any point a ∈ C
n. Of course gij ∈ K. Let

{h1, . . . , hN} := {gij}∪{f0, f1, . . . , fn}. We have holomorphic functions ϕ0, . . . , ϕN on

C
n such that ϕ0, . . . , ϕN have no common divisor, they give a holomorphic immersion

Φ := [ϕ0 : · · · : ϕN ] : C
n −→ P

N

and hi = ϕi/ϕ0, i = 1, . . . , N.

Consider all the algebraic relations among h1, . . . , hN . We denote by P the set of

all corresponding homogeneous polynomials. Then P gives an algebraic subvariety Y

of PN . It follows from the definition of Y that Ω := Φ(Cn) ⊂ Y and Y is the Zariski

closure of Ω.

For p, q ∈ Ω we define

p · q := Φ(z + w), z ∈ Φ−1(p), w ∈ Φ−1(q).

Then Ω is a connected complex abelian Lie group by this operation. And Φ : Cn −→ Ω

is an epimorphism. Let Γ := KerΦ. We note that Γ is a discrete subgroup of Cn. From

the above epimorphism, we obtain an isomorphism

Φ : G := C
n/Γ −→ Ω,

and K is considered as a subfield of M(G).

We summarize the above results in the following theorem which is basic to our

argument.

4
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Theorem 3.1 ([2, Theorem 2.6]) There exist holomorphic functions ϕ0, . . . , ϕN

on C
n, a discrete subgroup Γ of C

n, an algebraic subvariety Y of the N-dimensional

complex projective space PN and a connected complex abelian Lie group Ω in Y such

that

(a) ϕ0, . . . , ϕN give a Lie group isomorphism

Φ = [ϕ0 : · · · : ϕN ] : G := C
n/Γ −→ Ω,

(b) ϕ1/ϕ0, . . . , ϕN/ϕ0 generate K and K is considered as a subfield of M(G),

where M(G) is the field of meromorphic functions on G,

(c) Y is the Zariski closure of Ω and

Φ
∗

: C(Y ) −→ K, R �−→ R ◦ Φ

is an isomorphism, then dimC Y = dimC Ω = n, where C(Y ) is the rational function

field of Y.

We call Y a Picard variety of K. Let K ′ be a subfield of M(Cn) satisfying the same

assumptions, and let Y ′ be a Picard variety of K ′. Then, K and K ′ are isomorphic if

and only if Y and Y ′ are birationally equivalent.

Applying the above theorem, I gave a short proof of the statement of Weierstrass

when n = 1 (the proof of Theorem 2.7 in [2]).

Theorem 3.2 (Weierstrass) A function f ∈ M(C) admits the (AAT∗) if and only

if it is an elliptic function or a rational function or a rational function of eaz.
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4 Continuation of closed subgroups

We assume the situation in Theorem 3.1. Let Ω be the connected complex abelian Lie

group embedded in P
N . It has the Zariski closure Y with dimC Y = dimC Ω = n. Let

(x0, . . . , xN ) be homogeneous coordinates of PN . We write x(p) = (x0(p), . . . , xN (p))

for any p ∈ Ω. For any p, q ∈ Ω, we have

(3) xi(p · q) = Ri(x(p), x(q)), i = 0, . . . , N,

where Ri is a rational function. Let g be the Lie algebra of Ω. The following lemma

is an immediate consequence of (3).

Lemma 4.1 For any X ∈ g and any p ∈ Ω, there exists a neighborhood U of p in

PN such that

X =
N∑
j=1

R̃j(t)
∂

∂tj
on U ∩ Ω,

where t = (t1, . . . , tN ) are affine coordinates on U and R̃j(t) is a rational function of

t.

We now consider a connected closed complex Lie subgroupH of Ω. Let h be the Lie

algebra of H. We can take a basis {X1, . . . , Xm, Y1, . . . , Yr} of g such that {Y1, . . . , Yr}

is a basis of h, where r = dimC H. Let {ω1, . . . , ωm, η1, . . . , ηr} be a set of holomorphic

1-forms on Ω which forms the dual system of {X1, . . . , Xm, Y1, . . . , Yr}. For any p ∈ Ω

we assign

Dp := {v ∈ Tp(Ω); (ω1)p(v) = · · · = (ωm)p(v) = 0}.

Then D : Ω � p �−→ Dp ⊂ Tp(Ω) is an r-dimensional complex differential system.

Since Ω is abelian, [X,Y ] = 0 for all X,Y ∈ g. Then, all holomorphic 1-forms ωi

(i = 1, . . . ,m) and ηj (j = 1, . . . , r) are d-closed.
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We may assume by the resolution of singularities that Y is non-singular. By

Lemma 4.1 each Xi, Yj , ωi, ηj is meromorphically extendable to Y. We use the same

notations Xi, Yj , ωi, ηj for their extensions to Y, without confusion. It holds that

dωi = 0 on Y for i = 1, . . . ,m.

Let Di be the (n−1)-dimensional complex differential system on Ω defined by the

local equation ωi = 0, for i = 1, . . . ,m. Since Di is completely integrable on Ω, there

exists an (n− 1)-dimensional integral manifold Zi of Di such that

H =
m⋂
i=1

Zi.

We obtain the following proposition by careful consideration of the singular points of

ωi.

Proposition 4.2 For any i = 1, . . . ,m, there exists an irreducible analytic subset Z̃i

of Y of pure codimension 1 such that

Zi = Z̃i ∩ Ω.

We set

Z :=
m⋂
i=1

Z̃i.

Then Z is an r-dimensional irreducible analytic subset of Y with Z∩Ω = H. Therefore,

it is the Zariski closure of H. We summarize the above results in the following theorem

for the later use.

Theorem 4.3 Let H be a connected closed complex Lie subgroup of Ω. Then the

Zariski closure Z of H has the same dimension as H.
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5 Restriction to a closed subgroup

Let H be a connected closed complex Lie subgroup of G = Cn/Γ. We consider the

restriction of K to H. For any f ∈ M(G) we denote by P (f) the polar set of f. We

define the restriction fH of f to H by

fH :=

⎧⎪⎪⎨
⎪⎪⎩

0, if H ⊂ P (f)

f |H , otherwise.

Let KH := {fH ; f ∈ K} be the restriction of K to H. It is obvious that KH is

non-degenerate and admits the (AAT).

Proposition 5.1 It holds that Trans KH = dimCH.

Proof. Let Φ : G −→ Ω be the isomorphism in Theorem 3.1. Then H̃ := Φ(H) is a

connected closed complex Lie subgroup of Ω. Let Z be the Zariski closure of H̃. By

Theorem 4.3 we have dimC Z = dimC H̃ = dimC H. Since

KH
∼= {f

�H ; f ∈ C(Y )} ∼= C(Z)

and Trans C(Z) = dimC Z, we obtain the conclusion. �

6 Separately extendable meromorphic functions

In this section, we discuss the extendability of separately extendable meromorphic

functions improving the arguments in [7].

Let D and E be domains in Cn and Cm respectively. We consider meromorphic

functions F1(z, w), . . . , FN (z, w) on D × E, which are not all identically zero. Let Pi

be the polar set of Fi. We set

P :=
N⋃
i=1

Pi.
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Then P is an analytic subset of D × E with codimCP = 1. There exist subdomains

D0 ⊂ D and E0 ⊂ E such that

D0 × E0 ⊂ (D × E) \ P.

We obtain the following lemma along an argument in [7] (Chapter IX, Section 5,

Lemma 6).

Lemma 6.1 Assume that there exist functions c1(w), . . . , cN (w) on E0 such that

c1(w)F1(z, w) + · · · + cN (w)FN (z, w) ≡ 0 on D0 × E0,

where c1(w), . . . , cN (w) are not all zero for any w ∈ E0. Then, there exist mero-

morphic functions C1(w), . . . , CN (w) on E, which are not all identically zero, such

that

C1(w)F1(z, w) + · · · + CN (w)FN (z, w) ≡ 0 on D × E.

Remark 6.2 If Fi(z, w) (i = 1, . . . , N) is a rational function of w for any fixed z ∈ D

in addition to the assumption in Lemma 6.1, then we can take Ci(w) (i = 1, . . . , N)

as a rational function.

Using this fact, we can prove the following proposition.

Proposition 6.3 ([7, Chapter IX, Section 5, Theorem 5]) Let D × E ⊂ Cn ×

Cm be a domain, and let f(z, w) be a holomorphic function on D × E. If f(z, w) is

rational in w for any z ∈ D and rational in z for any w ∈ E, then it is a rational

function of (z, w).

Let f(z) be a meromorphic function on D := C
p × (C∗)q, p+ q = n, and let P be

its polar set. We define

Pi := {(z′, z′′) = (z1, . . . , zi−1; zi+1, . . . , zn); {z′} × C × {z′′} ⊂ P}

9

30



for i = 1, . . . , p and

Pi := {(z′, z′′) = (z1, . . . , zi−1; zi+1, . . . , zn); {z′} × C
∗ × {z′′} ⊂ P}

for i = p + 1, . . . , n, where z = (z1, . . . , zn) are coordinates of D. We set Di =

{(z′, z′′) = (z1, . . . , zi−1; zi+1, . . . , zn)} for i = 1, . . . , n. The following proposition is

immediate from Proposition 6.3.

Proposition 6.4 If for any i = 1, . . . , n and any (z′, z′′) ∈ Di \ Pi, f(z′, zi, z′′) is

rational in zi, then f(z) is rational in z.

Let D be a domain in Ck, and let E := Cp × (C∗)q, p + q = �, k + � = n. We

consider a meromorphic function f(z, w) on D × E. Let P be the polar set of f . If

we set

Pz := {z ∈ D; {z} × E ⊂ P},

then Pz is an analytic subset of D. Let {pν(w)}∞ν=1 be the sequence of all monomials

{wα1
1 · · ·wα�� }. Following the argument in the proof of [7, Chapter IX, Section 5,

Theorem 5], we obtain the following theorem.

Theorem 6.5 Assume that f(z0, w) is rational in w for any z0 ∈ D\Pz. Then, there

exist meromorphic functions a1(z), . . . , aM (z), b1(z), . . . , bN (z) on D such that

f(z, w) =
Q(z, w)
P (z, w)

on D × E,

where P (z, w) =
∑M
µ=1 aµ(z)pµ(w) and Q(z, w) =

∑N
ν=1 bν(z)pν(w). Therefore, f(z, w)

meromorphically extends to D × (P1)�.
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7 Extendable line bundles on toroidal groups

A connected complex Lie group G0 is called a toroidal group if H0(G0,O) = C. Every

toroidal group is abelian ([11]). Then we can write G0 = C
r/Γ∗, where Γ∗ is a discrete

subgroup of Cr with rank Γ∗ = r +m (1 � m � r). We denote by Γ∗
R

the real linear

subspace of C
r spanned by Γ∗. Let Γ∗

C
:= Γ∗

R
∩√−1Γ∗

R
be the maximal complex linear

subspace contained in Γ∗
R
. It is easy to see that dimC Γ∗

C
= m.

Definition 7.1 A toroidal group G0 = Cr/Γ∗ is said to be a quasi-abelian variety if

there exists a Hermitian form H on Cr such that

(a) H is positive definite on Γ∗
C
,

(b) the imaginary part A := Im H of H is Z-valued on Γ∗ × Γ∗.

We call such a Hermitian form H an ample Riemann form for Γ∗ or G0.

From the projection Cr −→ Γ∗
C
, we obtain a fiber bundle structure σ : G0 −→ T

on an m-dimensional complex torus T with fibers (C∗)�, � = r −m ([21]). Replacing

fibers (C∗)� with (P1)�, we obtain the associated (P1)�-bundle σ : G0 −→ T.

Proposition 7.2 ([20, Satz 3.2.8]) Let L −→ G0 be a holomorphic line bundle

which is holomorphically extendable to G0. Then there exists a theta bundle Lθ −→ T

such that

L ∼= σ∗Lθ.
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8 Extension to a compactification of G

We return to our situation. By the theorem of Remmert-Morimoto ([9] and [12]), we

have

G ∼= C
p × (C∗)q ×X,

whereX = Cr/Γ∗ is a toroidal group of rank Γ∗ = r+m (1 � m � r) and p+q+r = n.

Since there exists a non-degenerate meromorphic function on X, X is a quasi-abelian

variety ([1] and [8]). We have a (C∗)s-bundle σ : X −→ T on an m-dimensional

complex torus T, where s = r −m. Let σ : X −→ T be the associated (P1)s-bundle.

These bundles give fiber bundles τ : G −→ T with fibers Cp × (C∗)q × (C∗)s and

τ : G −→ T with fibers (P1)�, � = p+ q + s, where G = (P1)p+q ×X. For any a ∈ T

we set

Fa := τ−1(a) ∼= C
p × (C∗)q × (C∗)s,

F a := τ−1(a) ∼= (P1)�.

Theorem 8.1 Every f ∈ K meromorphically extends to G.

Proof. Let e ∈ T be the unit element of T. We take coordinates (z1, . . . , z�) on Fe.

For any i = 1, . . . , � we define

Li := {(0, zi, 0) ∈ Fe}.

Then Li is a connected closed complex Lie subgroup of G with dimC Li = 1. It follows

from Proposition 5.1 that Trans KLi = 1. KLi is non-degenerate, admits the (AAT)

and is not periodic. Then, any g ∈ KLi is a rational function of zi by Theorem 3.2.

Therefore, fFe is rational for any f ∈ K by Proposition 6.4.
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Let f be any function in K. Take any point a ∈ T. We define g(x) := f(x + ã)

for some ã ∈ G with τ (ã) = a. Using the (AAT), we can verify that g ∈ K. From the

above observation, we know that gFe is rational. Since Fa = Fe + ã and fFa = gFe ,

fFa is rational. Furthermore, there exists an open set U ⊂ T such that

τ−1(U) ∼= U × (Cp × (C∗)q × (C∗)s) .

As we have seen in the above, fτ−1(U) satisfies the assumption in Theorem 6.5. Then

fτ−1(U) meromorphically extends to τ−1(U) ∼= U × (P1)�. This completes the proof.

�

9 Proof of Theorem 1.1

We state the situation again, in order to confirm the problem.

Let K ⊂ M(Cn) be a non-degenerate algebraic function field of n variables over C.

We assume that K admits the (AAT). It is considered as a subfield of M(G), where

G = Cn/Γ. We have the decomposition

G ∼= C
p × (C∗)q ×X,

where X = Cr/Γ∗ is a quasi-abelian variety.

Proposition 9.1 The quasi-abelian variety X is an abelian variety.

Proof. There exists a function f ∈ K such that g := fX is non-degenerate. Let

L̃ be the holomorphic line bundle on G given by the zero-divisor of f. Since f is

meromorphically extendable to G (Theorem 8.1), L̃ has the holomorphic extension to

G. Then, L := L̃|X extends to X.
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Let rank Γ∗ = r + s. Suppose that 1 � s < r. Then there exists a (C∗)r−s-bundle

σ : X −→ T on a complex torus T with dimC T = s < r. By Proposition 7.2 we can

take a theta bundle Lθ −→ T such that L ∼= σ∗Lθ. Let σ : X −→ T be the associated

(P1)r−s-bundle. We denote by g and L the extensions of g and L, respectively. Then

there exist ϕ, ψ ∈ H0(X,O(L)) such that g = ψ/ϕ. Since

H0(X,O(L)) = σ∗H0(T,O(Lθ)),

g is constant on the fibers. This contradicts the assumption that g is non-degenerate.

�

Proof of Theorem 1.1. It follows from Proposition 9.1 that

G ∼= C
p × (C∗)q ×A,

where A = Cr/Γ∗ is an abelian variety. By Theorem 8.1, any f ∈ K meromorphically

extends to G ∼= (P1)p+q ×A. Then we obtain the conclusion. �
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1. Introduction and Main Result

Hyperbolic polynomial diffeomorphisms of C2 have been extensively studied, e.g., from
the viewpoint of Axiom A theory by [BS1] and the combinatorial point of view à la Douady–
Hubbard by [BS7]. Here, a polynomial diffeomorphism f of C2 is said to be hyperbolic if its
Julia set J is a hyperbolic set for f (see Sections 2 and 3). In [HO2, FS] it has been shown
that a sufficiently small perturbation of any expanding polynomial p(x) of one variable in
the generalized Hénon family:

fp,b : (x, y) 7−→ (p(x)− by, x)

is hyperbolic. However, this is so far the only known example of a polynomial diffeomor-
phism of C2 which is rigorously shown to be hyperbolic. Moreover, the dynamics of such
fp,b can be modeled by the projective limit of the one–dimensional map p on its Julia set.
Thus, it is still not known if there exists a hyperbolic polynomial diffeomorphism of C2

which can not be obtained in this way.
The purpose of this talk is to present a framework for verifying hyperbolicity of holomor-

phic dynamical systems in C2. This framework in particular enables us to construct the
first example of a hyperbolic polynomial diffeomorphism of C2 whose dynamics is essentially
two–dimensional. Consider a cubic complex Hénon map:

fa,b : (x, y) 7−→ (−x3 + a− by, x)

with (a, b) = (−1.35, 0.2).

Main Theorem. The cubic complex Hénon map above is hyperbolic but is not topologically
conjugate on J to a small perturbation of any expanding polynomial in one variable.

In the rest of this article, we will outline the proof of Main Theorem which relies on the
combination of some analytic tools from complex analysis (see Section 4), a combinatorial
idea called the fusion (see Section 5), and rigorous numerics technique by using interval
arithmetic (see Section 6).

1
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2 YUTAKA ISHII

2. Hyperbolicity: A Background

Let f : M → M be a diffeomorphism from a Riemannian manifold M to itself. We say
that a point p ∈ M belongs to the non–wandering set Ωf if for any neighborhood U of p
there exists n so that U ∩ fn(U) 6= ∅. Apparently, periodic points of f belong to Ωf .

Definition 2.1. A compact invariant subset Λ ⊂ M is said to be hyperbolic if there exist
constants C > 0 and 0 < λ < 1, and a (Df)–invariant splitting TpM = Eu

p ⊕Es
p for p ∈ Ωf

so that ‖Df
+/−n
p (v)‖ ≤ Cλn‖v‖ for all n > 0, v ∈ E

s/u
p and p ∈ Ωf .

A fundamental concept in the dynamical system theory since 1960’s is

Definition 2.2. We say that a diffeomorphism f : M → M satisfies Axiom A if Ωf is a
compact hyperbolic set and periodic points are dense in Ωf .

It is often the case that the hyperbolicity of Ωf implies the density of the periodic points
in Ωf (and this is true for polynomial diffeomorphisms of C2 which we will discuss in this
article), thus the most crucial point is to prove the hyperbolicity of Ωf .

Axiom A or hyperbolic diffeomorphisms (with some additional conditions) have several
nice properties such as (i) they are structurally stable (see, e.g., [Sh]), (ii) their statistical
properties are described by some invariant measures which are constructed through symbolic
dynamics (see, e.g., [B]), and (iii) in the context of one–dimensional complex dynamics, one
can analyze topology and combinatorics of the hyperbolic Julia sets (see, e.g. [D, T]).

Since the celebrated paper [Sm], it was widely believed that the maps satisfying Axiom
A are dense in the space of all systems. Although this belief was turned out to be false in
some cases, it has been always a driving force for research of dynamical systems.

For polynomial diffeomorphisms of C2, the only known examples of hyperbolic maps
are small perturbation of expanding (=hyperbolic) polynomials in one variable [HO2, FS].
Moreover, the dynamics of such map can be modeled by the projective limit of the one–
dimensional map on its Julia set, so it does not present essentially two–dimensional dynam-
ics. In view of the belief above, it is thus natural to ask the following

Question. Does there exist a hyperbolic polynomial diffeomorphism of C2 which can not
be obtained as a small perturbation of any expanding polynomial in one variable?

The answer to this question was not known for the last 15 years, and our Main Theorem
gives the affirmative answer to it.

3. Some Preliminary Results

Let f be a polynomial diffeomorphism of C2. It is known by a result of Friedland and
Milnor [FM] that f is conjugate to either (i) an affine map, (ii) an elementary map, or
(iii) the composition of finitely many generalized complex Hénon maps. Since the affine
maps and the elementary maps do not present dynamically interesting behavior, we will
hereafter focus only on a map in the class (iii), i.e. a map of the form f = fp1,b1 ◦ · · · ◦ fpk,bk

throughout this article. The product d ≡ deg p1 · · · deg pk is called the (algebraic) degree of
f . Note also that we have b ≡ det(Df) = det(Dfp1,b1) · · · det(Dfpk,bk

) = b1 · · · bk.
For a polynomial diffeomorphism f , let us define

K± = K±
f ≡ {

(x, y) ∈ C2 : {f±n(x, y)}n>0 is bounded in C2
}
,

i.e. K+ (resp. K−) is the set of points whose forward (resp. backward) orbits are bounded
in C2. We also put K ≡ K+ ∩ K− and J± ≡ ∂K±. The Julia set of f is defined as
J = Jf ≡ J+ ∩ J− [HO1]. Obviously these sets are invariant by f .
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ON HYPERBOLIC POLYNOMIAL DIFFEOMORPHISMS OF C2 3

Hereafter, we will often consider two different spaces A∗ ⊂ C2 where ∗ = D or R, and
consider a polynomial diffeomorphism f : AD → AR (notice that this does not necessarily
mean f(AD) ⊂ AR). Here, D signifies the domain and R signifies the range of f .

A subset of TpC2 is called a cone if it can be expressed as the union of complex lines
through the origin of TpC2. Let {C∗

p}p∈A∗ (∗ = D, R) be two cone fields in TpC2 over A∗

and ‖ · ‖∗ be metrics in C∗
p .

Definition 3.1 (Pair of Expanding Cone Fields). We say that ({CD
p }p∈AD , ‖ · ‖D) and

({CR
p }p∈AR , ‖ · ‖R) form a pair of weakly expanding cone fields for f (or, f weakly expands

the pair of cone fields) if there exists a constant λ ≥ 1 so that

Df(CD
p ) ⊂ CR

f(p) and λ‖v‖D ≤ ‖Df(v)‖R

hold for all p ∈ AD ∩ f−1(AR) and all v ∈ CD
p . When we can take λ > 1 uniformly with

respect to p and v, we call the cone fields a pair of expanding cone fields for f (or, f expands
the pair of cone fields). Similarly, a pair of (weakly) contracting cone fields for f is defined
as a pair of (weakly) expanding cone fields for f−1.

In particular, if A ≡ AD = AR, ‖ · ‖ ≡ ‖ · ‖D = ‖ · ‖R and Cu
p ≡ CD

p = CR
p for all

p ∈ A ∩ f−1(A) and the above condition holds, then we say ({Cu
p }p∈A, ‖ · ‖) forms an

(weakly) expanding cone field (or, f (weakly) expands the cone field). Similarly, the notion
of (weakly) contracting cone field (or, f (weakly) contracts the cone field) can be defined.

The next claim tells that, to prove hyperbolicity, it is sufficient to construct some ex-
panding/contracting cone fields.

Lemma 3.2. If f : A → A has both nonempty expanding/contracting cone fields {Cu/s
p }p∈A,

then f is hyperbolic on
⋂

n∈Z fn(A).

On the hyperbolicity of the polynomial diffeomorphisms of C2, the following fact is known
(see [BS1], Lemma 5.5 and Theorem 5.6).

Lemma 3.3. f is hyperbolic on its Julia set J iff so is on its nonwandering set Ωf .

Thanks to this fact, one may simply say that a polynomial diffeomorphism f is hyperbolic
when one of the two sets in the above lemma is a hyperbolic set. In what follows, we thus
prove hyperbolicity of some f on its Julia set J .

4. A Criterion for Hyperbolicity

Let Ax and Ay be bounded regions in C. Let us put A = Ax × Ay, and let πx : A → Ax

and πy : A → Ay be two projections. Below, we will define two types of cone fields. The
first one (to which we do not assign a metric) looks more general than the other.

Definition 4.1 (Horizontal/Vertical Cone Fields). A cone field on A is called a hori-
zontal cone field if each cone contains the horizontal direction but not the vertical direction.
A vertical cone field can be defined similarly.

Next, a very specific cone field is defined in terms of Poincaré metrics. Let | · |D be the
Poincaré metric in a bounded domain D ⊂ C. Define a cone field in terms of the “slope”
with respect to the Poincaré metrics in Ax and Ay as follows:

Ch
p ≡

{
v = (vx, vy) ∈ TpA : |vx|Ax ≥ |vy|Ay

}
.

A metric in this cone is given by ‖v‖h ≡ |Dπx(v)|Ax .
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4 YUTAKA ISHII

Definition 4.2 (Poincaré Cone Fields). We call ({Ch
p }p∈A, ‖·‖h) the horizontal Poincaré

cone field. The vertical Poincaré cone field ({Cv
p}p∈A, ‖ · ‖v) can be defined similarly.

A product set A = Ax×Ay equipped with the horizontal/vertical Poincaré cone fields is
called a Poincaré box. A Poincaré box will be a building block for verifying hyperbolicity
of polynomial diffeomorphisms throughout this work.

Let A∗ = A∗
x × A∗

y (∗ = D, R) be two Poincaré boxes, f : AD → AR be a holomorphic

injection and ι : AD ∩ f−1(AR) → AD be the inclusion map. The following two conditions
will be used to state our criterion for hyperbolicity.

Definition 4.3 (Crossed Mapping Condition). We say that f : AD → AR satisfies the
crossed mapping condition (CMC) of degree d if

ρf ≡ (πR
x ◦ f, πD

y ◦ ι) : ι−1(AD) ∩ f−1(AR) −→ AR
x × AD

y

is proprer of degree d.

Let FD
h = {AD

x (y)}y∈AD
y

be the horizontal foliation of AD with leaves AD
x (y) = AD

x × {y}
and FR

v = {AR
y (x)}x∈AR

x
be the vertical foliation of AR with leaves AR

y (x) = {x} × AR
y .

Definition 4.4 (No–Tangency Condition). We say that f : AD → AR satisfies the
no–tangency condition (NTC) if f(FD

h ) and FR
v have no tangencies. Similarly we say that

f−1 : AR → AD satisfies the (NTC) if FD
h and f−1(FR

v ) have no tangencies.

Notice that we do not exchange h and v of the foliations in the definition of the non–
tangency condition for f−1. Hence, f satisfies the (NTC) iff so does f−1.

Example. Given a polynomial diffeomorphism f , choose a sufficiently large R > 0. Put
DR = ∆x(0; R)×∆y(0; R), V + = V +

R ≡ {(x, y) ∈ C2 : |x| ≥ R, |x| ≥ |y|} and V − = V −
R ≡

{(x, y) ∈ C2 : |y| ≥ R, |y| ≥ |x|}. Then, f induces a homomorphism:

f∗ : H2(DR ∪ V +, V +) −→ H2(DR ∪ V +, V +).

Since H2(DR ∪ V +, V +) = Z, one can define the (topological) degree of f to be f∗(1). It is
easy to see that the topological degree of f is equal to the algebraic degree d of f .

Consider f : DR → DR and ρf : DR ∩ f−1(DR) → DR. Given (x, y) ∈ DR, f(ρ−1(x, y))
is equal to f(Dx(y)) ∩Dy(x), where we write Dx(y) = ∆x(0; R)× {y} and Dy(x) = {x} ×
∆y(0; R). Since f(V +) ⊂ V + and f−1(V −) ⊂ V − hold, the number card (f(Dx(y))∩Dy(x))
can be counted by the number of times πx ◦ f(∂Dx(y)) rounds around ∆x(0; R) by the
Argument Principle. This is equal to the degree of f , so it follows that card (f(Dx(y)) ∩
Dy(x)) = d counted with multiplicity for all (x, y) ∈ DR. Thus, f : DR → DR satisfies
the (CMC). Notice that f : DR → DR satisfies the (NTC) iff card (f(Dx(y)) ∩Dy(x)) = d
counted without multiplicity for all (x, y) ∈ DR. (End of Example.)

Now, the central claim for verifying hyperbolicity is stated as

Theorem 4.5 (Hyperbolicity Criterion). Assume that f : AD → AR satisfies the
crossed mapping condition (CMC) of degree d. Then, the following are equivalent:

(i) f preserves some pair of horizontal cone fields,
(ii) f−1 preserves some pair of vertical cone fields,
(iii) f weakly expands the pair of the horizontal Poincaré cone fields,
(iv) f−1 weakly expands the pair of the vertical Poincaré cone fields,
(v) f satisfies the no–tangency condition (NTC),
(vi) f−1 satisfies the no–tangency condition (NTC).
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ON HYPERBOLIC POLYNOMIAL DIFFEOMORPHISMS OF C2 5

Moreover, when AD = AR = B = Bx × By, where Bx and By are bounded open topological
disks in C, then any of the six conditions above is equivalent to the following:

(vii) B ∩ f−1(B) has d connected components.

In fact, the (CMC) and the (NTC) can be rewritten as more checkable conditions so
that we can verify the hyperbolicity of some specific polynomial diffeomorphisms of C2.
For example, as a by–product of this criterion, we can give explicit bounds on parameter
regions of hyperbolic maps in the (quadratic) Hénon family:

fc,b : (x, y) 7−→ (x2 + c− by, x),

where b ∈ C× = C \ {0} and c ∈ C are complex parameters.

Corollary 4.6. If (c, b) satisfies either

(i) |c| > 2(1 + |b|)2 (a hyperbolic horseshoe case),
(ii) c = 0 and |b| < (

√
2− 1)/2 (an attractive fixed point case) or

(iii) c = −1 and |b| < 0.02 (an attractive cycle of period two case),

then the complex Hénon map fc,b is hyperbolic on J .

Notice that [HO2, FS] did not give any specific bounds on the possible perturbation
width which keeps the hyperbolicity of fc,b.

We can extend the hyperbolicity criterion above to the case where some Poincaré boxes
have overlaps in the following way. Let {Ai}N

i=0 be a family of Poincaré boxes in C2 each of
which is biholomorphic to a product set of the form Ai

x × Ai
y with its horizontal Poincaré

cone field {CAi
p }p∈Ai

in Ai. Let us put A =
⋃N

i=0Ai and ΩA ≡
⋂

n∈Z fn(A).

Definition 4.7 (Gluing of Poincaré Boxes). For each p ∈ A, let us write I(p) ≡
{i : p ∈ Ai}. We shall define a cone field {C∩

p }p∈A by

C∩
p ≡

⋂

i∈I(p)

CAi
p

for p ∈ A and a metric ‖ · ‖∩ in it by

‖v‖∩ ≡ min{‖v‖Ai
: i ∈ I(p)}

for v ∈ C∩
p .

Remark 4.8. A priori we do not know if C∩
p is non–empty for p with card(I(p)) ≥ 2.

Given a subset I ⊂ {0, 1, · · · , N}, let us write

〈I〉 ≡
(⋂

i∈I

Ai

)
\

( ⋃
j∈Ic

Aj

)
= {p ∈ A : I(p) = I}.

In what follows, we only consider the case card(I(p)) ≤ 2. One then sees, for example,
〈i〉 = Ai \

⋃
j 6=iAj and 〈i, j〉 = Ai ∩ Aj.

A crucial step in the proof of Main Theorem is to combine the hyperbolicity criterion
with the following:

Lemma 4.9 (Gluing Lemma). Let p ∈ A ∩ f−1(A). If for any i ∈ I(f(p)) there exists
j = j(i) ∈ I(p) such that f : Aj → Ai satisfies the (CMC) and the (NTC), then Df(C∩

p ) ⊂
C∩

f(p) and ‖Df(v)‖∩ ≥ λ‖v‖∩ for some λ ≥ 1.
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6 YUTAKA ISHII

5. Fusion of Two Polynomials

In this section we present a model study of fusion.
Think of two cubics p1(x) and p2(x) so that p2(x) = p1(x) + δ for some δ > 0, both have

negative leading coefficients and have two real critical points c1 > c2. Let ∆x(0; R) = {|x| <
R} and ∆y(0; R) = {|y| < R}. Take R > 0 sufficiently large so that ∂∆x(0; R)×∆y(0; R) ⊂
intV + and ∆x(0; R) × ∂∆y(0; R) ⊂ intV − hold. Assume that pi satisfies p1(c2) < −R,
p2(c2) < −R and p2(c1) > R so that the orbits |pk

1(c2)|, |pk
2(c1)| and |pk

2(c2)| go to infinity as
k →∞. Assume also that c1 is a super–attractive fixed point for p1. Define By,1 to be the
connected component of p−1

1 (∆y(0; R)) containing c1 and By,2 to be the other component.
Let H be a closed neighborhood of c1 which is contained in the attractive basin of c1. Put
A1 = (∆x(0; R) \H)×By,1 and A2 = ∆x(0; R)×By,2. Now, we assume that there exists a
generalized Hénon map f with

(1) f |Ai
(x, y) ≈ (pi(x), x)

for i = 1, 2.
(a) Consider f : A1 → A1 ∪ A2. Then, the (CMC) would hold since

f(H ×By,1) ≈ p1(H)×H ⊂ int(H ×By,1)

by the approximation (1) above and R > 0 is large. Also the (NTC) would hold since

f({c1} ×By,1) ≈ {p1(c1)} × {c1} ⊂ int(H ×By,1)

and
f({c2} ×By,1) ≈ {p1(c2)} × {c2} ⊂ intV +

again by (1). Thus we may conclude that f : A1 → A1 ∪ A2 satisfies the (NTC) and the
(CMC) if the argument above is verified rigorously.

(b) Consider f : A2 → A1 ∪ A2. Since A2 does not have any holes like H and R > 0 is
large, the (CMC) would hold for f on A2. Also the (NTC) would hold since

f({c1} ×By,2) ≈ {p2(c1)} × {c1} ⊂ intV +

and
f({c2} ×By,2) ≈ {p2(c2)} × {c2} ⊂ intV +.

Thus we may conclude that f : A2 → A1 ∪ A2 satisfies the (NTC) and the (CMC) if the
argument above is verified.

Combining these two considerations, we may expect that f : A1 ∪ A2 → A1 ∪ A2 is
hyperbolic on

⋂
n∈Z fn(A1∪A2) by the hyperbolicity criterion. In this way, the generalized

Hénon map fp,b restricted to A1 ∪ A2 can be viewed as a fusion of two polynomials p1(x)
and p2(x) in one variable. This method enables us to construct a topological model of the
dynamics of a generalized Hénon map which have essentially two–dimensional dynamics.

6. Rigorous Numerics Technique

Computer do not understand all real numbers. Let F∗ be the set of real numbers which
can be represented by binary floating point numbers no longer than a certain length of
digits and put F ≡ F∗ ∪ {∞}. Denote by I the set of all closed intervals with their end
points in F. Given x ∈ R, let ↓x↓ be the largest number in F which is less than x and let
↑x↑ be the smallest number in F which is greater than x (when such number does not exist
in F∗, we assign ∞). It then follows that

x ∈ [↓x↓, ↑x↑] ∈ I.
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ON HYPERBOLIC POLYNOMIAL DIFFEOMORPHISMS OF C2 7

Interval arithmetic is a set of operations to output an interval in I from given two intervals
in I. It contains at least four basic operations: addition, differentiation, multiplication and
division. Specifically, the addition of given two intervals I1 = [a, b], I2 = [c, d] ∈ I is defined
by

I1 + I2 ≡ [↓a + c↓, ↑b + d↑].
It then rigorously follows that {x+y : x ∈ I1, y ∈ I2} ⊂ I1 +I2. The other three operations
can be defined similarly. A point x ∈ R is represented as the small interval [↓x↓, ↑x↑] ∈ I.
We also write [a, b] < [c, d] when b < c.

In this article interval arithmetic will be employed to prove rigorously the (CMC) and
the (NTC) for a given polynomial diffeomorphism of C2. It should be easy to imagine how
this technique is used for checking the (CMC); we simply cover the vertical boundary of
AD by small real four–dimensional cubes (i.e. product sets of four small intervals) in C2

and see how they are mapped by πx ◦ f . Thus, below we explain how interval arithmetic
will be applied to check the (NTC).

The problem of checking the (NTC) for a given generalized Hénon map fp,b reduces to
finding the zeros of the derivative d

dx
(p(x) − by0) for each fixed y0 ∈ AR

y . Essentially, this
means that one has to find the zeros for a family of polynomials qy(x) in x parameterized
by y ∈ A ⊂ C. To do this, we first apply Newton’s method to know approximate locations
of its zeros. However, this method can not tell how many zeros we found in the region since
it does not detect the multiplicity of zeros.

In order to count the multiplicity we employ the idea of winding number. That is, we first
fix y ∈ A and write a small circle in the x–plane centered at the approximate location of a
zero (which we had already found by Newton’s method). We map the circle by qy and count
how it rounds around the image of the approximate zero, which gives both the existence
and the number of zeros inside the small circle. Our method to count the winding number
on computer is the following. We may assume that the image of the approximate zero is
the origin of the complex plane. Cover the small circle by many tiny squares and map them
by qy. We then verify the following two points (i) check that the images of the squares have
certain distance from the origin which is much larger than the size of the image squares,
and (ii) count the number of changes of the signs in the real and the imaginary parts of
the sequence of image squares. These data tell how the image squares move one quadrant
to another (note that the transition between the first and the third quadrants and between
the second and the fourth are prohibited by (i)), and if the signs change properly, we are
able to know the winding number of the image of the small circle.

An advantage of this method is that, since the winding number is integer–valued, its
mathematical rigorous justification becomes easier (there is almost no room for round–off
errors to be involved). Another advantage of this winding number method is its stability;
once we check that the image of the circle by qy rounds a point desired number of times for
a fixed parameter y, then this is often true for any nearby parameters. So, by dividing the
parameter set A into small squares and verifying the above points for each squares, we can
rigorously trace the zeros of qy for all y ∈ A.

7. Proof of Main Theorem

Let f = fa,b be the cubic complex Hénon map under consideration as in the Introduction.
We first define four specific Poincaré boxes {Ai}3

i=0 with associated Poincaré cone fields
{CAi

p }p∈Ai
for 0 ≤ i ≤ 3, where A1 and A2 are biholomorphic to a bidisk and π1(Ai) = Z

for i = 0, 3. Let us write A =
⋃3

i=0Ai and ΩA =
⋂

n∈Z fn(A). As was seen in Definition 4.7,
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we can define the new cone field ({C∩
p }p∈A, ‖ · ‖∩) by using {CAi

p }p∈Ai
. See Figure 1 below,

where we described how the boxes are sitting in C2, how they are overlapped and how they
are mapped by f . The shaded regions are the holes of A0 and A3 and their images. Note
that the two Poincaré boxes Ai (i = 1, 2) are figured out in the same place in Figure 1.

A

f (     )

A

A
f

i
f

A

f (     )A

f (     )A

i

Figure 1. Four Poincaré boxes for the cubic Hénon map fa,b.

With a help of rigorous numerics technique described in the previous section we are able
to get the

Proposition 7.1. We have six C++ programs which rigorously verify the following asser-
tions using interval arithmetic:

(i) Jf ⊂ A.
(ii) The cone C∩

p is nonempty for all p ∈ ΩA.
(iii) The following transitions: A0 → A3, A1 → A0, A1 → A1, A1 → A2, A2 → A0,

A2 → A1, A2 → A2, A3 → A0, A3 → A1 and A3 → A2 by f satisfy the (CMC)
and the (NTC).

(iv) There exists an open set B ⊃ A0 ∩ A3 which is biholomorphic to a bidisk so that
f : B → B satisfies the (CMC) of degree one.

Combining this proposition with the Hyperbolicity Criterion and the Gluing Lemma, we
conclude that the cubic Hénon map fa,b under consideration is hyperbolic on its Julia set.
A more argument shows that fa,b is not topologically conjugate to a small perturbation
of any hyperbolic polynomial in one variable, which finishes the proof of Main Theorem.
Q.E.D.

For more details of the proof, consult [I].
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Ann. Sci. École Norm. Sup. 32, no. 4, 455–497 (1999).

[B] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes
in Mathematics, Vol. 470. Springer–Verlag, Berlin–New York (1975).

[D] A. Douady, Descriptions of compact sets in C. Topological Methods in Modern Mathematics (Stony
Brook, NY, 1991), 429–465, Publish or Perish, Houston, TX, (1993).
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Currents of higher bidegree and dynamics

Tien-Cuong Dinh and Nessim Sibony

December 19, 2004

0 Introduction

The present note is a summary of a talk given by the first author at the
Hayama Symposium 2004. Our aim is to explain some ideas on positive
closed currents of higher bidegree which allow us to define the cup product
of such currents and to study the dynamics of a large family of holomor-
phic maps : the horizontal-like maps. The reader will find all details in the
article “Dynamics of horizontal-like maps in higher dimension” available at
arXiv:math.DS/0409272. Here we avoid all technicalities.

It seems that the use of potentials is not adapted for the study of positive
closed currents of higher bidegree in holomorphic dynamics. Our point of
view is to consider the set of such currents as a space of infinite dimension
which is a union of structural discs and admits a rich family of plurisubhar-
monic functions. We use the complex structure of the discs.

We also attract attention on the construction of the equilibrium measure
and on the proof of mixing. We use the map (z, w) 7→ (f(z), f−1(z)) in order
to reduce these non-linear problems to a linear situation. The method seems
to be more efficient than the classical one.

We first introduce the horizontal-like maps and give a list of examples.
The main theorem will be given in Section 2, the ideas for the proof are in
Section 3 and the intersection of currents in Section 4. (the Green measure
associated to a horizontal-like map is equal to the intersection of its Green
currents).

1
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1 Horizontal-like maps

Let M b Cp and N b Ck−p be two open convex sets. Define D := M ×N .
An object (set, form, current) on D is called vertical (resp. horizontal) if
it is supported in a domain M ′ × N (resp. M × N ′) with M ′ b M (resp.
N ′ b N).

Let f be a proper holomorphic map defined on a vertical open set D1 of
D with values in a horizontal open set D2 of D. We assume that f sends the
vertical part of ∂D1 onto the vertical part of ∂D2 and the horizontal part
of ∂D1 onto the horizontal part of ∂D2. We describe now some particular
horizontal-like maps.

Example 1. When p = k we have N = {0}, D 'M , D1 b D and D2 = D.
The map f is called polynomial-like. The case of dimension 1 was considered
by Douady-Hubbard [14]. The restriction of every polynomial of degree ≥ 2
of one variable to a big disc is polynomial-like.

Polynomial-like maps in higher dimension were studied by Dinh-Sibony in
[9, 10, 7]. If f is an endomorphism of Pk−1 of degree ≥ 2, one can lift f to Ck.
The restriction of the lifted map to a big ball is polynomial-like. This case
was considered by Fornæss-Sibony [17, 20], Ueda [23], Briend-Duval [4, 5], ...

Example 2. When p = 1, k = 2 and f is invertible, f is called Hénon-like.
These maps were studied by Dujardin [15] and Dinh-Dujardin-Sibony [8].
The restriction of a Hénon map (x, y) 7→ (y + P (x), x) to a good bidisc is
Hénon-like. Hénon maps were considered in Bedford-Lyubich-Smillie [1, 2]
and Fornæss-Sibony [16].

Example 3. The restriction of some regular (generic) automorphisms of
Ck to a good polydisc is horizontal-like. These maps were introduced and
studied by Sibony [20]. See also [13].

Example 4. If f is a horizontal-like map, one can pertub f to obtain large
families of examples.

Dynamical degree. There exists an integer d, called the dynamical degree
of f , satisfying the following properties.

Let L be a vertical analytic set of the right dimension and of degree 1,
i.e. the projection of L onto N is bijective. Then f−1(L) is a vertical set of

2
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degree d, i.e. the projection of f−1(L) onto N defines a (ramified) covering of
degree d. If L is a vertical analytic set of degree m then f−1(L) is a vertical
analytic set of degree dm.

More generally, if R is a vertical positive closed current of slice mass 1
then f ∗(R) is a vertical positive closed current of slice mass d. The slice mass
of R is the mass of the slice Rb of R by the subspace M ×{b}, b ∈ N generic.
The slice Rb is a positive measure whose mass is independent of b.

If L′ is a horizontal analytic set of the right dimension and of degree m
then f(L′) is a horizontal analytic set of degree dm. If S is a horizontal
positive closed current of slice mass 1 then f∗(S) is a horizontal positive
closed current of slice mass d.

For Hénon maps (x, y) 7→ (y + P (x), x), we have d = degP .

Julia sets. Define the filled Julia sets of f as

K+ :=
⋂
n≥0

f−n(D), K− :=
⋂
n≥0

fn(D) and K := K+ ∩K−.

A point z belongs to K± (resp. K) iff f±n(z) is defined for every n ≥ 0 (resp.
for every n). We can study the dynamics of f on K and K±.

Problem. Construct and study the Green currents T± and the equilibrium
measure µ of f , i.e., in some sense, the dynamically interesting invariant
currents and invariant measure associated to f . This is a central question in
dynamics.

2 Main Theorem

Assume that f is invertible (some results below hold for non-invertible maps).

Main Theorem. Let R (resp. S) be a smooth vertical (resp. horizontal)
positive closed current of slice mass 1 on D. Then

a) d−n(fn)∗R converges to a vertical positive closed current T+ of slice
mass 1 which is independent of R and is supported in ∂K+.

b) d−n(fn)∗S converges to a horizontal positive closed current T− of slice
mass 1 which is independent of S and is supported in ∂K−.

3
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c) d−2n(fn)∗R ∧ (fn)∗S converges to a probability measure µ which is
independent of R,S and is supported in ∂K.

d) f ∗T+ = dT+, f∗T
− = dT− and f ∗µ = f∗µ = µ.

e) µ has maximal entropy log d and is mixing. We also have µ = T+∧T−.

Remarks. The assertions a) and b) are still valid for forms R, S with weaker
regularity (continuous, bounded, with bounded potentials ...). The positivity
of R and S is not necessary. Indeed, if R is smooth, we can write R = R1−R2

with Ri positive closed. When R and S are continuous forms, the hypothesis
that R, S are closed are not necessary, but the limit currents T± are always
closed. We have some uniform convergence on R, S and analogous results
for random iterations.

Maximal entropy. In some sense, the property that µ has maximal entropy
means that the main part of the dynamics is on the support of µ. The proof of
this property uses classical arguments of Gromov [19], Yomdin [24], Bedford-
Smillie [2]. See also [9, 11, 12].

Mixing. The measure µ is mixing iff µ(f−nB∩A) → µ(A)µ(B) as n→∞ for
every measurable sets A, B. That is, the properties “x ∈ A” and “fn(x) ∈ B”
are asymptotically independent.

The mixing is a non-linear property. Our idea is to use the dynamics of
the maps F (z, w) := (f(z), f−1(w)) and (u, v) 7→ (F (u), F−1(v)) in order to
reduce the problem to a linear situation.

Product of currents. The measure T+ ∧ T− has to be defined.

3 Ideas of the proof

d) It is clear. For example, we have

f ∗T+ = lim f ∗
(
d−n(fn)∗R

)
= d lim d−n−1(fn+1)∗R = dT+.

c) Let ϕ be a test function. Let ∆ be the diagonal of D ×D. Since ∆ ' D,
one can lift all integrals on the first factor of D × D to an integral on ∆.

4
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Define ϕ̂(z, w) := ϕ(z). When R and S are smooth we have

〈R ∧ S, ϕ〉D = 〈Rz ⊗ Sw, ϕ̂[∆]〉D×D.

Consider the horizontal-like map on D ×D of degree d2 defined by

F (z, w) := (f(z), f−1(w)).

We then have

〈(fn)∗R ∧ (fn)∗S, ϕ〉 = 〈(F n)∗(Rz ⊗ Sw), ϕ̂[∆]〉 =: 〈(F n)∗R̂, Φ̂〉.

So we can deduce the convergence of d−2n(fn)∗R∧(fn)∗S (a non-linear prob-

lem) from the convergence of d−2n(F n)∗R̂ (a linear problem). We can apply

the assertion a) for F (even if the “test form” Φ̂ is singular).

a) Let

C := {vertical positive closed currents of slice mass 1}.

We use this space of infinite dimension in order to prove the convergence
in a). The operator 1

d
f ∗ acts on C and defines a dynamical system on C;

the Green current T+ will be a fixed point. We consider C as a set with a
privileged structure. We construct structural discs in C and plurisubharmonic
functions on C. These points of view correspond to the ones of Kobayashi
(for structural discs) and of Oka-Lelong (for the psh functions) in the case
of manifolds of finite dimension.

Structural discs. Let ∆ ⊂ C be a holomorphic disc. We define “structural
maps” τ from ∆ into C as follows. Let R be a positive closed current of the
right bidegree in ∆×D. Let Tθ be the slice of R by {θ} ×D for θ generic.
We assume that these currents are vertical and of slice mass 1. Hence we
have a map

τ : ∆ → C, θ 7→ Tθ

which is defined almost everywhere. This is a structural map in our sense.
They play the role of holomorphic maps.

Plurisubharmonic functions. Let Φ be a horizontal real test form of the
right bidegree. Define

ΛΦ : C → R, T 7→ 〈T,Φ〉.

5
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When ddcΦ ≥ 0, ΛΦ is a psh function in our sense : it is subharmonic on
structural discs, i.e. subharmonic in the usual sense after composition by τ .
The psh functions ΛΦ separate points of C. Indeed, every smooth Φ′ can be
written as a difference Φ1 − Φ2 of forms with ddcΦi positive.

We summarise our construction by the following diagram :

∆
τ // C

1
d
f∗

XX
ΛΦ // R

Of course, the function ΛΦ ◦ τ is subharmonic on ∆.

Main Proposition. Let T be a current in C. Let 0 < θ0 < 1, close enough
to 1 and let ∆ be a small simply connected neighbourhood of [0, θ0] in C.
Then there exists a structural disc (Tθ)θ∈∆ of currents such that

a) Tθ0 = T .

b) T0 is independent of T .

c) Tθ is smooth for θ 6= θ0. Moreover, the family (Tθ) is locally equicon-
tinuous on ∆ \ {θ0}.

d) If T is a continuous form, (Tθ) is locally equicontinuous on ∆.

The proof of the proposition uses some “convolution on currents” and
Skoda’s extension theorem of currents [22].

Remarks. When T varies, one obtains a family of structural discs in C
passing through the same point T0. The equicontinuity in c) and d) is uniform
on T . We can prove that C is “Brody hyperbolic”. This property might be
useful to study the dynamics on C.

End of the proof of a). We want to prove the convergence of d−n(fn)∗R
for R smooth. Fix a horizontal real test form Φ with ddcΦ ≥ 0. We need to
prove that 〈d−n(fn)∗R,Φ〉 converges.

6
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Let (mn) be an increasing sequence and Rmn ⊂ C such that

〈d−mn(fmn)∗Rmn ,Φ〉 → cΦ.

We choose mn and Rmn so that cΦ is the maximal value that we can obtain
in this way. Replacing Rmn by Rn := d−mn+n(fmn−n)∗Rmn , we may assume
that mn = n.

We have
〈d−n(fn)∗Rn,Φ〉 = 〈Rn, d

−n(fn)∗Φ〉.
We construct the structural disc (Rn,θ) as in the Main Proposition with
Rn,θ0 = Rn and T := Rn,0 independent of Rn. Define the subharmonic
functions ϕn on ∆ by

ϕn(θ) := 〈Rn,θ, d
−n(fn)∗Φ〉.

The sequence ϕn(θ0) converge to the maximal value cΦ. Hence, by the
maximum principle and the properties of subharmonic functions,

ϕn → cΦ in L1
loc.

The equicontinuity of (Rn,θ) at 0 implies that

ϕn(0) → cΦ.

Hence since Rn,0 = T is independent of n we get

〈T, d−n(fn)∗Φ〉 → cΦ.

Now consider R smooth as in the Main Theorem and construct (Rθ) as
in the Main Proposition with Rθ0 = R and R0 = T . Define subharmonic
functions

ψn(θ) := 〈Rθ, d
−n(fn)∗Φ〉.

We have
ψn(0) = 〈T, d−n(fn)∗Φ〉 → cΦ the maximal value.

Then
ψn → cΦ in L1

loc.

Since R is smooth, (Rθ) is equicontinuous at θ0. We deduce that

ψn(θ0) → cΦ.

Finally, since Rθ0 = R, we get

〈d−n(fn)∗R,Φ〉 = 〈R, d−n(fn)∗Φ〉 → cΦ.

7
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4 Intersection of currents

Let R be a vertical positive closed current and let S be a horizontal positive
closed current on D of the right bidegrees. Let ϕ be a psh function on D.
Define

〈R ∧ S, ϕ〉 := lim sup〈R′ ∧ S ′, ϕ〉

whereR′ is a smooth vertical positive closed current withR′ → R, supp(R′) →
supp(R) and S ′ is a smooth horizontal positive closed current with S ′ → S,
supp(S ′) → supp(S).

If ϕ′ is a smooth function, we write ϕ′ = ϕ1 − ϕ2 with ϕi psh and define

〈R ∧ S, ϕ′〉 := 〈R ∧ S, ϕ1〉 − 〈R ∧ S, ϕ2〉.

The following proposition shows that R ∧ S is well defined.

Proposition. The previous ’limsup’ depends linearly on R, S and ϕ.

The proof uses structural discs of currents.

Some properties. R ∧ S is a positive measure. The definition does not
depend on coordinates. We can construct explicitely Rn and Sn smooth such
that Rn ∧ S → R ∧ S, R ∧ Sn → R ∧ S and Rn ∧ Sn → R ∧ S. When
supp(R)∩ supp(S) is small enough, all Rn and Sn satisfy this property. The
intersection of smooth forms coincides with the usual product. When R
or S has bidegree (1, 1), the wedge product was defined for various classes
of currents, see Bedford-Taylor [3], Sibony [21], Demailly [6] and Fornæss-
Sibony [18].
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Effective Bounds on Holomorphic Maps to Complex Hyperbolic Manifolds

Jun-Muk Hwang

KIAS, Seoul, Korea

1 Introduction

Let X be a compact Riemann surface of genus g ≥ 0 and let M = Bn/Γ be a compact complex
hyperbolic manifold. Denote by Hol(X, M) the set of all non-constant holomorphic maps from
X to M . In [Su], Sunada proved that Hol(X, M) is finite.

This result of Sunada was generalized to the non-compact situation by Noguchi [No] in the
following form. Let X̄ be a compact Riemann surface of genus g ≥ 0 and let

X = X̄ − {P1, . . . , Pm}

be an m-punctured Riemann surface. Let M = Bn/Γ be a complex hyperbolic manifold of
finite volume. Here the volume of M is measured with respect to the Bergmann metric of Ricci
curvature −1. Then the set Hol(X, M) of non-constant holomorphic maps from X to M is finite.

The results of [No] and [Su] did not give any information about the cardinality of Hol(X,M).
A priori, the number may depends on the moduli of X or properties of M other than the volume.
In a joint-work with Wing-Keung To [HT], we have given an effective version of this result of
Noguchi as follows.

Theorem 1. Let X be an m-punctured Riemann surface of genus g. Set ω := 2g − 2 + m.
Let M be a complex hyperbolic manifold of dimension n with finite volume v. Then the number
of non-constant holomorphic maps from X to M is bounded by

qω
Aω∑

d=1

29ωd∑

j=1

(
(2n + 3) max(j, B)

2n + 3

)(2n+4)(j2+j)

where

q :=
(

v(5n + 4)n

22n−2πn

)9

A = 4 +
1
4
(n2 + 3n + 4)(n + 1)

B = 32πωv(n2 + 3n + 4)nn!

(
29ω(n + 1)

8π

)n+1

.

Note that if ω ≤ 0, Hol(X, M) is empty. Thus we may assume that ω > 0. In this case, X is
a hyperbolic Riemann surface and it is well-known that ω is exactly the hyperbolic volume, up
to a normalizing constant. Thus Theorem 1 has the following consequence.

Corollary #Hol(X, M) is bounded by a number depending only on the dimensions and the
hyperbolic volumes of X and M .
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The strategy of proof of Theorem 1 is to bound the number of components of Hol(X, M) by
using effective results in algebraic geometry, related to Fujita conjecture and effective Nullstel-
lensatz. Then by Noguchi’s result, this gives a bound on the cardinality of Hol(X,M). We will
give a sketch of the proof in the following sections. Using the same method, it is not difficult to
generalize Theorem 1 to higher dimension in the following form.

Theorem 2 Let
X = Bn1/Γ1 and M = Bn2/Γ2

be two complex hyperbolic manifolds of finite volume. Then the number of non-constant holo-
morphic maps from X to M is bounded by a number depending only on the dimensions and the
hyperbolic volumes of X and M .

2 Proof of Compact Case

To illustrate the method of proof of Theorem 1, let us first discuss the case when X and M are
compact. In this case, the proof is rather straight forward and consists of the following three
ingredients.

• Bound on degrees (KM )n and f(X) ·KM .

• Effective projective embedding of M .

• Bound on Chow variety of X ×M .

Let us examine them one by one.

To start with, we have the obvious relation between the volume and the canonical degree of
M :

v =
(4π)n

n!(n + 1)n
(KM )n.

Also for f : X → M , Schwarz lemma gives

f(X) ·KM ≤ n + 1
2

(2g − 2).

These two relations can be viewed as bounds on (KM )n and f(X) ·KM in terms of volumes of
X and M .

Next, recall the following result of [AS].

Theorem 3 Let Y be an n-dimensional projective manifold with a positive line bundle L.
Then sections of

KY +
n2 + 3n + 2

2
L

separate any two points of Y .

Applying this to Y = M and L = KM , we see that sections of n2+3n+4
2 KM inject M into a

projective space. The image is a projective subvariety of degree (n2+3n+4)n

2n (KM )n.

Finally let Y ⊂ PN be a projective subvariety of degree δ. Denote by Chowd(Y ) the Chow
variety of curves of degree d on Y . In the 1990’s there appeared several results based on effective
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Nullstellensatz, which give an effective bound on the number of components of Chowd(Y ). For
example, the result of [Gu] says that it is bounded by

(
(2 dim Y + 2) max{d, δ}

2 dimY + 1

)(2 dim Y +2)(d2+1)

.

Using these three ingredients, we can bound #Hol(X,M) as follows. Note that a component
of Hol(X,Y ) corresponds to a component of the Chow variety of X ×M . In fact, if the graph
of f : X → M is in a component of the Chow variety of X ×M , then a general member of the
component is also the graph of a map f : X → M . Thus to bound #Hol(X,M), we may use a
bound on the number of the components of Chowd(X ×M) where d is a bound on the degree of
the graphs of Hol(X, M) under a specific imbedding of X ×M . We can effectively inject X ×M
into a projective space with a bound in terms of g and v. The graphs of Hol(X, M) are curves
of degree bounded by the bound on the degree of the image. Thus the number of components of
Hol(X, M) can be bounded by the bound on Chow variety.

3 Proof of non-compact case

To generalize the proof of the compact case to the non-compact case, we use natural compacti-
fications of the complex hyperbolic manifold M of finite volume. First, by [BB] and [SY], there
exists a compactification M , to be denoted by M̄ , such that

M̄ \M = finitely many cusps.

Moreover, there exists a positive line bundle KM̄ on M̄ . By [Mu] and [To], there exists a resolution
of singularity ϕ : M̂ → M̄ such that

M̂ \M = smooth hypersurfaces

and the hyperbolic metric on M has good behavior near the boundary of M in M̂ .
We can extend f : X → M to f̄ : X̄ → M̄. We may assume f̄ sends punctures to cusps. The

existence of the resolution ϕ : M̂ → M implies that the volume formula

v =
(4π)n

n!(n + 1)n
(KM̄ )n

holds as in the compact case and for f̄ : X̄ → M̄ ,

f̄(X̄) ·KM̄ ≤ n + 1
2

ω

holds which generalizes the inequality on f(X) ·KM in the compact case.

Next, Theorem 3 was generalized in [Ko] to non-compact case as follows.

Theorem 4 Let Y be an n-dimensional projective manifold, Y o ⊂ Y be an open subset and
L be a nef and big line bundle which is positive on curves intersecting Y o. Then sections of

KY +
n2 + 3n + 2

2
L

3
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separate any two points of Y o.

Applying this to Y = M̂, Y o = M and L = ϕ∗KM̄ under the resolution ϕ : M̂ → M̄, we see
that sections of

n2 + 3n + 4
2

KM̄

inject M into a projective space. However, this is not enough for our purpose. We need to inject
M̄ . For this, we need to separate cusps. An essential new ingredient is the following simple
observation.

Key Lemma Sections of 2KM̄ separate any two cusp points in M̄ \M .

The idea of the proof of Key Lemma can be explained as follows. To separate points, we
need to construct a multiplier ideal supported at isolated points. Since cusps are isolated singular
points which are sufficiently bad singular points, we automatically get a multiplier ideal supported
at cusps.

As a consequence of Key Lemma and Theorem 4, we see that sections of n2+3n+4
2 KM̄ inject

M̄ into a projective space. The image is a projective subvariety of degree (n2+3n+4)n

2n (KM̄ )n.

Now there is one difference from the compact case when we apply the bound on Chow vari-
eties: a component of Hol(X, M) is not necessarily a component of Hol(X̄, M̄). Thus it may not
correspond to a component of the Chow variety of X̄ × M̄ . However, a component of Hol(X,M)
is a component of the space

Hol((X̄, punctures), (M̄, cusps))

of holomorphic maps sending punctures of X to cusps of M̄ . Thus we need to consider the Chow
variety of curves passing through these marked points on X̄ × M̄ . An effective bound on such
Chow variety can be derived from the bound on the usual Chow variety. Thus as in the compact
case, we can get a bound on the number of components of Hol(X, M). However, because of the
marking, the final bound depends on the number of cusps of M̄ , not just v.

To finish the proof we need to bound the number of cusps of M̄ in terms of v. A result of this
type was already proved by geometric topologists. For example, [Pa] showed

n(6π)2n2−3n+1

2n−1
v ≥ ](cusps).

Actually, using Key Lemma, [Hw] gave a better bound:

(5n + 4)n

22n−1πn
v ≥ ](cusps).

The proof uses Key Lemma and the formula of Mumford [Mu] for the dimensions of the space of
cups forms.
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AUTOMORPHISMS OF HYPERKÄHLER MANIFOLDS

KEIJI OGUISO

1. In [Mc], McMullen has found a very interesting K3 automorphism, namely,
an automorphism having a Siegel disk. One of remarkable properties of such a
K3 automorphism is that it is of positive entropy but has no dense orbit in the
Euclidean topology. My surprise is that the target K3 surface is necessarily of
algebraic dimension 0 (though it admits an automorphism of infinite order) and,
contrary to the projective case, the character of some automorphism on the space
of the two forms is not a root of unity. One can also make a simply-connected 4-
dimensional counterexample of Kodaira’s problem about algebraic approximation
of compact Kähler manifolds from his K3 surface [Og2], as a supplement of a work
of Voisin [Vo].

2. At the conference, I have presented my work about the bimeromorphic auto-
morphism group of a non-projective hyperkähler manifold (Theorems (0.1), (0.2)
below) with outline of the proof. This work is motivated by a natural question:
how complicated is the full automorphism group of a McMullen’s K3 surface?

3. A hyperkähler manifold (a HK mfd, for short) is a compact complex simply-
connected Kähler manifoldM admitting an everywhere non-degenerate global holo-
morphic 2-form ωM such that H0(M,Ω2

M ) = CωM . Contrary to the Calabi-Yau
cases, projective HK mfds form a countable union of hypersurfaces in the Kuran-
ishi space (of a given HK mfd). We denote by Bir (M) the group of bimeromorphic
automorphisms of M . Recall that H2(M,Z) admits a natural Z-valued symmetric
bilinear form called BF-form or Bogomolov-Beauville-Fujiki’s form, which some-
times allows one to study HK mfds as if they were K3 surfaces (= 2-dimensional
HK mfds). (For BF-form, see [Be], and also an excellent survey [Hu, Section 1]).

4. The BF-form is of signature (3, 0, b2(M) − 3) (where the three-dimensional
positive part corresponds to the Kähler class and the real and imaginary parts
of the holomorphic 2-form) and the restriction of BF-from on the Néron-Severi
group NS(M) is of signature (1, 0, ρ(M)−1), (0, 1, ρ(M)−1) or (0, 0, ρ(M)). Here
ρ(M) := rankNS(M) is the Picard number of M . We call NS(M) hyperbolic,
parabolic, elliptic according to these three cases. By a very deep result of Huybrechts
[Hu], M is projective iff NS(M) is hyperbolic (just for K3 surfaces). See also below
(9.) for a relevant conjecture. We also note that the Hodge decomposition of
H2(M,Z) and the BF-form are stable under Bir (M), and that the kernel of the
natural representation Bir (M) −→ O (H2(M,Z)) is finite ([Hu, Sections 1 and 10]).

5. The next theorem has been proved in [Og2, 3] (Precisely speaking, these
papers treated only biholomorphic automorphisms, but will be soon replaced by
new versions including bimeromorphic automrphisms, for which the main part of
the proof is essentially the same.):

Theorem 0.1. Let M be a HK mfd. Let ρ(M) be the Picard number of M . Then:
(1) If M is not projective, then Bir (M) is almost abelian of finite rank. More

precisely, if the Néron-Severi group NS(M) is elliptic (resp. parabolic), then
1
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2 K. OGUISO

Bir (M) is almost abelian of rank at most one (resp. at most ρ(M)−1). Moreover,
in the first case, it is of rank one iff Bir (M) has an element of positive entropy
at H2-level. In the second case, Bir (M) is always of null-entropy at H2-level. In
particular, the automorphism group of a McMullen’s K3 surface (whose NS(M)
is necessarly elliptic) is isomorphic to Z up to finite group.

(2) Let G < Bir (M). Assume that M is projective, and that every element of G is
of null-entropy at H2-level. Then G is almost abelian of rank at most ρ(M)− 2.

(3) The estimates in (1) and (2) are optimal for K3 surfaces.

Here, a group G is called almost abelian of finite rank r if there are a normal
subgroup G(0) of G of finite index, a finite group K and a non-negative integer r
which fit in the exact sequence 1 −→ K −→ G(0) −→ Zr −→ 0. The rank r is
well-defined.

We also say an element g ∈ Bir (M) is of positive (resp. null) entropy at H2-level
if the natural logarithm of the spectral radius of g∗|H2(M,C) is greater than (resp.
equal to) 0.

6. Due to the works of Yomdin, Gromov and Friedland ([Yo], [Gr], [Fr]), the
topological entropy e(g) of a biholomorphic automorphism g ∈ Aut (M) of a compact
Kähler manifold M can be defined by e(g) := log δ(g). Here δ(g) is the spectral
radius, i.e. the maximum of the absolute values of eigenvalues, of g∗|H∗(M). One
has e(g) ≥ 0, and e(g) = 0 iff the eigenvalues of g∗ are on the unit circle S1. A
subgroup G of Aut (M) is said to be of null-entropy (resp. of positive-entropy) if
e(g) = 0 for ∀g ∈ G (resp. e(g) > 0 for ∃g ∈ G). By [DS], g ∈ Aut (M) is of
positive (resp. null) entropy iff so is at H2-level.

7. For a K3 surface X, we have Aut (X) = Bir (X) and the topological entropy
of an automorphism g coincides with the entropy of H2-level. By using Theorem
(0.1), we have the following algebro-geometric characterization of the topological
entropy of a K3 automorphism ([Og2, 3]):

Theorem 0.2. Let X be a K3 surface, G < Aut (X), and g ∈ Aut (X). Then:
(1) G is of null-entropy iff either G is finite or G makes an elliptic fibration on X,

say ϕ : X −→ P1, stable.
(2) g is of positive entropy iff g has a Zariski dense orbit.

This result is also inspired by the following question of McMullen [Mc]:

Question 0.3. Does a K3 automorphism g have a dense orbit (in the Euclidean
topology) when a K3 surface is projective and g is of positive entropy?

Note that McMullen’s automorphism has a Zariski dense orbit but no dense orbit
in the Euclidean topology.

8. During the conference, Professor Yutaka Ishii asked me an example of a
rational surface with an automorphism of positive entropy. Here is one answer
using Theorem (0.2):

Proposition 0.4. Let E and F be elliptic curves which are not isogenous and
X := Km(E × F ) be the associated Kummer surface. Let ι be the automorphism
of X induced by the automorphism (z, w) �→ (−z, w) of E × F . Then Y := X/〈ι〉
is a smooth rational surface (of ρ(Y ) = 18) and Aut (Y ) is of positive entropy.

Sketch of Proof. Our involution ι satisfies that ι∗ = −1 on H0(Ω2
X) and Xι 	= ∅.

Thus, the surface Y is rational and non-singular. It is known that ι∗|NS(X) = id
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and ι is a center of Aut (X) (see for instance [Og1]). So, one has a natural embedding
Aut(X)/〈ι〉 ⊂ Aut(Y ) being compatible with natural identification H2(Y,Q) =
NS(Y )Q = NS(X)Q. This together with the fact that Aut(X) is of positive
entropy at NS(X)-level implies the result. Here the last fact follows from Theorem
(0.2) and the fact that X is projective and admits at least two different elliptic
fibrations of Mordell-Weil rank > 0 ([Og1]). Q.E.D.

9. Let us return back to Theorem (0.1). In the statement (1), the first (resp.
second) case exactly corresponds to the case a(M) = 0, a(M) = 1(= dimM/2)
when M is a K3 surface. Here a(∗) is the algebraic dimension of ∗. From this and
a work of Matsushita [Ma] about fiber space structures on a projective HK mfd
(which says, among other things, that the dimension of the base space, when it is
projective, is either 0, dimM/2 or dimM), it may be natural to pose the following:

Conjecture 0.5. a(M) ∈ {0, dimM/2, dimM} for a HK mfd M .

At the moment (February 7 2005), what I can say towards this conjecture is that
a(M) ≤ dimM/2 if a(M) 	= dimM .
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SPECTRAL THEORY FOR THE LAPLACE OPERATOR
ON HIRZEBRUCH SURFACES

CHRISTOPHE MOUROUGANE

1. INTRODUCTION

Let (X, ω) be a compact Kähler manifold and (E, h)→ X a Hermitian holomorphic vector bundle
on X . Denote by 〈〈 , 〉〉L2 the hermitian inner product on the spaces Ap,q(X, E) of forms on X with
values in E built thanks to ω and h. The Dolbeault operator ∂q : A0,q(X, E) → A0,q+1(X, E)

then has an adjoint operator ∂q
?

: A0,q+1(X, E) → A0,q(X, E). The associated Laplace operator is
defined to be ∆′′

q = ∂
?

q∂q + ∂q−1∂
?

q−1. It has a discrete spectrum

0 = 0 = · · · = 0 < λ1,q ≤ λ2,q ≤ · · · ≤ λN,q ≤ · · ·

each eigenvalue is of finite multiplicity and they tend to +∞.
Note that for positive λ the Dirac operator ∂ + ∂

?
: E+

λ (∆′′) → E−
λ (∆′′) is an isomorphism but

not an isometry : it is of norm λ. When trying to construct a direct image operation in the category of
hermitian vector bundles it is therefore more natural to consider the following hermitian inner product

〈〈 , 〉〉Quillen = 〈〈 , 〉〉L2e−τ

where e−τ = e−τ(X,ω,E,h) has the properties of ”
∏

λ∈spec∆′′
q

λ”.

The correct definition of τ requires the so-called ζ-regularization process. Define the spectral

function ζq(s) :=
+∞∑
N=1

λ−s
N,q. From the study of the short time asymptotic expansion of the heat kernel

of the Laplace operator, one can infer that the spectral function extends to a meromorphic function on
C, holomorphic at 0. As expected from a formal differentiation of the spectral function, set

det′∆′′
q := exp

(
−dζq

ds s=0

)
.

Ray and Singer defined the analytic torsion τ(X, ω, E, h) of (X, ω, E, h) by

exp(−τ) :=
∏
q≥0

(det′∆′′
q)

(−1)qq.

There are three main strategies to compute τ .

• Compute the spectrum of ∆′′
q . This can be done for example when the manifold X is homo-

geneous.
1
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• Use Bismut formula for the curvature of the Quillen metric (Index formula for families).
Given a hermitian holomorphic fiber bundle on the total space of fibration

(E, h) → (X , gπ)
↓π
Z

the first Chern form of (determinant of) the direct image of E endowed with the Quillen metric
is

Ch(Rπ?E, Quillen)[2] = π?(Ch(E, h)Td(Tπ, gπ))[2].

Quillen metric hence realizes the degree two Grothendieck-Riemann-Roch formula at the
level of forms. This may be used to compute the variation of the analytic torsion when the
data (X, ω, E, h) sweeps some moduli.
• Use the arithmetic Riemann Roch formula. For this, an integral model of the pair (X, E) is

required.

2. THE ARITHMETIC RIEMANN ROCH FORMULA

Let χ be a scheme over SpecZ. An arithmetic scheme X is χ together with a Hermitian metric on
X := χC(C) playing the role of the integral structure in non-archimedean places. Accordingly, E is a
locally free sheaf E of Oχ-modules together with a Hermitian metric h on E := EC(C).

There is an arithmetic intersection theory which
• which turns the height theory into a degree theory.
• which overlaps the algebraic theory and the Chern-Weil theory. Just note that there is a map

ω : ĈH
p
(X ) → Ap,p(X)

[(Z, gZ)] 7→ δZ + ddcgZ

ĉ1(L) = [(s = 0),− log ||s||2] 7→ c1(L, h)

which provides us with the Chern forms out of the arithmetic Chern classes. Here gZ is a
Green current for the analytic cycle Z := ZC(C) and δZ the current of integration along Z.
• which accounts for lifting to original integral and hermitian structures, and which therfore has

to take care of secondary objects. Green currents, analytic torsion are secondary objects. We
describe the third kind of secondary objects.

For any short exact sequence (Σ) = (0 → S → E → Q → 0), and any choice of
metrics h = (hE, hS, hQ), the Bott-Chern machinery is a functorial way to choose a form
c̃(Σ, h) ∈ Ãd,d(X) := Ad,d(X,C)

Imd′+Imd′′ which fulfills

ĉ(S ⊕Q, hS ⊥ hQ)− ĉ(E , hE) = a(c̃(Σ, h))

where a : Ãd,d(X)→ ĈH
p
(X ) maps u to (0, u).

• where there is a Riemann Roch theorem

Ĉh(Rπ?E , Quillen)[2] = Ĉh(Rπ?E , L2)[2] + a(τ(Xz, gπ, L, h))

= π?(Ĉh(E , h)T̂ d
R
(Tπ, gπ))[2]

2
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3. ON HIRZEBRUCH SURFACES

The scheme of rank one quotients of the vector bundle En := OP1
Z
⊕OP1

Z
(n) on P1

Z

Sn = P(En)
π→ P1

Z
f→ Spec Z

is an integral model of the Hirzebruch surface Sn. From the choice of a Fubini-Study metric ωP1
C

on P1
C, we get a natural metric on En and on OEn(1) of semi-positive curvature αn. We choose

αn + π?ωP1
C

as a metric on Sn.
Main theorem The analytic torsion of the Hirzebruch surface Sn is

τ(Sn,OSn) = log V ol(Sn) +
n log(n + 1)

24
− n

6
+ 2τ(P1).

4. THE SKETCH OF PROOF

We compute the arithmetic first Chern class of the determinant line bundle

detR0F?Ω
p
Sn
⊗ (detR1F?Ω

p
Sn

)−1 ⊗ detR2F?Ω
p
Sn

of the direct image RF?Ω
p
Sn

.
• with the definition

ĉ1(RF?Ω
p
Sn

, Quillen)

= a
[ 2∑

q=0

(−1)q+1 log

(
V olL2

Hq(Sn, Ω
p
Sn

)

Hq(Sn, Ω
p
Sn

)Z

)2

+ τ(Sn, Ω
p
Sn

)
]
.

• using the arithmetic Riemann Roch theorem

ĉ1(RF?Ω
p
Sn

, Quillen) = F̂?

(
T̂ d

R
(TSn)ĉh(Ωp

Sn
)
)

= F̂?

(
T̂ d(TSn)ĉh(Ωp

Sn
)
)

−a (F? (Td(TSn)R(TSn)ch(OSn))) .

4.1. With the definition. We use the Hodge metric on Hq(Sn, Ω
p
Sn

). We therefore have to find
representatives of cohomology classes harmonic with respect to αn + π?ωP1

C
.

H•(Sn,OSn)Z = H0(Sn,OSn)Z = Z{1}
H1(Sn, Ω

1
Sn

)Z = Z{π?ωP1
C
}+ Z{αn}

H2(Sn, Ω
2
Sn

)Z = Z{π?ωP1
C
} ∪ {αn} = Z

{αn}2

n
.

The only difficult case is for the class {π?ωP1
C
} : the form

ωH := π?ωP1
C
− 1

n + 2
ddc log

〈Θ(E?, h)a?, a?〉h
π?ωP1

C
〈a?, a?〉h

is harmonic.
3
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4.2. Using the arithmetic Riemann Roch theorem. The sequence given by the differential of the
fibration map π

0→ TSn/P1
Z

ι→ TSn
dπ→ π?TP1

Z → 0

and the relative Euler sequence

0→ OP(En) → π?E?
n ⊗OEn(1)

q→ TSn/P1
Z
→ 0.

enables to compute ĉ(TSn) after having computed the corresponding Bott-Chern classes.
We roughly explain how a careful look at the Chern-Weil theory enables to compute the Bott-Chern

classes.
For 0 → S

ι→ E
p→ Q → O endowed with metrics constructed from a metric h on E. Denote by

∇ the Chern connection of (E, h). Consider the family of connections on E

∇u := ∇+ (u− 1)PQ∇PS

where PS = ιι? (resp. PQ = p?p) denotes the orthogonal projection of E onto ι(S) (resp. ι(S)⊥).
The idea is to transfer the space differentiations d′ and d′′ into d

du
-differentiations in order to find

d′d′′-potentials. In a frame adapted to the C∞ splitting E ' S ⊕ Q given by ι? ⊕ p, the curvature of
the connection ∇u is

Θ(∇u) =

∣∣∣∣∣∣∣∣∣∣
(1− u)ΘS + uι?ΘEι ι?ΘEp?

upΘEι (1− u)ΘQ + upΘEp?

∣∣∣∣∣∣∣∣∣∣
Consider the polarization Detk of detk, that is the symmetric k-linear form on Mr(C) whose restric-
tion on the small diagonal is detk. Denote by Detk(A; B) = kDetk(A, A, · · · , A,B). The differential
version of the Gl(r, C)-invariance of detk shows that

− i

2π
d′d′′Detk(Θ(∇u); PS) = u

d

du
detk(Θ(∇u)).

where Detk(Θ(∇u); PS) = coeffλdetk(Θ(∇u) + λPS). This is the key fact for writing the wanted
double transgression.

5. VARYING THE KÄHLER METRIC

We in fact can rule the computations with different metrics sweeping the whole Kähler cone of the
Hirzebruch surfaces. For positive T , choose αn + T 2π?ωP1

C
as a metric on Sn. Then,

Theorem

τ(Sn, αn + T 2π?ωP1
C
)

= τ(P1
C, T 2ωP1

C
) + τ(P1

C, ωP1
C
)− n

6
+ log

n + 2T 2

2T 2
+

n

24
log

n + T 2

T 2

T 2 − 1

3
(
T 2

n
log

n + T 2

T 2
− 1 +

13

8
log

n + T 2

T 2
).
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5.1. The singular limit. For T = 0, αn comes from

Sn → P(H0(Sn,OEn(1)))

which contract the −n-curve. The image is a cone over a rational normal curve. The expansion of
τ(Sn, αn + ε2π?ωP1

C
) is

τ = −n + 3

12
log ε + O(1).

For the singular cone with its metric having conical singularities, Cheeger showed that the function
ζq(s) has a simple pole at 0. Its residue can be computed from the coefficient of (log ε)2 in the
expansion of dζ

ds s=0
(s, ε). For there is no (log ε)2-terms, the analytic torsion of the singular cone can

be defined by the usual formula. This reproves a result of Yoshikawa.

5.2. The adiabatic limit. As T tends to +∞ the fibration behaves like a trivial fibration with small
fibers. Accordingly, the asymptotic for T → +∞ is

τ(Sn, α
T
n ) ∼ τ(P1

C, TωP1
C
).

For T → +∞, the harmonic representative

ωH := π?ωP1
C
− 1

n + 2T 2
ddc log

〈Θ(E?
n(T 2), h)a?, a?〉

π?ωP1
C
〈a?, a?〉

tends to π?ωP1
C
. This confirms Mazzeo-Melrose theory. Set x = T−1. The spaces of harmonic forms

fits into the Hodge-Leray cohomology fiber bundle

HHodge−Leray ← Harm(Sn, αn + x−2π?ωP1
C
)

↓ ↓
[0, +∞[ 3 x

andHHodge−Leray has a basis which extends to be smooth on [0, +∞[.
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Monge-Ampère Currents and Masses

Dan Popovici

Abstract. This is the text of a talk given at the Hayama Symposium on Several
Complex Variables in December 2004. A compact complex manifold is Moishezon
if and only if there exists a big line bundle over it. A new characterization of big
line bundles, and implicitly of Moishezon manifolds, is conjectured in terms of
the existence of a possibly singular Hermitian metric satisfying a relatively weak
positivity condition, which would generalize previous characterizations of Siu and
Demailly sprung from the solution to the Grauert-Riemenschneider conjecture.
The key issue is to obtain a regularization of currents with an effective control of
the Monge-Ampère masses of the regularizing currents. Our main goal here is to
present a generalization of the Ohsawa-Takegoshi L2 extension theorem for jets
of holomorphic sections of a Hermitian line bundle, which has an interest of its
own, as a first step in this direction. Multiplier ideal sheaves are also discussed.
We have forgone the proofs of the results presented here, contenting ourselves with
indicating the references where they can be found.

0.1 Introduction

The object of our study in this note is a class of compact complex mani-
folds which can be seen as a birational version of projective manifolds, the
so-called Moishezon manifolds.

The Context

Let X be a compact complex manifold, dim�X = n, and fix ω a Hermitian
metric on X. For a holomorphic line bundle L→ X, we remind the following
definitions.

Definition 0.1.1 The line bundle L is said to be big if there exists a constant
C > 0 such that dimH0(X, Lk) ≥ C kn, for k >> 0.

This amounts to the Kodaira-Iitaka dimension of L being maximal (i.
e. equal to the complex dimension n of X), which means that the space
of global sections H0(X, Lk) defines a bimeromorphic embedding of X into
some projective space PNk , for k >> 0.

1
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Definition 0.1.2 The manifold X is Moishezon if there exist n algebraically
independent meromorphic functions on X. This is equivalent to the algebraic
dimension a(X) of X being maximal (i. e. a(X) = n).

The following statement parallels Kodaira’s embedding theorem in this
bimeromorphic setting.

Theorem 0.1.3 (Moishezon) Let X be a compact complex manifold. Then,
X is Moishezon if and only if there exists a big line bundle L→ X.

Differential point of view

A singular Hermitian metric h on L is defined in any local trivialization

L|U
θ� U × C as

Lx � ξ �→ ||ξ||h := |θ(ξ)| e−ϕ(x),

for a local weight ϕ which is assumed to be only locally integrable.
The associated curvature current of (L, h) is a (1, 1)-current on X which

is locally defined as :

iθh(L) = i∂∂̄ϕ on U , in the sense of currents

for any trivializing open set U .

Algebraic vs. Analytic.

It is important to understand the algebraically defined concept of bigness
in terms of the existence of possibly singular Hermitian metrics on the line
bundle under consideration. The first result in this direction was obtained by
Siu ([Siu84]) who gave a sufficient criterion for bigness.

Theorem 0.1.4 (Siu, [Siu84]) L is big if there exists a C∞ metric h on
L such that the associated curvature form satisfies the following positivity
conditions :

iθh(L) ≥ 0 on X,

and

∫
X

(iθh(L))n > 0.

A necessary and sufficient criterion for bigness was later obtained by Ji
and Shiffman ([JS93]), and also independently by Bonavero ([Bon98]). It can

2
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be seen as a complement to Siu’s sufficient criterion insofar as it dispenses
with the regularity condition on the metric but imposes in exchange a stron-
ger positivity condition on the curvature.

Theorem 0.1.5 (Ji-Shiffman [JS93], Bonavero [Bon98]) L is big if and only
if there exists a (possibly singular) metric h on L such that

iθh(L) > 0 on X.

This strict positivity condition on the curvature current means that there
exists a small ε > 0 such that iθh(L) ≥ εω.

One of our main motivations has been to generalize the previous two cri-
teria for bigness into a statement that would incorporate them both, with no
regularity condition on the metric and only a comparatively weak positivity
assumption on the curvature.

Conjecture 0.1.6 L is big if and only if there exists a (possibly singular)
metric h on L such that

iθh(L) ≥ 0 on X,

and

∫
X

(iθh(L)ac)
n > 0,

where iθh(L)ac is the absolutely continuous part of the curvature current in
the Lebesgue decomposition.

We could ask if one can do without the absolutely continuous part in the
above conjectural statement. The nth power of the curvature current may
not be well-defined in that case, but we could still integrate the nth power
of the cohomology class of the curvature current, by integrating the nth po-
wer of an arbitrary smooth representative. The result is independent of the
choice of a smooth representative, thanks to Stokes’s theorem. However, the
following example shows that the conjecture would fail in this case.

Example 0.1.7 Let X be an arbitrary compact complex manifold, let X̃ −→
X � x be the blow-up of an arbitrary point x ∈ X, and let E ≥ 0 be the excep-
tional divisor. It is well-known that the associated line bundle L =: O(E) on
X̃ has a singular metric h such that its curvature current is iθh(L) = [E] ≥ 0.
Then we have :

3
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O(E)|E � O�n−1(−1),

and

∫
X̃

{iθh(L)}n =

∫
X̃

{[E]}n =

∫
E

{[E]}n−1

=

∫
�n−1

c1(O(−1))n−1

= (−1)n−1 > 0,

if n is odd.

We shall now list the main ingredients used in our approach of the above
conjecture. We shall but briefly discuss the first two of them in the sequel
to dwell on the third one, a new extension theorem for jets of sections of
Hermitian line bundles.

(a) Demailly’s regularization of currents.

(b) Multiplier ideal sheaves.

(c) Generalization of the Ohsawa-Takegoshi-Manivel L2 extension Theo-
rem.

0.2 Demailly’s regularization of currents.

Let T ≥ 0, be a d-closed (1, 1)-current on X. Locally we have T = ddcϕ, for
some local plurisubharmonic potential ϕ.

The current T is said to have analytic singularities of coefficient c > 0, if

ϕ =
c

2
log(|f1|2 + · · · + |fN |2) + C∞,

for some holomorphic functions f1, . . . , fN .

The Lelong number at a point x is given in this case by :

ν(T, x) = ν(ϕ, x) = c min
j=1,...,N

ordxfj,

to quantify the singularity of the current T at x.

A variant of Demailly’s regularization-of-currents theorem ([Dem92]) states
that T can be approximated in the weak topology of currents by currents with

4
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analytic singularities lying in the same cohomology class as T . The price to
pay is a loss in positivity which becomes negligible as the approximation gets
more and more accurate. Due to a scarcity of global objects on a compact
manifold, we allow some leeway by requiring the current T to be only almost
positive, namely with a possible negative part which must be bounded.

Theorem 0.2.1 (Demailly [Dem92]) Let T = ddcϕ be a closed (1, 1)-current
on X, and assume that T ≥ γ for some continuous (1, 1)-form γ on X.

Then, for all m ∈ N
�, there exists a current Tm = ddcϕm with analytic

singularities of coefficient 1
m

, such that :

(i) Tm → T weakly ;

(ii) ν(T, x) − n
m

≤ ν(Tm, x) ≤ ν(T, x), for all m and all x ∈ X ;

(iii) Tm ≥ γ − εm ω, for εm ↘ 0.

Remark. The loss in positivity εm was not explicit in Demailly’s original
result. However, it is possible to control the rate of convergence to zero of
εm by careful estimates of curvature terms in the approximation procedure.
This is a recent result.

Theorem 0.2.2 ([Pop04a]) Under the above hypotheses, if the form γ on X
is closed, we can achieve the same conclusion with εm = C

m
, for a constant

C > 0 independent of m.
If the form γ is arbitrary, the conclusion of Demailly’s theorem holds with

εm = C
4√m

, for a constant C > 0 indeendent of m.

However, conjecture the 0.1.6 deals with the nth power of the curva-
ture current rather than with this current itself. Therefore, we would like
to control the behaviour of the wedge powers (when they are well-defined)
of the regularizing currents Tm as m tends to +∞. These Monge-Ampère
currents are unpredictable in general. The following conjectural statement
aims at controlling their masses, a control which would be sufficient in the
perspective of the above conjecture. The following integrals are considered
in the complement of the singular set Sing Tm of Tm.

Conjecture 0.2.3 (Control of the Monge-Ampère masses) There exists a
regularization of T ≥ γ by currents Tm with analytic singularities of coeffi-
cient 1

m
which satisfy, besides the properties in theorem 0.2.1, the following

condition :

εm

∫
X\Sing Tm

(Tm − γ + εm ω)k ∧ ωn−k converges to 0 as m→ +∞,

for all k = 1, . . . , n.
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The regularizing currents Tm, as constructed in Demailly’s theorem, may
not satisfy this extra condition on the Monge-Ampère masses. A better
construction of regularizing currents may be needed. Let us now briefly re-
mind their original definition. We shall subsequently indicate a way of mo-
difying it to suit our purposes.

Local approximation. (Demailly)

Let Ω ⊂⊂ Cn be a bounded pseudoconvex open set, and let ϕ be a plurisub-
harmonic function on Ω. Define the following Hilbert space

HΩ(mϕ) = {f ∈ O(Ω) ;

∫
Ω

|f |2 e−2mϕ < +∞},

which is a weighted Bergman space with a singular weight. Pick an arbitrary
orthonormal basis (σm, j)j∈� , and put

ϕm :=
1

2m
log

+∞∑
j=0

|σm, j|2,

a plurisubharmonic function with analytic singularities. Then, the Ohsawa-
Takegoshi L2 extension theorem can be applied at a point (cf.[Dem92]) to
prove that ϕm → ϕ in L1

loc topology, and consequently that

Tm := ddcϕm → T = ddcϕ as currents.

These local approximations are subsequently glued together into a global ap-
proximation of T (see [Dem92] for the details).

Modify the Tm’s

However, these currents still have too many singularities for their Monge-
Ampère masses to be kept under control. It is natural to reduce their singular
set by taking extra functions in their definition. The idea is to consider all
the derivatives Dασm, j of the functions (σm, j)j∈� up to a given order p, for
multiindices α = (α1, . . . , αn) ∈ Nn. Set therefore

ψm := 1
2m

log
∑

|α|≤p

|Dασm, j|2.

It can be easily checked that the new currents Tm := ddcϕm still have the
property Tm → T , as m → +∞, if p ∈ N� is chosen independent of m.
An extension theorem of the Ohsawa-Takegoshi type, that would account for
the derivatives of the extension, arises then as a natural tool to deal with
these newly constructed currents. This extension theorem will be explained
in section 0.4.
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0.3 Multiplier ideal sheaves.

Let us now make a brief detour through multiplier ideal sheaves which
enable us to better deal with singular metrics on holomorphic line bundles.
With a plurisubharmonic function ϕ : Ω → R∪{−∞} defined on a bounded
pseudoconvex open set Ω ⊂ Cn, one associates the ideal subsheaf I(ϕ) ⊂ OΩ

defined as

I(ϕ)x = {f ∈ OΩ, x ; ∃V � x,
∫

V
|f |2 e−2ϕ < +∞},

at every point x ∈ Ω. This is called the multiplier ideal sheaf associated with
ϕ, and it reflects rather accurately the singularites of ϕ. Intuitively, the mul-
tiplier ideal sheaf gets smaller and smaller as the singularities of ϕ increase.
Likewise, if h is a singular metric on some holomorphic line bundle of local
weight ϕ, the multiplier ideal sheaf I(h) is defined as I(ϕ).

Basic fact. (Nadel [Nad90], see also [Dem93]) The multiplier ideal sheaf I(ϕ)
is coherent. Moreover, it is globally generated by an arbitrary orthonormal

basis of the Hilbert space HΩ(ϕ) = {f ∈ O(Ω) ;

∫
Ω

|f |2 e−2ϕ < +∞}.

Basic question. What is the variation of I(mϕ) as m→ +∞ ?

We have the following partial answers.

· I((m+ 1)ϕ) ⊂ I(mϕ), for every m

· Subadditivity (Demailly-Ein-Lazarsfeld [DEL00]) :

I(mϕ) ⊂ I(ϕ)m, for every m.

The lack of actual additivity leads us to ask if a lower bound for I(mϕ) can
be found. The following result points in this direction.

Theorem 0.3.1 ([Pop04b], effective coherence) Let d = diam(Ω), x ∈ Ω,
and let B(x, r′) ⊂⊂ B(x, r) ⊂⊂ Ω be two fixed balls. Pick an arbitrary or-
thonormal basis (σm, j)j≥0 of HΩ(mϕ).

Then, for every f ∈ O(B(x, r)) such that Cf :=

∫
B(x, r)

|f |2 e−2mϕ < +∞,

there exist holomorphic functions bm, j, j = 1, . . . ,+∞, on B(x, r′), such that

f(z) =
∑+∞

j=0 bm, j(z)σm, j(z), for all z ∈ B(x, r′),
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and

sup
B(x, r′)

+∞∑
j=0

|bm, j|2 ≤ 1

(1 − r
d
)2

C(n)

( r
d
)2(n+2)

Cf .

The proof of this result relies heavily on Skoda’s L2 division theorem
([Sko78]). It was inspired by a similar theorem of Siu’s ([Siu02]) obtained for
global holomorphic sections of high tensor powers of ample line bundles over
projectve manifolds.

0.4 Generalization of the Ohsawa-Takegoshi-Manivel
L2 extension Theorem.

We now pick up where we left off at the end of the section 0.2. Our goal is
to give an extension theorem for a section of a Hermitian line bundle, defined
on a submanifold of a given manifold and satisfying an L2 condition, to the
whole of the ambient manifold, such that we prescribe the jets of the ex-
tension along the submanifold, and such that we control the L2 norm of the
extension in terms of the L2 norm of the original section on the submanifold.

• Local version : L2 extension of jets of functions

For the sake of perspicuity, we shall first deal with the case of functions
with prescribed derivatives (or jets) up to an arbitrary order given beforehand
at a point. This is what is actually needed in the section 0.2.

Theorem 0.4.1 ([Pop05]) Let Ω ⊂ Cn be a bounded pseudoconvex open set,
z0 ∈ Ω, and k ∈ N

�. Let ϕ be a plurisubharmonic function on Ω.
Then, for every aα ∈ C, |α| ≤ k, there exists a holomorphic function f

on Ω, such that

f(z0) = a0,
∂αf

∂zα
(z0) = aα, and

∫
Ω

|f |2
|z − z0|2(n−ε)

e−ϕ(z) dVΩ(z) ≤ C
(k)
n

ε2 (diam Ω)2(n−ε)

( ∑
|α|≤k

|aα|2
)
e−ϕ(z0),

where C
(k)
n > 0 is a constant depending only on the modulus of continuity of

ϕ.

• Global version : L2 extension of jets of sections

We shall now present the general global version of the jet extension theo-
rem in the more geometric context of a fairly general ambient manifold X

8

77



and sections of Hermitian holomorphic vector bundles. Unlike the previous
L2 extension results from submanifolds of X, we deal here with extensions
from a possibly unreduced subscheme of X defined by a sheaf of jets. Intui-
tively, our subscheme consists of several layers of a same submanifold.

Initial data

Suppose the following are given :

(X, ω) a weakly pseudoconvex Kähler manifold, dim� X = n,
(e.g. compact or Stein)

(L, h) → (X, ω), a Hermitian holomorphic line bundle,

E → (X, ω), a Hermitian holomorphic vector bundle bundle, rkE = r ≥ 1,

s ∈ H0(X,E) a section, generically transverse to the zero section,

Y := {x ∈ X ; s(x) = 0}, codimY = r.

IY ⊂ OX , the ideal sheaf of Y ,

k ∈ N
�, an arbitrary positive integer,

OX/I
k+1
Y , the sheaf of “vertical” or “transversal” k-jets.

Ω ⊂⊂ X an arbitrary relatively compact open subset. Associate the weight
function :

ρ(y) =
1

||Ds−1
y || sup

ξ∈Ω
(||D2sξ|| + ||Dsξ||) ,

defined at every point y ∈ Y .

Goal : to extend vertical k-jets from Y to X with L2 growth conditions, i.e.
to extend sections

f ∈ H0(X,ΛnT �X ⊗ L⊗ OX/I
k+1
Y ).

Equivalently, extend sections from the unreduced subscheme Y (k+1) defined
by the quotient sheaf OX/I

k+1
Y , to the ambient manifold X.

Construction of relevant metrics on jets
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As the sheaf of vertical k-jets OX/I
k+1
Y is not locally free, we have to

construct a metric on it which is relevant to this particular case at hand. Let
f ∈ H0(U, ΛnT �X ⊗ L ⊗ OX/I

k+1
Y ) be a transversal k-jet, let y ∈ Y be a

point, U � y a Stein open neighbourhood, and f̃ ∈ H0(U,L′) a local lifting
of f . Without specifying the details, here are the steps of our construction :

· Construct inductively ∇j f̃ ∈ C∞(U,L′ ⊗ SjN�
Y/X) for all nonnegative inte-

gers j, using the Chern connections ∇ of the Hermitian line bundles involved
at every step of the induction.

· Define the pointwise ρ-weighted norm :

|f |2s,ρ,(k)(y) := |f̃ |2(y) +
|∇1f̃ |2

|Λr(ds)|2 1
r ρ2(r+1)

(y) + · · · + |∇kf̃ |2
|Λr(ds)|2 k

r ρ2(r+k)
(y),

depending on the weight function ρ, on the section s defining Y , and on the
order k of the jet.

· Define the L2
(k) weighted Sobolev-type norm :

||f ||2s, ρ, (k) =

∫
Y

|f |2s, ρ, (k) |Λr(ds)|−2 dVY, ω.

Initial curvature assumptions

The curvature form iΘh(L) of the Hermitian line bundle (L, h) is requi-
red to satisfy the following positivity assumptions for the jet extensions to
be possible. These assumptions depend on the order k of the prescribed jets,
and take into account the curvature of the submanifold Y through the use
of s.

(a) iΘh(L) + (r + k) id′d′′ log |s|2 ≥ α−1 {iΘ(E)s, s}
|s|2 ,

(b) |s| ≤ e−α, for a continuous function α ≥ 1 on X.

Notation

Let Jk : H0(X, ΛnT �
X ⊗ L) → H0(X, ΛnT �

X ⊗ L⊗ OX/I
k+1
Y ) be the map

induced between the spaces of corresponding global sections by the projec-
tion of sheaves OX → OX/I

k+1
Y .

Conclusion
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We can now state our result.

Theorem 0.4.2 ([Pop05]) In the above setting, every vertical k-jet f ∈
H0(X, ΛnT �

X ⊗ L⊗ OX/I
k+1
Y ) satisfying

∫
Y

|f |2s, ρ, (k) |Λr(ds)|−2 dVY, ω < +∞,

can be extended to a global section Fk ∈ H0(X, ΛnT �
X⊗L) such that JkFk = f ,

and

∫
Ω

|Fk|2
|s|2r (− log |s|)2

dVX, ω ≤ C(k)
r

∫
Y

|f |2s, ρ, (k) |Λr(ds)|−2 dVY, ω,

where C
(k)
r > 0 is a constant depending only on r, k, E, and sup

Ω
||iΘ(L)||.

Remarks on the proof

In the first part of the proof of the jet extension theorem, we adapt the
techniques of the original proof of the Ohsawa-Takegoshi-Manivel extension
theorem ([OT87], [Man93]) to our more general situation. We construct the
global extension of our original jet by induction on the order of the jet.
Particular attention is paid to the curvature conditions needed in terms of
the order k of the jets involved and the curvature of the submanifold Y
from which the extension is made. This approach produces an extension Fk

of the kth order jet f to X. In the second part of the proof, we estimate
the global L2 norm of the extension in terms of the Sobolev-type norm of
the original k-jet f on Y . This part of the proof is more delicate since we
have to ensure uniformity in the final estimate. In particular, in order to get
a constant C

(k)
r > 0 which is independent of the uncontrolable radii of the

local holomorpic coordinate balls on the ambient manifold X, we make use
of the exponential map to replace locally X by the tangent space at a point.
We transfer the situation over to the tangent space, but we have to compare
the Euclidian metric on the tangent space with the pull-back of our original
Hermitian metric ω on X. To this effect, we infer and use the following slight
modification of Rauch’s comparison theorem.

Proposition 0.4.3 If there exists a constant k > 0 such that the sectional
curvature K(p, P ) of X satisfies the inequalities

−k ≤ K(p, P ) ≤ k,

for every point p ∈ X and every plane P ⊂ TpX, then

||Txexpm − Id|| ≤ sinh(
√
k||x||)√

k||x|| − 1, for all x ∈ TmX.
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The details can be found in [Pop03] or [Pop05].

A few comments. The idea of getting a jet extension theorem was originally
motivated by the study of a possible regularization of currents with a control
of the Monge-Ampère masses, as pointed out in the section 0.2. However,
we hope that the jet extension theorem will find applications of independent
interest. It has been intended as a tool of producing global holomorphic
objects from simpler objects defined on a submanifold or merely at a point.
We could imagine, for instance, possible applications to questions related to
the Fujita conjecture.

Acknowledgements. The author would like to thank the organizers of the
Hayama Symposium on Several Complex Variables 2004 for their kind invi-
tation to be a speaker.
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gen, 2000), 223–277, Springer, Berlin, 2002.

[Sko78] H. Skoda — Morphismes surjectifs de fibrés vectoriels semi-positifs
— Ann. Sci. École Norm. Sup. (4), 11 (1978), no.4, 577-611.

Dan Popovici,
Mathematics Institute, University of Warwick, Coventry CV4 7AL, United
Kingdom

e-mail : popovici@maths.warwick.ac.uk

13

82



Cohomology and analysis of locally symmetric

spaces

— Many quantum integrable systems produced

by Dirac operators

Takayuki Oda

December, 2004 at Hayama

1 Cohomology of discrete subgroups

In this section, we recall basic facts on cohomology groups of discrete subgroups
in real semisimple Lie groups. A good reference is a survey artilce by A. Borel
[1]. The book [2] of Borel-Wallach also has been a very important reference,
though this is a bit difficult to penetrate since it is not written as a textbook.
The original paper about this theme is Matsushima’s [23], [24]. In the case when
G/K is Hermitian, there is a paper by the author which is more specialized to
the Hodge theoretic aspect of the problem [34].

1.1 Shift to the relative Lie algebra cohomology groups

Given an arithmetic discrete subgroup Γ in a semisimple real Lie group G, we
consider its Eilenberg-Maclane cohomology group Hi(Γ,C). Or more generally
if a finite dimensional rational representation r : G→ GL(V ) of G is given, we
may regard its as Γ-module by restriction, and we can form cohomology group
Hi(Γ, V ).

Fix a maximal compact subgroup K of G to get a Riemannnian symmetric
space X = G/K. For simplicity assume that we have no elements of finite order
in Γ, then Γ acts on X from the right side without fixed point, and the quotinet
Γ\X becomes a manifold. In this case Γ is isomorphic to the fundamental group
of this manifold (X is contractible to a point), and the Γ-modules V defines a
local system Ṽ on this quotient manifold. Then we have an isomorphism of
cohomology groups: H∗(Γ, V ) ∼= H∗(Γ\X, Ṽ ).

Let σ : X → Γ\X be the canonical map, by pulling back differential forms
with respect to σ we have a monomorphism of de Rham complexes σ0 : Ω∗

Γ\X →
Ω∗
X . Moreover on the target complex, Γ acts naturally. Let (Ω∗

X)Γ be the
invariant subcomplex. Then it coincides with the image of σ0, and by the de
Rham theorem, we have an isomorphism of cohomology groups:

H∗(Γ, V ) = H∗(Γ\X, Ṽ ) = H∗(ΩX(V )Γ).
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The last complex in the above isomorphims is identified with the complex of
differentail forms on G as follows.

Let π0 be the pull-back homomorphism of differential forms with respect
to the canonical map π : Γ\G → Γ\X. Then a form ω ∈ ΩdX(V )Γ defines a
differential form ω0 on G by

x ∈ G �→ r(x)−1π0(ω)(x),

and denote by A∗
0(G,Γ, V ) the image of this homomorphism. Then since σ0 is a

monomorphism, we have an isomorphism of complexes Ω∗
X(V )Γ ∼= A∗

0(G,Γ, V ).
Here the last complex is identified with the right K-invariant subcomplex

of the de Rham complex Ω∗
Γ\G(V ) = Ω∗

Γ\G ⊗ V , which is defined over Γ\G and
takes values in V .

Since the tangent space at each point ofG/K is identified with the orthogonal
complement p of k in g with resepect to the Killing form, the module of the i-th
cochains becomes HomK(∧ip, C∞(Γ\G) ⊗ V ). Therefore, the cochain comlex
defined in this manner gives the relative Lie algebra cohomology groups. When
G is connected we have an isomorphism:

H∗(Γ, V ) ∼= H∗(g, K;C∞(Γ\G), V ).

1.2 Matsushima isomorphism

Let G be a connected semisimple real Lie group with finite center.　 Assume
that the discrete subgroup Γ is cocompact, i.e. the quotinet Γ\G is compact.

Let L2(Γ\G) be the space of L2-functions on G with respect the Haar mea-
sure on G, on which G acts unitarily by the right action. By assumption the
space C∞(Γ\G) is a subspace of this space.
Proposition (1.1)（Gelfand-Graev,Piateskii-Shapiro) If Γ is cocompact, we
have the direct sum decomposition of the unitary representation L2(Γ\G) into
irreducible components:

L2(Γ\G) = ⊕̃π∈Ĝm(π,Γ)Mπ,

with finite multipicities m(π,Γ). Here Ĝ is the unitary dual of G, i.e.the unitary
equivalence classes of irreducible unitary representations of G, and Mπ denotes
the representation sapce of π.

By the above proposition, one has a decomposition

C∞(Γ\G) = ⊕̃π∈Ĝm(π,Γ)M∞
π

of topological linear spaces. Here M∞
π is the subspace consisting of C∞-vectors

in the representation space Mπ.
Theorem (1.2) For a finite dimensional rational G-module V over the complex
number field, we have an isomorphism:

H∗(Γ, V ) = ⊕π∈Ĝm(π,Γ)H∗(g, K,M∞
π ⊗ V )

= ⊕π∈Ĝ{HomG(Mπ, L
2(Γ\G) ⊗C H∗(g, K,M∞

π ⊗ V )}
The key point of the proof here is the complete direct sum ⊕̃ is replaced by a
simple algebraic direct sum by passing to the cohomology (cf. Borel [1], or §1
of Vogan-Zuckermann [42]).
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We can equipp a K-invaraint inner product on V . By using this, we may re-
gard Hm(g, K,M∞

π ⊗V ) as a space of a kind of harmonic forms, i.e. the totality
of cochains vanishing by the Laplace operator. Thus we have the following.
Proposition (1.3) Let (r, V ) be an irreducible G-module of finite dimension.
For any π ∈ Ĝ we have the follwing.
(i) If χr(C) = χπ(C), there is an isomorphism

HomK(∧m,Mπ ⊗∞ ⊗V ) = Cm(g, K,M∞
π ⊗ V ) = H∗(g, K,M∞

π ⊗ V )

(ii) If χr(C) �= χπ(C), there is an isomorphism

Hm(g, K,M∞
π ⊗ V ) = {0}.

Here C denotes the Casimir operator.
In particular, when V is the trivial G-module C, the above theorem is no

other than the original formula of Betti numbers of Γ\X by Matsushima ([23],
[24]).

Also there is a variant of this type vanishing theorem shown by D. Wigner.
But it is omitted here.

We recall here that the relative Lie algebra cohomology group Hm(g, K,M∞
π ⊗

V ) is isomorphic to the continuous cohomology group Hm
ct(G,M∞

π ⊗ V ) if G is
connected. This is shown by using differential cohomology and van Est spectral
sequence.

1.3 Non-cocompact case

When Γ\G is not compact, L2(Γ\) has continuous spectrum. This makes the
problem techinically quite complicated. A satisfactory general solution is given
by Franke, around mid-90’s after a series of efforts of many people including
Armand Borel’s major contribution.

2 After the Matsushima isomorphism

There are two ingredients in the Matsushima isomorphism: one is the relative
Lie algebra cohomology group

Hm(g, K,M∞
π ⊗ V )

which is independent of Γ (hence, a local problem at the real place from arith-
metic view-point), the other the intertwining space

HomG(Mπ, L
2(Γ\G))

which depends on Γ, hence a global problem from arithmetic view point. The
tensor product

HomG(Mπ, L
2(Γ\G) ⊗C H∗(g, K,M∞

π ⊗ V ) =: H∗(Γ, V )[π]

gives the [π]-part of the cohomology group H∗(Γ, V ).
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People working on the representation theory of real Lie groups had been
taking care of the local problem, because it is related to the decomposition of
the (generalized) principal series representations of semisimple Lie groups.

The global problem is believed to be fixed by Selberg trace formula. To
explain the state of arts about this theme. One can say that in the case of
Γ with point-cusps, this is essentially solved module evaluation of the special
values of zeta functions of certain prehomogeneous vector spaces. But it is
quite difficult to have effective computable results even for this case. For Γ in
an algebraic group of Q-rank ≥ 2, little is known, except for the case G/K
hermirtian with rankR(G) = 2 and automorphic forms are holomorphic.

Our view-point is to go back the state before taking cohomology classes, but
want to have ”harmonic forms” representiong cohomology classes.

2.1 Local problems (A): vanishing theorems

A number of vanishing theorems were found in ’60’s: Calabi-Vesentini, Weil
etc. In their proof, the same type of computation of ”curvature forms” is done,
which is similar to a proof of Kodaira vanishing theorem.

Firstly, Matsushima’s vanishing theorem of the 1-st Betti number of Γ\X
was also proved by such method ([23], [24]).

This type of vanishing theorem is vastly improved by representation theoretic
method. Probably the best resut of this category is the following result by
Zuckermann ([45]) (see also [2], Chapter V, §2－ §3 (p.150–155)).
Theorem(1.6) Let G be a simple real algebraic group, (π,H) a nontrivial
irreducible unitary representation of G, and (r, V ) a finite dimensional repre-
sentation of G. Then for k < rankRG,

Hk
ct(G,H

∞ ⊗ V ) = {0}.

Corollary(1.7) Given a cocompact discrete subgroup Γ of G, for k < rankRG,
the restriction homomorphism

Hk
ct(G, V ) → Hk(Γ, V )

is an isomorphism.

2.2 Local problems (B): Enumeration and construction of
unitary cohomological representations

We shortly review the state of arts on the cohomological representations defined
below.
Definition(1.8) An irreducible (unitary) representation (π,Hπ) ∈ Ĝ is called
cohomological, if there is a finite dimensional G-module F such that

Hi(g, K;M∞
π ⊗C F ) �= {0}

for some i ∈ N. The set of equivalent classes of cohomological representations
is denoted by Ĝcoh.

Enumeration of such cohomological representations was done for the case
trivial F = C by Kumaresan [?], and for general case by Vogan-Zuckermann
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[42]. This was originally described by susing the cohomological induction func-
tor Aλ(g) first. And later a global realiztion of this Zuckermann module was
obtained by H.-W. Wong [43].

Recently Tosiyuki Kobayashi is developping a theory of branching rule for
such cohomological representations when they are restricted to a large reductive
subgroup H of G ([15], [16], [17], [18]).

3 Cohomological automorphic forms and Dirac
operators

3.1 Automorphic forms

Let G,K be a semisimple Lie group and a fixed maximal compact subgroup K.
Let Γ be a discrete subgroup of G, ususally an arithmetic subgroup, which is of
finite covolume, i.e., vol(Γ\G) <∞.

Let U(g) be the universal enveloping algebra of the Lie algebra g = Lie(G),
and let Z(g) be its center. Normally the following is consider the most general
definition of automorphic forms.

Definition A C∞-function f : G → C is an automorphic form with respect to
Γ if

(i) f is left Γ-invariant, i.e., f(γg) = f(g) for for any γ ∈ Γ, g ∈ G.

(ii) f is rightK-finite, i.e., the linear span generated by the rightK-translations
f(gk) of f is of finite dimension.

(iii) f is of moderate growth at infinity.

Let A(Γ\G) be the space of automorphic forms.
Talking about the last condition, there are a few equivalent but apparently

different formulations. One naive way is to embedd G into some GL(N,C),
and utilizing the matrix realization g = (gij)1≤i,j≤N we define a norm ‖g‖ =
trace(tḡ · g). Then f(g) is said to be of moderatre growth if there are constants
C, M such that |f(g)| ≤ C‖g‖M for all g ∈ G.

Given an irreducible admissibleG-module (π, Mπ) or a (g, K)-module (π, Mπ),
we can consider the evaluation map

evπ : HomG(π,A(Γ\G)) ⊗Mπ → A(Γ\G) , or
evπ : Hom(g,K)(π,A(Γ\G)) ⊗Mπ → A(Γ\G).

We may denote the image of this evaluation map by A(Γ\G)[π]. The intertwin-
ing spaces HomG(π,A(Γ\G)), Hom(g,K)(π,A(Γ\G)) are of finite dimension, if
Γ is an arithmetic subgroup of G. When Γ\G is non-compact, this is one of
the fundamental results obtained as an application of ”reduction theory of al-
gebraic groups” (cf. Harish-Chandra’s Springer Lecture Notes. For ”reduction
theory”, there is a good monograph by Armand Borel published from Hermann).

Choose an irredicibleK-module (τ,Wτ ) and also choose a fixedK-homomorphism
i : τ ↪→ Mπ. Then the composition evπ · i has an image A(Γ\G)[π, i] of finite
dimension. Moreover the Casimir operator C in Z(g) acts as a scalar χπ(C)
on Mπ where χπ : Z(g) → C is the infinitesimal character. We can decompose
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C = Cp + Ck according as the Cartan decomposition g = k ⊕ p (k = Lie(K)).
By definition Ck acts on A(Γ\G)[π, i] as a scalar multiple, hence the elliptic op-
erator Cp acts as a scalar multiple. Therefore all the elements in A(Γ\G)[π, i]
are real analytic functions on G/K or on G.

Let

evτ : HomK(τ, Mπ) ⊗Wτ →Mπ

be the evaluation map. Let Mπ[τ ] be the iamge of this evaluation map. The
admissibility of the irreducible (g, K)-module implies that HomK(τ, Mπ) is of
finite dimension. Hence Mπ[τ ] is also of finite dimension.

Now we can consider the linear span A(Γ\G of A(Γ\G)[π, i], when i moves
in HomK(τ, Mπ). This is also of finite dimension, and the general space of
automorphic forms with specified K-types and specified Z(g)-types has a com-
position series consisting of such spaces.

Remark. The above definition of automprphic forms (due to Harish-
Chandra) is quite general. For example if π ∈ Ĝ is a principal series repre-
sentation, we may call the associated space of automorphic forms in A(Γ\G)
wave forms. At present we have no way to have effectively computable results
for such automorphic forms. Proably we might not be able to do so in the fu-
ture. For me they look like ”the dark matter” in our universe of automorphic
forms.

3.2 Cohomological automorphic forms and Dirac opera-
tors

Let (π,Mπ) be a cohomological representation of G. A deep result for such
representations is that we know very precise information on their K-types.

For a cohomological representation π, there is a distinguishedK-type (τ0,Wτ0)
which occurs with multiplicity one in Mπ, such that some irreducible factors τi
in the tensor product p ⊗ τ does not occurs in Mπ (Remark: there might be
some exception. But this is the case in many cases). This means in the natural
K-homomorphism :

p ⊗ τ → pτ ↪→Mπ

these factors τi ↪→ p ⊗ τ vanish. Passing to the world of automorphic forms,
this means that the composition of the gradient operator:

∇ : A(Γ\G)[π, τ0] → A(Γ\G)[π, τ0] ⊗K p∗

with the projector:

pri : A(Γ\G)[π, τ0] ⊗K p∗ ∼= A(Γ\G)[π, τ ⊗ p] → A(Γ\G)[π, τi]

vanishes. This defines a first order differential (-difference) operators. These
have an interpretation as Dirac operators in some context.

Note that for the Casimir operator C, the element C−χπ(C) in Z(g) defines
an elliptic differential operator for functions in A(Γ\G)[π, τ0]. This is compatible
with the Dirac operator.

Now ask the following question.
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Question. How to investigate each element in A(Γ\G)[π, τ0]?

When Γ is cocompact, it is difficult to find some ”grip”. But when Γ has
cusps, or equivalently when we have parabolic subgroups inG, which are rational
with respect to Gamma, it is possible to consider Fourier exapnsions along them.

We have some experience when G/K is Hermitian and (π,Mπ) is a highest
weight module, or slightly more restricted, a discrete series representation. But
our knowledge on Fourier expansions are quite limited, in spite of that this a
fundamental tool in the investigation of automorphic forms.

4 Generalzied spherical functions

The investigation of Fouirer expansion of cohomological automorphic forms is a
global problem. But before that we need to solve some basic problem to have
reasonable Fourier expansion. This is a local problem at the real or complex
place in arithmetic terminology. A general formulation of the problem is the
following.

Given a parabolic subgroup P along which we consider the Fourier expansion
of an automorphic form f . Let N be the unipotent radical of P . Then we have
to find a closed subgroup R between N and P , i.e., N ⊂ R ⊂ P .

We choose a unitary irreducible representation(η, Vη) of R and forms C∞

induction C∞-IndGR(η). Then we are interested in the intertwining space

I(π; (R, η)) := Hom(g,K)(π,C∞-IndGR(η)).

We require that the subgroup R is large enough so that we have a double coset
decomposition G = RAK with the split component A of a maximally split
Cartan subgroup in G. We hope that the interetwinig space I(π; (R, η)) is of
finite dimension.

Let τ0 ↪→Mπ be the distinguished K-type in the cohomological representa-
tion π. Then we have restriction map

I(π; (R, η)) → HomK(τ0, C∞-IndGR(η)) = {C∞-IndGR(η) ⊗ τ∗0 }K .

We are intereted in to determine the holonomic system to characterize the A-
radial part of the finite dimensional image of this restriction map, that is derived
from the Dirac operator mentioned in the previous section. Then we have
quantum integrable system.

These are the special functions which appear in the Fourier expansion. But
here we have to replace the space

C∞-IndGR(η)

by a subspace stable under (g, K)-action :

C∞-IndGR(η)mod

consisting of functions of moderate growth.
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4.1 State of arts, and examples

Unfortunately we have no general results yet for this problem. There are rather
general results by Kenji Taniguchi and by Maso Tsuzuki for G of real rank 1
case.

We have some results for the split group Sp(2,R) of rank 2 and the quasi-
split group SU(2, 2) of rank 2. Also there are some results for real semisimple
groups of rank 1.

The computations of various spherical functions on small Lie groups were
quite important problems in the very dawn of the real harmonic analysis on Lie
groups. But now the fashion is changed, the trend of the representation theory
of real semisimple groups is ”algebraization”, though there are still people who
believe firmly that every realization is important, like Professor Gindikin.

The special computations look like endless, but a well-formulated and ex-
haustive result makes some case study come to end.

In the case of Sp(2,R), the special functions, which should appear in the
Fourier expansion of automorphic harmonic forms representation some coho-
mological classes (i.e, those automorphic forms which generate discrete series
represenations of Sp(2,R))s, are discussed in [35], Miyazaki [25], Hirano [9].
But these are vector-valued and we have to prepare some terminology of the
represenations of K ∼= U(2).

To avoid this complication, and to cheat the readers a bit but not so much,
we consider the case of PJ prinicipal series representations of Sp(2,R). The
point is the ”shape” of K-types of these representations are the same as those
of the large discrete series representations, and the obtained spherical functions
in both cases are quite resembled.

4.2 The PJ principal series

The split group G = Sp(2,R) of C2 type has 3 kinds of standard parabolic
subgroups: the minimal P0, the maximal PS assoacaited with the short root
which has abelian unipotent radical that is called often Siegel parabolic subgroup,
and the other maximal PJ associated with the long root, whose uniptent radical
is the Heisenberg group of real dimension 3. In this note, we refer the last group
PJ as the Jacobi parabolic subgroup.

A PJ principal series representation πJ is a parabolic induction form a
discrete series representation σJ := ε � D±

k of MJ = {±1} × SL(2,R) with
diag(−1, 1,−1, 1) the generator of {±1} part. Here D±

k are the represenations
of discrete series with Blattner parameter ±k (i.e., the minimal SO(2)-type).
Here PJ = MJNJAJ is the Langlands decomposition of PJ . Following the
standard format, we fix a linear form νJ ∈ HomR(a,C) and also the half sum
ρJ of roots in nJ . Here aJ , nJ are the Lie algebras associated with AJ , NJ .
We form the quasi-character eνJ+ρJ : AJ → C∗ and via the identification
PJ/NJ ∼= MJAJ it defines a representation of PJ . Finally the induced rep-
resenation πJ := IndGPJ

(σJ ⊗ eνJ+ρJ ) gives a PJ principal series representation.
In the even case ε(diag(−1, 1,−1, 1)) = (−1)k, in the represenattion space

Mπ of πJ there is a special K-type τ(±k,±k) of K ∼= U(2) which occurs with
multiplicity one, that lies ’at the corner’ of the picture of the dominant weights
of K-types with positive multiplicity in Mπ. We can find a nice annihilator D
with degree 2 of this K-type τ(±k,±k) in the universal envelopping algebra U(g).
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Together with C − χπJ
(C) we have two important annihilators.

Next we have to consider the realization of these two operators as differential
operators in appropriate space of functions. For this, as we already explained, we
choose a spherical subgroup R and a unitary representation η of R, and consider
the intertwining space Hom(g,K)(πJ , IndGR(η)). Let I be a non-zero intertwining
operator and let v be a non-zero vector in Mπ with K-type τ(±k,±k). Then the
image I(v) which is a function on G with values in Vη the representation space
of η, with intertwining prpperty

I(v)(rxk) = η(r) ⊗ τ(±k,±k)(k)I(v)(x) (r ∈ R, x ∈ G, k ∈ K).

The function I(v) is determined by its restriction to a subgroup A, if we have a
double coset decomposition G = RAK, and in many good case we can take A
as the split Cartan subgroup or its subgroup.

By a standard way, we can compute the A-radial part of the annihilators
(I ·πJ )(D) and (I ·πJ )(C)−χπJ

(C). These two operators make up a holonomic
system (of rank 4) for various choice of the pair (R, η).

4.3 Explicit formulae

We give here two cases, one case (A) is when R = N0 the unipotent radical of
the minimal parabolic subgroup P0 of G, and η a non-degenerate character of
N0; the other case (B) is when R is a subgroup of PS containing the unipotent
radical NS , which is a semidirect product of NS and the connencted component
SO(ξ) of the stabilizer of a ’definite’ character ξ of NS , and η is a twised tensor
product of ξ and a unitary character χ of SO(η).

Let v be an element belonging to τ(k,k) ↪→ Mπ, and let I be a non-zero
intertwining operator in Hom(g,K)(πJ , IndGR(η)). The restriction of the image
I(v) to A, i.e., the A-radial part, is denoted by φW in the case (A), and by φSW
in the case (B). An element of A denoted by diag(a1, a2, a

−1
1 , a−1

2 ).

(A): Whittaker functions of PJ principal series

The holonomic system for the A-radial part

Let π = IndGPJ
(ε � D+

k , ν) be an irreducible even PJ -principal series represen-
tation of G with ε(diag(−1, 1,−1, 1)) = (−1)k, and τ∗ = τ(k,k) is the corner
K-type of π. We first prepare some basic facts on the Whittaker functions for
(π, η1, τ ). Throughout this section we use a coordinate x = (x1, x2) on A defined
by

x1 =
(
πc0

a1

a2

)2
, x2 = 4πc3a2

2.

We have ([27, Proposition 7.1, Theorem 8.1]):

Proposition 4.1. Let π and τ be as above. Then we have the following:
(i) We have dim Iη1,π = dimWh(π, η1, τ ) = 4, and a function

φW (a) = ak+1
1 ak+1

2 exp(−2πc3a2
2)hW (a)
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on A is in the space Wh(π, η1, τ )|A if and only if hW (a) = hW (x) is a smooth
solution of the following holonomic system of rank 4:
{
∂x1

(
−∂x1 + ∂x2 +

1
2

)
+ x1

}
hW (x) = 0, (4.1)

{(
∂x2 +

k + ν

2

)(
∂x2 +

k − ν

2

)
− x2

(
−∂x1 + ∂x2 +

1
2

)}
hW (x) = 0, (4.2)

where ∂xi
= xi(∂/∂xi) (i = 1, 2) is the Euler operator with respect to xi.

(ii) dim Wh(π, η1, τ )mod ≤ 1. Moreover this inequality is an equality if and only
if c3 > 0.

Remark 1. Since [27] treated the case σ = ε � D−
k , we need a minor change

by using the explicit formulas of ‘shift operators’ ([26, Proposition 8.3]).

Explicit formulas of good Whittaker functions

When c3 < 0, Proposition 2.1 tells us that there is no non-zero moderate growth
Whittaker function. Therefore let us assume c3 > 0 in the following discussion.
The integral expression for the Whittaker functions of moderate growth was
obtained by Miyazaki and Oda.

Proposition 4.2. ([27, Theorem 8.1]) Let π and τ be as before. Define

gW (a) = gW (x) := x
−1/2
2

∫ ∞

0

t−k+1/2W0,ν(t) exp
(
− t2

16x2
− 16x1x2

t2

)dt
t
,

with Wκ,µ the classical Whittaker function. Then the function

φW (a) = ak+1
1 ak+1

2 exp(−2πc3a2
2)gW (a)

gives a non-zero element in Wh(π, η1, τ )mod|A which is unique up to constant
multiple.

Siegel-Whittaker functions belonging to PJ principal series

The holonomic system for the A-radial part

Miyazaki ([25]) studied the Siegel-Whittaker functions for PJ -principal series
and obtained the multiplicity one property and the explicit integral representa-
tion for rapidly decreasing function. As in the previous section, we introduce
the coordinate y = (y1, y2) on A by

y1 =
h1a

2
1

h2a2
2

, y2 = 4πh2a
2
2.

We remark on a compatibility condition. For a non-zero element φ of C∞
ηi,τ(−k,−k)

(Ri\G/K),
we have

φ(a) = φ(mam−1) = (χm0 � ξ)(m)τ(−k,−k)(m)φ(a),

where a ∈ A and m ∈ SO(ξ) ∩ ZK(A) = {±14}. If we take m = −14, (χm0 �
ξ)(m) = χm0(m) = exp(π

√−1m0) and τ(−k,−k)(m) = 1 imply that m0 is an
even integer.
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Proposition 4.3. ([25, Proposition 7.2]) Let π and τ be as in §2.1. Then we
have the following:
(i) We have dim Iη2,π = dimSW(π, η2, τ ) ≤ 4 and a function

φSW (a) = ak+1
1 ak+1

2 exp(−2π(h1a
2
1 + h2a

2
2))hSW (a)

is in the space SW(π, η2, τ )|A if and only if hSW (a) = hSW (y) is a smooth
solution of following system:
{
∂y1

(
−∂y1 + ∂y2 +

1
2

)
+

y1
y1 − 1

(
−∂y1 +

1
2
∂y2

)
+
m2

0

4
y1

(y1 − 1)2
}
hSW (y) = 0,

(4.3){(
∂y2 +

k + ν

2

)(
∂y2 +

k − ν

2

)
− y1y2

(
∂y1 +

1
2

)
− y2

(
−∂y1 + ∂y2 +

1
2

)}
hSW (y) = 0,

(4.4)

with ∂yi
= yi(∂/∂yi).

(ii) dimSW(π, η2, τ )rap ≤ 1.

Remark 2. The above system has singularities along the three divisors y1 = 0,
y1 = 1 and y2 = 0, and they are regular singularities.

Explicit formulas of good Siegel-Whittaker functions

The integral representation of the unique element in SW(π, η2, τ )rap|A is given
by Miyazaki ([25, Theorem 7.5]). For our purpose, however, we need another
integral expression for this function. we obtain the following Euler type integral.
(See also Iida ([12]) and Gon ([3])).

Proposition 4.4. Define

gSW (a) = gSW (y) := (1 − y1)|m0|/2y|m0|/2
2

·
∫ 1

0

t(|m0|−1)/2(1 − t)(|m0|−1)/2F
(y2

2
{1 − t(1 − y1)}

)
dt,

with

F (z) = ez(2z)(−k−|m0|−1)/2W(k−|m0|−1)/2,ν/2(2z).

Then the function

φSW (a) = ak+1
1 ak+1

2 exp(−2π(h1a
2
1 + h2a

2
2))gSW (a)

gives a non-zero element in SW(π, η2, τ )rap|A which is unique up to constant
multiple.

Proof. See [?, 8.4]. �

5 Postscript: How these are related to the com-
plex function theory of many variables?

Needless to say, Sp(2,R)/K is the Siegel upper half space of dimension 3, and
the quotient Γ\Sp(2,R)/K is a complex analytic variety of dimension 3. But
let me exlain my hope more generally.
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5.1 Expansions around singularities

Cheeger’s L2-theory computations at the conical singularity resemble to the
Fourier expansion of automorphic forms on real semisimple groups of rank 1 at
cusps (cf. [46], Chapter 8 Spectral Theory, §8 The Laplace operator on cones).
Probably this is not by chance. Fourier expansions of automorphic forms are
conisdered as expansions around cusp singularities.

5.2 Residues of many variables

This problem was suggested by Miki Hirano of Ehime University in the course
of writing a joint paper [47].

In the classical literature on special functions or various hypergeomtric func-
tions of one varaible, the Barnes integrals, i.e., a kind of inverse Mellin trans-
formation, sometimes play key roles.

In the invetigation of special functions of many variables, one can expect
that similarly an analogy of Barnes’s integral expression in many variable plays
an important role. But there is little references about this theme.

Sometimes here, the convergence of integral, and the order of residue com-
puations causes sometimes non-trivial problems. The loci of poles are higher
dimension, and the chain of integration is also higher dimension. One cannot
do the computation just drawing pictures on the planes, as in the case of one
variable.

Similar problem seems to appear in Feynmann integrals.

There are much more references than necessary. This is because I transcribed
this from other paper(s). May be it causes little harm.
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ON THE SINGULARITY OF QUILLEN METRICS

Ken-Ichi Yoshikawa (University of Tokyo)

§0. Introduction.
Notation Let

(X, gX) : a compact Kähler manifold of dimension n+ 1,
S : a compact Riemann surface,
π : X → S : a proper surjective holomorphic map with fiber Xt := π−1(t),
Σπ := {x ∈ X; dπ(x) = 0} : the critical locus of π,
∆ := π(Σπ) : the discriminant locus of π : X → S.
We set

So := S \ ∆, Xo := X|So , πo := π|Xo .
Then πo : Xo → So is a family of compact Kähler manifolds.
Set
TXo/So := kerπo∗ : the relative tangent bundle of πo : Xo → So,
gXo/So := gX |TXo/So : the Hermitian metric on TXo/So induced from gX ,
(ξ, hξ) : a Hermitian vector bundle on X.

Let
λ(ξ) := detRπ∗ξ : the determinant of the cohomologies of ξ whose fiber is
λ(ξ)t = ⊗q≥0(detHq(Xt, ξt))(−1)q for t ∈ S,
‖ · ‖2

λ(ξ),Q : the Quillen metric on λ(ξ)|So associated with gXo/So , hξ.

We consider the following:

Problem. Let σ be a holomorphic section of λ(ξ) which does not vanish at 0 ∈ ∆.
Determine the singularity of the function log ‖σ‖2

λ(ξ),Q near 0. �
Our result is summarized as follows (see Section 3):

• the existence of an asymptotic expansion of Barlet type for log ‖σ‖2
λ(ξ),Q near 0

with at most a logarithmic singularity;
• the determination of the logaruthmic singularity and the constant term of the
asymptotic expansion.
Plan
§1. Determinants of cohomologies and Quillen metrics: a quick review
§2. The Gauss map associated with the family π : X → S

§3. The main results
§4. A sketch of the proof
§5. An application to mirror symmetry
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§1. Determinants of cohomologies and Quillen metrics: a quick review.
We recall the definition of Quillen metrics. We refer to [BGS] for more details.

Notation Let
V := (V, γ) : A compact Kähler manifold with Kähler form,
F := (F, h) : a holomorphic Hermitian vector bundle,
Ap,qV (F ) : the vector space of C∞ F -valued (p, q)-forms on V ,
SV (F ) :=

⊕
q≥0A

0,q
V (F ) : the space of spinors,

〈·, ·〉x : the inner product on
⊕

q≥0

∧q T ∗(0,1) ⊗ F induced from γ, h.
Then one can define the L2-inner product (·, ·)L2 on SV (F ) by

(s, s′)L2 :=
1

(2π)dimV

∫
V

〈s(x), s′(x)〉x γdimV

(dimV )!
, s, s′ ∈ SV (F ).

1.1. Analytic torsion.
Define operators on SV (F ) by

�(V ,F ) := (∂̄ + ∂̄∗)2 : the Laplacian;
N(ϕ) := q ϕ (ϕ ∈ A0,q

V (F )) : the number operator;
ε(ϕ) := (−1)q ϕ (ϕ ∈ A0,q

V (F )) : the parity operator.
Let E(V ,F )(λ) be the eigenspace of �(V ,F ) with eigenvalue λ

E(V ,F )(λ) := {ϕ ∈ SV (F ); �(V ,F )ϕ = λϕ}, λ ∈ σ(�(V ,F )).

Definition. Define zeta function by

ζ(V ,F )(s) :=
∑

λ∈σ(�(V ,F ))\{0}
λ−sTr

[
ε ·N |E(V ,F )(λ)

]
, Re(s) � 0.

Then ζ(V ,F )(s) extends to a meromorphic function on C, and holomorphic at s = 0.

Definition. The analytic torsion of (V , F ) is defined by

τ (V , F ) := exp
(
−ζ ′

(V ,F )
(0)
)
.

1.2. Determinants of cohomologies and Quillen metrics.

Definition. The determinant of the cohomologies of F is the complex line

λ(F ) :=
⊗
q≥0

detHq(V, F )(−1)q .

Let K(V , F ) ⊂ SV (F ) be the space of harmonic forms

K(V , F ) := ker �(V ,F ) ∩ SV (F ).

Then the natural map K(V , F ) 
 ϕ→ [ϕ] ∈ H(V, F ) is an isometry (Hodge).
2
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Definition. Let ‖ · ‖L2,λ(F ) be the Hermitian metric on λ(F ) induced from the
L2-metric (·, ·)L2 by the isomorphicm H(V, F ) ∼= K(V , F ). The Quillen metric on
λ(F ) is defined by

‖α‖2
Q,λ(F ) := τ (V , F ) ‖α‖2

L2,λ(F ), α ∈ λ(F ).

1.3. Relative versions.
Let us go back to the family π : X → S and the vector bundle ξ → X. If the

function on S, t �→ hq(Xt, ξt), is locally constant for all q ≥ 0, all the direct image
sheaves Rqπ∗ξ are locally free, and we set

λ(ξ) :=
⊗
q≥0

detRqπ∗ξ.

Then λ(ξ)t = λ(ξt) for all t ∈ S.

N.B. In general, Rqπ∗ξ is not locally free. In this case, λ(ξ) is defined as follows.
For simplicity, we assume that π : X → S is projective. Then there exists a complex
of holomorphic vector bundles on X

E• : E0 → E1 → · · · → EN → 0, N � 0

satisfying
(i) E• is a resolution of ξ, i.e., 0 −→ ξ −→ E• −→ 0 is an exact sequence;
(ii) Rqπ∗Ei = 0 for all q > 0, i ≥ 0.

Since we have a canonical isomorphism

Rqπ∗ξ = Hq(π∗E•) = ker(π∗Eq → π∗Eq+1)/Im(π∗Eq−1 → π∗Eq),

we set
λ(ξ) := detπ∗E• =

⊗
q≥0

detπ∗E(−1)q

q ,

which is independent of the choice of E• satisfying (i), (ii).

Fact [BGS]. The Quillen metric is a C∞-Hermitian metric on λ(ξ)|So.
Remark. When the cohomology of ξt jumps, the L2-metric on λ(ξ)|So is not con-
tinuous, while the Quillen metric is continuous.
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§2. The Gauss map associated with the family π : X → S.
It is crucial to consider the Gauss map for the study of the singularity of Quillen

metrics.

2.1. The Gauss map.
Notation Let

Π : P(Ω1
X ⊗ π∗TS) → X : the projective bundle associated with Ω1

X ⊗ π∗TS,
Π∨ : P(TX)∨ → X : the dual of P(TX).
Then the fiber P(TX)∨x is the set of all hyperplanes of TxX containing 0x;

P(Ω1
X ⊗ π∗TS) = P(Ω1

X) ∼= P(TX)∨.

Definition. Define the Gauss maps

ν : X \ Σπ → P(Ω1
X ⊗ π∗TS), µ : X \ Σπ → P(TX)∨

by

ν(x) := [dπx] =

[
n∑
i=0

∂π

∂zi
(x) dzi ⊗ ∂

∂t

]
, µ(x) := [TxXπ(x)].

Under the identification P(Ω1
X ⊗ π∗TS) ∼= P(TX)∨, one has ν = µ.

2.2. Description of the relative tangent bundle using Gauss maps.
Notation Let

H = OP(TX )∨(1) : the hypeplane bundle of P(TX)∨,
U : the universal hyperplane bundle of (Π∨)∗TX satisfying the exact sequence

F : 0 −→ U −→ (Π∨)∗TX −→ H −→ 0,

gU : the Hermitian metric on U induced from (Π∨)∗gX ,
gH : the Hermitian metric on H induced from (Π∨)∗gX .

Lemma. The following identity holds on X \ Σπ

(TX/S, gX/S) = µ∗(U, gU ).

Proof. The assertion follows from the identities

TxXπ(x) = {v ∈ TxX; dπx(v) = 0}, (gX/S)x = gX |TxXπ(x) . �

Notation Let
L := OP(Ω1

X⊗π∗TS)(−1) : the tautological line bundle on P(Ω1
X ⊗ π∗TS),

gS : A Hermitian metric on S,
gL : the Hermitian metric on L induced from Π∗(gΩ1

X
⊗ π∗gS) by the inclusion

L ⊂ Π∗(Ω1
X ⊗ π∗TS).

Lemma. The following identity holds on X \ Σπ

−ddc log ‖dπ‖2 = ν∗c1(L, gL).

Proof. The assertion follows from the fact that dπ is a nowhere vanishing holo-
morphic section of ν∗L|X\Σπ . �
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2.3. Resolution of the indeterminacy of the Gauss maps.

Proposition. There exist:
X̃ : a compact Kähler manifold,
E ⊂ X : a divisor of normal crossing,
q : X̃ → X : a birational holomorphic map
ν̃ : X̃ → P(Ω1

X ⊗ π∗TS), µ̃ : X̃ → P(TX)∨ : holomorphic maps
such that
(1) q|

�X\q−1(Σπ) : X̃ \ q−1(Σπ) → X \ Σπ is an isomorphism;
(2) q−1(Σπ) = E;
(3) ν̃ = ν ◦ q, µ̃ = µ ◦ q on X̃ \ E;
(4) ν̃ = µ̃ under the natural isomorphism P(Ω1

X ⊗ π∗TS) ∼= P(TX)∨. �

Proof. Since Σπ is an analytic subset of X, the mappings

ν : X \ Σπ → P(Ω1
X ⊗ π∗TS), µ : X \ Σπ → P(TX)∨

extend to meromorphic mappings

ν : X ��� P(Ω1
X ⊗ π∗TS), µ : X ��� P(TX)∨,

respectively. Now the assertion follows from Hironaka’s theorem. �

Notation Set

π̃ := π ◦ q, X̃t := π̃−1(t), Et := E ∩ X̃t, t ∈ S.

Then E = �s∈∆Es.

Let IΣπ be the ideal sheaf of the critical locus Σπ:

IΣπ = OX

(
∂π

∂z0
(z), · · · , ∂π

∂zn
(z)
)
, ∀ p ∈ Σπ.

Let IE be the ideal sheaf of E. Then

IE = q−1IΣπ .

Lemma. The following equation of currents on X̃ holds

ddc(q∗ log ‖dπ‖2) = ν̃∗c1(L, gL) − δE .

Proof. Since ν̃∗L = q∗ν∗L, q∗dπ extends to a holomorphic section of ν̃∗L with
zero divisor E. Hence the assertion follows from the Poincaré-Lelong formula. �
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§3. The main results.

3.1. A function space.
Notation Let

0 ∈ ∆,
[0] : the holomorphic line bundle [0] on S defined by the divisor 0,
‖ · ‖ : a Hermitian metric on [0],
σ[0] : the canonical section of [0] with zero divisor 0.

Define a functioin space B(S, 0) ⊂ C0(S) by

B(S, 0) := C∞(S) ⊕
⊕

r∈Q∩(0,1]

n⊕
k=0

‖σ[0]‖2r(log ‖σ[0]‖)k C∞(S).

For F ∈ B(S, 0), there exist r1, . . . , rm ∈ Q ∩ (0, 1] and f0, fl,k ∈ C∞(S), l =
1, . . . ,m, k = 0, . . . , n, such that

F = f0 +
m∑
l=1

n∑
k=0

‖σ[0]‖2rl(log ‖σ[0]‖)k fl,k.

3.2. The main term of the singularity of Quillen metrics.

Theorem 1 [Y2]. Let σ be a local holomorphic section of λ(ξ) which does not
vanish at 0 ∈ ∆. Then the following identity holds near 0 ∈ S

log ‖σ‖2
Q,λ(ξ) ≡

(∫
E0

µ̃∗
{

Td(U)
Td(H) − 1
c1(H)

}
q∗ch(ξ)

)
log ‖σ[0]‖2 mod B(S, 0).

Here Td(·), ch(·) denotes the Todd genus and the Chern character, respectively. �

3.3. The Knudsen-Mumford section.
Identify X with the graph of π : X → S

X = Γ = {(x, s) ∈ X × S; π(x) = s}.

Notation Let
[Γ] : the holomorphic line bundle on X × S associated with the divisor Γ,
sΓ ∈ H0(X × S, [Γ]) : the defining section of [Γ], i.e., div(sΓ) = Γ.
i : Γ ↪→ X × S : the embedding,
p1 : X × S → X, p2 : X × S → S : the projections.

On X × S, one has the following exact sequence of coherent sheaves:

0 −→ OX×S([Γ]−1 ⊗ p∗1ξ)
⊗sΓ−−→ OX×S(p∗1ξ) −→ i∗OΓ(p∗1ξ) −→ 0.

6
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Let
λ(p∗1ξ) : the determinant of R(p2)∗p∗1ξ,
λ([Γ]−1 ⊗ p∗1ξ) : the determinant of R(p2)∗([Γ]−1 ⊗ p∗1ξ),
λ(ξ) : the determinant of Rπ∗ξ.

Definition. Under the identification ξ ∼= p∗1ξ|Γ induced by the isomorphism X ∼= Γ,
the holomorphic line bundle over S

λ := λ
(
[Γ]−1 ⊗ p∗1ξ

)⊗ λ(p∗1ξ)
−1 ⊗ λ(ξ)

has a nowhere vanishing holomorphic section σKM , called the Knudsen-Mumford
section [KM], [BGS], [BL].

3.4. The constant term of the asymptotic expansion.
Notation Let

α : a local section of λ(p∗1ξ) ⊗ λ([Γ]−1 ⊗ p∗1ξ)
−1 without zeros near 0 ∈ S,

σ : a local section of λ(ξ) without zeros near 0 defined by

σ := σKM ⊗ α

V , U : small neiborhoods of 0 such that V ⊂ U ,
h[Γ] : a Hermitian metric on [Γ] such that

h[Γ](sΓ, sΓ)(w, t) =
{ |π(w) − t|2 if (w, t) ∈ π−1(V) × V ,

1 if (w, t) ∈ (X \ U) × V .

In what follows, we consider Quillen metrics with respect to gX , gX/S , hξ, h[Γ].
Then log ‖α‖2

Q and log ‖β‖2
Q are C∞-functions near 0.

Theorem 2 [Y2]. Let F be a generic fiber of π : X → S. Then the following
identity holds

lim
s→0

[
log ‖σ(s)‖2

Q,λ(ξ) −
(∫

E0

µ̃∗
{

Td(U)
Td(H) − 1
c1(H)

}
q∗ch(ξ)

)
log ‖σ[0](s)‖2

]

= log ‖α(0)‖2
Q−∫

X×{0}

Td(TX, gX) ch(ξ, hξ)
Td([Γ], h[Γ])

log ‖sΓ‖2|X×{0}+
∫
�X0

µ̃∗T̃d(F ; gU , (Π∨)∗gX , gH) q∗ch(ξ, hξ)+
∫
�X

π∗(log ‖σ[0]‖2) {ν̃∗Td(−c1(L, gL)) − µ̃∗Td(U, gU )} q∗ch(ξ, hξ)+
∫
�X

(q∗ log ‖dπ‖2) π∗c1([0], ‖ · ‖) µ̃∗Td(U, gU ) ν̃∗
{

Td(−c1(L, gL)) − 1
−c1(L, gL)

}
q∗ch(ξ, hξ)

−
∫
X

Td(X)R(X) ch(ξ) +
∫
F

Td(F )R(F ) ch(ξ).

7
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Here T̃d(F ; gU , (Π∨)∗gX , gH) denotes the Bott-Chern secondary class [BGS] asso-
ciated with the exact sequence of holomorphic vector bundles

F : 0 → U → (Π∨)∗TX → H → 0

and the Hermitian metrics gU , (Π∨)∗gX , gH such that

ddcT̃d(F ; gU , (Π∨)∗gX , gH) = (Π∨)∗Td(TX, gX) − Td(U, gU ) Td(H, gH),

and R(·) denotes the Gillet-Soulé genus [S] associated with the formal power series

R(x) :=
∑

m odd≥1

(
2ζ ′(−m) + ζ(−m)(1 +

1
2

+ · · · + 1
m

)
)
xm

m!
, ζ(s) :=

∞∑
n=1

1
ns
.

Remark. Theorem 2 is a generalization of [B, Th. 5.12].

3.5. Examples.

Example 1: Critical points defined by a quadric polynomial of rank 2.
Let 0 ∈ ∆. Assume that for every x ∈ Σπ ∩ X0, there exists a system of

coordinates (z0, . . . , zn) centered at x such that

π(z) = z0z1.

Hence Σπ ⊂ X is a complex submanifold of codimension 2. Let NΣπ/X be the
normal bundle of Σπ inX. In [B, Def. 5.1, Prop. 5.2], Bismut introduced the additive
genus E(·) associated with the generating function

E(x) :=
Td(x) Td(−x)

2x

(
Td−1(x) − 1

x
+

Td−1(−x) − 1
x

)
, Td−1(x) :=

1 − e−x

x
.

Theorem 3 [B, Th. 5.9]. The following identity holds:

log ‖σ(t)‖2
λ(ξ),Q ≡ 1

2

(∫
Σπ∩X0

−Td(TΣπ)E(NΣπ/X) ch(ξ)
)

log |t|2 mod B(S, 0).

Example 2: Isolated critical points.
Let 0 ∈ ∆. Assume that Σπ ∩ X0 consists of isolated critical points. Hence

Sing(X0) consists of isolated critical points.
Since Σπ is discrete, we may identify P(Ω1

X) and P(TX) with the trivial projec-
tive bundle on a neighborhood of Σπ ∩X0 by fixing a system of coordinates near
Σπ ∩X0. Under this trivialization, we consider the Gauss maps ν and µ only on a
small neighborhood of Σπ ∩X0. Then we have the following on a neighborhood of
each p ∈ Σπ ∩X0:

µ(z) = ν(z) =
(
∂π

∂z0
(z) : · · · :

∂π

∂zn
(z)
)
.

For a formal power series f(x) ∈ C[[x]], denote by f(x)|xm the coefficient of xm.
Let µ(π, p) ∈ N be the Milnor number of the isolated critical point p of π.
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Theorem 4 [Y1, Main Th.]. The following identity holds:

log ‖σ‖2
λ(ξ),Q ≡ (−1)n

(n+ 2)!
rk(ξ)

∑
p∈Sing(X0)

µ(π, p) log |t|2 mod B(S, 0).

Remark. In [B], the constant term of the asymptotic expansion was compared
with the Quillen metric on the determinant of cohomologies of the normalization of
X0. It seems to be interesting to consider the same problem for general semi-stable
degenerations.

§4. Sketch of the proofs of Theorems 1 and 2.
Notation Let

Nt = NXt/X : the normal bundle of Xt in X,
N∗
t = N∗

Xt/X
: the conormal bundle of Xt in X,

dπ|Xt ∈ H0(Xt, N
∗
t ) : a holomorphic section generating N∗

t for t ∈ So,
hN∗

t
: the Hermitian metric on N∗

t defined by

hN∗
t
(dπ|Xt , dπ|Xt) = 1,

hNt : the Hermitian metric on Nt induced from hN∗
t
.

When t ∈ S is sufficiently close to 0 ∈ ∆, one has the following identity by the
embedding theorem of Bismut-Lebeau [BL]:

(BL)

log ‖σKM (t)‖2
Q,λ =

∫
X×{t}

−Td(TX, gX) ch(ξ, hξ)
Td([Γ], h[Γ])

log ‖sΓ‖2|X×{t}

+
∫
Xt

T̃d(Et; gXt , gX , hNt) ch(ξ, hξ)

−
∫
X

Td(X)R(X) ch(ξ) +
∫
F

Td(F )R(F ) ch(ξ).

Here Et is an exact sequence of holomorphic vector bundles on Xt

Et : 0 −→ TXt −→ TX|Xt −→ Nt −→ 0,

and T̃d(Et; gXt , gX , hNt) is the Bott-Chern secondary class associated with the
Todd genus, Et, and Hermitian metrics gXt , gX , hNt .

The first term of the r.h.s. of (BL) is continuous in t ∈ S. The second term of
the r.h.s. of (BL) can be represented as∫

Xt

T̃d(Et; gXt , gX , hNt) ch(ξ, hξ)

=
∫
Xt

µ̃∗T̃d(F ; gU , (Π∨)∗gX , gH) q∗ch(ξ, hξ)

+
∫
Xt

µ̃∗Td(U, gU ) ν̃∗
{

Td(−c1(L, gL)) − 1
−c1(L, gL)

}
q∗ch(ξ, hξ) (q∗ log ‖dπ‖2).

Hence Theorems 1 and 2 follow from the following:
9
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Claim. Let ϕ be a ∂-closed and ∂̄-closed C∞ (n, n)-form on X̃. Then

π̃∗(q∗(log ‖dπ‖2)ϕ)(0,0)(t) −
(∫

E0

ϕ

)
log ‖σ[0]‖2 ∈ B(S, 0).

Moreover,

lim
s→0

{∫
�Xs

q∗(log ‖dπ‖2)ϕ−
(∫

E0

ϕ

)
log ‖σ[0](s)‖2

}

= −
∫
�X

(π∗ log ‖σ[0]‖2) ν̃∗c1(L, gL) ∧ ϕ+
∫
�X

q∗(log ‖dπ‖2)ϕ ∧ π∗c1([0], ‖ · ‖). �

To prove Claim, the following result is used, which itself seems to be of interest.

Lemma. Let F (z) be a holomorphic function defined on a neighborhood Ω of 0 ∈
C
n. Let χ(z) ∈ C∞

0 (Ω) and set

ψ(t) :=
∫

Cn

log |F (z) − t|2 χ(z) dµ, t ∈ C,

where dµ is the Lebesgue measure on Cn. Then there exist r1, . . . , rm ∈ Q ∩ (0, 1]
and f0(t), fl,k(t) ∈ C∞(C), l = 1, . . . ,m,k = 0, . . . , n, such that

ψ(t) = f0(t) +
m∑
l=1

n∑
k=0

|t|2rl(log |t|)k fl,k(t), |t| � 1.

To prove this last lemma, a theorem of Barlet [Ba] plays a crucial role.

§5. An application to mirror symmetry.

5.1 Mirror quintics.
Let p : X → P1 be the pencil of quintic threefolds in P4:

X := {([z], ψ) ∈ P
4 × P

1; Fψ(z) = 0}, p = pr2.

Fψ(z) := z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5ψ z0z1z2z3z4.

Identify Z5 with the set of fifth roots of unity:

Z5 = {α ∈ C; α5 = 1}.

The group of projective transformations

G :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

a0 0 0 0 0
0 a1 0 0 0
0 0 a2 0 0
0 0 0 a3 0
0 0 0 0 a4

⎞
⎟⎟⎟⎠ ∈ PSL(5); ai ∈ Z5

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∼= Z
3
5

acts projectively on p : X → P1 and preserves the fibers of p.
10
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Fact (Batylev, Morrison). There exists a resolution

q : W → X/G

such that qψ : Wψ → Xψ/G is a crepant resolution for ψ5 �= 1,∞, i.e.,

KWψ
= q∗ψKXψ/G

∼= OWψ
.

The choice of a resolution as above is not unique. In what follows, we fix such a
resolution. We set π := p ◦ q. The family of Calabi-Yau threefolds

π : W → P
1

is called a family of mirror quintics.

5.2 Predictions of Bershadsky-Cecotti-Ooguri-Vafa.
Set

Ωψ := 5ψ
z4 dz0 ∧ dz1 ∧ dz2
∂Fψ(z)/∂z3

∈ H3(Wψ,ΩWψ
).

Let

F top
1 :=

(
ψ

�0

) 62
3

(ψ5 − 1)−
1
6
dψ

dt
,

where
�0 :=

∫
γ0

Ωψ

and where the mapping

ψ �→ t :=

∫
γ1

Ωψ∫
γ0

Ωψ

with certain γ0, γ1 ∈ H3(Wψ,Z) is the mirror map. Then the mirror map is given
by the following explicit formula: For |ψ| � 1,

q = e2π
√−1t = exp

(
y1(ψ)
y0(ψ)

)
,

where

y0(ψ) =
∞∑
n=1

(5n)!
(n!)5(5ψ)5n

,

y1(ψ) = log
1

5ψ
+ 5

∞∑
n=1

(5n)!
(n!)5

⎡
⎣ 5n∑
j=n+1

1
j

⎤
⎦ 1

(5ψ)5n
.

Define the BCOV torsion of Wψ by

τBCOV (Wψ) :=
∏
p≥0

τ (Wψ,Ω
p

Wψ
)(−1)pp,

where Wψ is equipped with a Ricci-flat Kähler metric with volume 1.
11
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Conjecture (Bershadsky-Cecotti-Ooguri-Vafa [BCOV1,2]).
(1) The following identity holds

F top
1 = Const.

{ ∞∏
s=1

η(qs)ds(1 − qs)
ns
12

}−2

where

dr = #{elliptic curves of degree d in generic quintic ⊂ P
4},

ns = #{rational curves of degree d in generic quintic ⊂ P
4}.

(2) The following identity holds

τBCOV (Wψ) = Const.
∥∥∥∥ψ− 62

3 (ψ5 − 1)
1
6 Ω

62
3
ψ ⊗ d

dψ

∥∥∥∥
2

= Const.

∥∥∥∥∥(F top
1 )−1

(
Ωψ
�0

) 62
3

⊗ d

dt

∥∥∥∥∥
2

,

where the norm associated with the L2-metric on the Hodge bundle and the Weil-
Petersson metric on the tangent bundle of the moduli space are considered in the
right hand side.

Remark. In Conjecture (1), the numbers dr and ns should be understood as the
Gromov-Witten invariants of genus 1 and 0, respectively.

By BCOV’s predictions (1), (2), the Gromov-Witten invariants of genus 0 and 1
for generic quintics in P4 and the BCOV torsion of the mirror quintics are expected
to satisfy the following relation:

τBCOV (Wψ) = Const.

∥∥∥∥∥∥
{ ∞∏
s=1

η(qs)ds(1 − qs)
ns
12

}2 (
Ωψ
�0

) 62
3

⊗ d

dt

∥∥∥∥∥∥
2

,

where

η(q) = q
1
24

∞∏
n=1

(1 − qn)

is the Dedekind η-function.
As an application of Theorem 1, we can prove:

Theorem 5 [FLY]. BCOV’s Conjecture (2) holds.

Remark. BCOV’s Conjecture (1) is studied by J. Li and A. Zinger [LZ], in which
Conjecture (1) is verified when s ≤ 4.
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On certain classes of nonlinear differential
equations

Shun Shimomura ∗

1 Introduction

Consider the n-th order nonlinear differential equation

(1.1)n y(n) = R(x, y, y′, ..., y(n−1))

( ′ = d/dx), where the right-hand member is a rational function of x, y and its
derivatives with complex coefficients. It is well-known ( [2, §§3.2, 3.3], [3, §12.5])
that, for each solution of first order equation (1.1)1, every movable singularity
is at most an algebraic branch point; where a movable singularity means one
depending on initial data. In particular, (1.1)1 admits the Painlevé property,
namely, for each solution, every movable singularity is a pole, if and only if it
is of Riccati type (see [2], [3], [5, Theorem 10.2]). Now let us say that equation
(1.1)n admits the quasi-Painlevé property if, for each solution, every movable
singularity is at most an algebraic branch point. For convenience, we regard a
pole as a special case of algebraic branch point. As mentioned above, all the first
order equations of the form (1.1)1 admit the quasi-Painlevé property. However,
for second order equations, the situation is different. For example, the equation

y′′ = (1 − κ− κyκ)(y′)2/y, κ ∈ Z \ {0}

has a general solution y = (C1 + log(x−C2))
1/κ with a logarithmic branch point

x = C2; and

y′′ = (1 + i)(y′)2/y (i =
√−1),

has a general solution y = C1(x − C2)
i with an essential singularity x = C2 (for

movable essential singularities of second order equations, see [4]). The equation

(1.2) y′′ = 6y2 − g2/2

∗Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-
8522, Japan

e-mail: shimomur@math.keio.ac.jp
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2

is a typical example admitting the Painlevé property. Indeed a general solution is
expressed by y = ℘(x−C1, g2, C2) or by an exponential function, where ℘(x, g2, g3)
(g3

2 − 27g2
3 �= 0) is the Weierstrass ℘-function

℘(x, g2, g3) = x−2 +
∑

(m,n)∈�2\{(0,0)}

(
(x− Ωmn)−2 − Ω−2

mn

)
,

Ωmn = mω1(g2, g3) + nω2(g2, g3), Im(ω2(g2, g3)/ω1(g2, g3)) > 0. Also it is well-
known that the Painlevé equations admit the Painlevé property. The first and
the second Painlevé equations are

y′′ = 6y2 + x,(PI)

y′′ = 2y3 + xy + α.(PII)

Equation (1.2) is a special case of the following

(1.3) y′′ = a0y
2k + b0, a0 �= 0, k ∈ N,

which has a general solution expressed by the Abelian integral

x− C0 =

∫ y

y0

ds√
2a0(2k + 1)−1s2k+1 + 2b0s+ C

.

Every movable singularity is an algebraic branch point; namely (1.3) admits the
quasi-Painlevé property. We present a discrete class of second order equations
with the quasi-Painlevé property which contains (PI) as a special case; and we
show some basic properties of solutions.

2 Results

Consider an equation of the form

(Ek) y′′ =
2(2k + 1)

(2k − 1)2
y2k + x,

where k ∈ N. Equation (E1) is nothing but (PI).

Theorem 2.1. For every k ∈ N, equation (Ek) admits the quasi-Painlevé prop-
erty.

For each solution, an expression around a movable singularity is given by

Theorem 2.2. Let y(x) be an arbitrary solution of (Ek), and suppose that x0 is
a movable algebraic branch point of y(x). Then, around x = x0,

(2.1) y(x) = ξ−2/(2k−1) − (2k − 1)2

2(6k − 1)
x0ξ

2 + cξ4k/(2k−1)

+
(2k − 1)2

2(2k − 3)(4k − 1)
ξ3 +

∑
j≥6k−2

cjξ
j/(2k−1), ξ = x− x0,

where c is an integration constant, cj (j ≥ 6k − 2) are polynomials of c and x0,
and ξ1/(2k−1) denotes an arbitrary branch of σ such that σ2k−1 = ξ.
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Every solution of (PI) is transcendental, and there exists no entire solution.
These facts are extended as follows:

Theorem 2.3. Equation (Ek) admits no entire solution. Moreover, if k ≥ 2,
then equation (Ek) admits no meromorphic solution.

Theorem 2.4. Every solution of (Ek) is transcendental.

As mentioned above, if k ≥ 2, an arbitrary solution of (Ek) is a many-valued
function, but is not an algebraic one. For the many-valuedness, we have

Theorem 2.5. Suppose that k ≥ 2. For any ν ∈ N, equation (Ek) admits a
two-parameter family of solutions which are at least ν-valued.

Furthermore the equations

y′′ =
k + 1

k2
y2k+1 + xyk + α

constitute a class containing (PII) as a special case, and have analogous proper-
ties.

3 Lemmas

Consider the system of differential equations

(3.1) dv1/dt = F1(t, v1, v2), dv2/dt = F2(t, v1, v2),

where Fl(t, v1, v2) (l = 1, 2) are analytic in a neighbourhood of (a0, b0, c0) ∈ C
3.

Then we have the following lemma ([2, §3.2], [3, §12.3]).

Lemma 3.1. Let C (⊂ C) be a curve with finite length terminating in t = a0.
Suppose that a solution (v1, v2) = (ϕ(t), ψ(t)) of (3.1) has the properties below:

(i) for each point τ ∈ C \ {a0}, ϕ(t) and ψ(t) are analytic at t = τ ;
(ii) there exists a sequence {aν}ν∈� ⊂ C \ {a0}, aν → a0 (ν → ∞) such that

(ϕ(aν), ψ(aν)) → (b0, c0).
Then, ϕ(t) and ψ(t) are analytic at t = a0.

The following lemma due to Clunie is useful in the study of nonlinear differ-
ential equations (see [5, Lemma 2.4.2]).

Lemma 3.2. Suppose that the differential equation wp+1 = P (z, w), p ∈ N

admits a meromorphic solution w = f(z), where P (z, w) is a polynomial of
z, w,w′, ..., w(q). If the total degree of P (z, w) with respect to w and its deriva-
tives does not exceed p, then m(r, f) = O(log T (r, f) + log r) as r → ∞, r �∈ E,
where E ⊂ (0,∞) is an exceptional set with finite linear measure.
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4 Proofs of Theorems 2.1 and 2.2

Let y(x) be an arbitrary solution of (Ek).
Theorem 2.2 is obtained by substituting a Puiseux series into (Ek) and determin-
ing its coefficients.

Around a movable singular point x = x0, we write (2.1) in the form

(4.1) y(x) = ξ−2/(2k−1) − (2k − 1)2

2(6k − 1)
xξ2 + cξ4k/(2k−1)

+
(2k − 1)4

(2k − 3)(4k − 1)(6k − 1)
ξ3 + · · · ,

and hence

(4.2) y′(x) = − 2

2k − 1
ξ−(2k+1)/(2k−1) − (2k − 1)2

6k − 1
xξ

+
4kc

2k − 1
ξ(2k+1)/(2k−1) +

(2k − 1)2(16k2 − 10k + 3)

2(2k − 3)(4k − 1)(6k − 1)
ξ2 + · · · .

Denote by ±u(x) each branch defined by y(x) = u(x)−2 around x = x0. From
(4.1) and (4.2), we have

y′(x) = ∓ 2

2k − 1
u(x)−(2k+1)

[
1 +

(2k − 1)2

4
xu(x)4k − 6k + 1

2
cu(x)4k+2 + · · ·

]

+
(2k − 1)2

2(2k − 3)
u(x)4k−2.

Viewing these identities, we define new unknowns u, v by

y = u−2,(4.3)

y′ = ∓2u−(2k+1)

2k − 1

[
1 +

(2k − 1)2

4
xu4k + u4k+2v

]
+

(2k − 1)2

2(2k − 3)
u4k−2.(4.4)

Then, equation (Ek) is equivalent to the system

du

dx
= ±u−2k+2Φ±(x, u, v),

dv

dx
= ∓u2k−1Ψ±(x, u, v),

with

Φ±(x, u, v) =
1

2k − 1

[
1 +

(2k − 1)2

4
xu4k + u4k+2v ∓ (2k − 1)3

4(2k − 3)
u6k−1

]
,

Ψ±(x, u, v) =
[(2k − 1)3

4
x+ (2k + 1)u2v ∓ (2k − 1)4

2(2k − 3)
u2k−1

]

×
[2k − 1

4
x+

u2v

2k − 1
∓ (2k − 1)2

4(2k − 3)
u2k−1

]
.
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For each solution (u, v) = (u(x), v(x)) corresponding to the solution y(x) of (Ek),
we regard (x, v) as a function of u; which is a solution of the system

(4.5)
dx

du
= ± u2k−2

Φ±(x, u, v)
,

dv

du
= −u

4k−3Ψ±(x, u, v)

Φ±(x, u, v)
.

From (4.3) and (4.4), we have

[
y′ − (2k − 1)2

2(2k − 3)
y−(2k−1)

]2
=

4y2k+1

(2k − 1)2

[
1 +

(2k − 1)2

4
xy−2k + y−(2k+1)v

]2
,

which is written in the form

(4.6) V =
4y−(2k+1)

(2k − 1)2
v2 +

( 8

(2k − 1)2
+ 2xy−2k

)
v

+
(2k − 1)2

4
x2y−2k+1 − (2k − 1)4

4(2k − 3)2
y−2(2k−1)

with

(4.7) V = (y′)2 − (2k − 1)2

2k − 3
y−(2k−1)y′ − 4y2k+1

(2k − 1)2
− 2xy.

Substituting the solution y(x) of (Ek) into (4.7), we get the auxiliary function
V (x) with the following property.

Proposition 4.1. If y(x)−1 is bounded along a curve Γ, then V (x) is also bounded
along Γ.

Derivation of Theorem 2.1. Suppose that y(x) admits a singular point
x = a0, and let C be a segment terminating in x = a0 such that each point on
C \ {a0} is at most an algebraic branch point of y(x). For each algebraic branch
point on C \ {a0}, replacing a part of C around it by a suitable small semi-circle,
we get a curve Γ with finite length terminating in a0 such that y(x) is analytic
along Γ \ {a0}. According to the value A = lim infx→a0, x∈Γ |y(x)|, we divide into
three cases: (i) 0 < A <∞, (ii) A = ∞, (iii) A = 0.

Case (i): 0 < A < ∞. By Proposition 4.1, the function V (x) is bounded
along Γ near x = a0. Take a sequence {an}n∈� ⊂ Γ such that an → a0 and that
y(an) → y0 (�= 0,∞). By (4.7), {y′(an)}n∈� is also bounded, and hence there
exists a subsequence {ãn}n∈� ⊂ Γ satisfying ãn → a0, y(ãn) → y0, y

′(ãn) → y1

(�= ∞). By Lemma 3.1, y(x) is analytic at x = a0.
Case (ii): A = ∞. Since y(x) → ∞ as x→ a0 along Γ, the function V (x) is

bounded along C near x = a0. Note that (4.6) is a quadratic equation with respect
to v, which admits two solutions v+(x) and v−(x) analytic along Γ \ {a0}; one is
bounded along Γ and the other tends to ∞ as x→ a0 along Γ. Suppose that v−(x)
is bounded along Γ, and let u−(x) be the branch of u(x) = y(x)−1/2 corresponding
to v−(x). By (4.7), |u′−(x)| = |y′(x)y(x)−3/2/2| ∼ (2k−1)−1|y(x)k−1| �= 0,∞ along
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Γ \ {a0}. Denote by x = x(u) the inverse function of u = u−(x). Then, x = x(u)
and v = v−(x(u)) are analytic functions of u along u−(Γ)\{0} = {u = u−(x) |x ∈
Γ \ {a0}} with the properties:

(ii.a) x(u) → a0 as u→ u−(a0) = 0 along u−(Γ);
(ii.b) v−(x(u)) is bounded along u−(Γ).

Choose a sequence {bn}n∈� ⊂ u−(Γ) satisfying bn → u−(a0) = 0, x(bn) → a0,
v−(x(bn)) → v0 (�= ∞). By the fact that (x(u), v−(x(u))) is a solution of (4.5)
along u−(Γ) \ {0}, and by Lemma 3.1, the function x(u) is analytic at u = 0,
which implies that x = a0 is at most an algebraic branch point of y(x) = u(x)−2.

Case (iii): A = 0. By the same argument as in the proof of the Painlevé
property of (PI), we can reduce this case to either (i) or (ii) (see [6]). Consequently
x = a0 is at most an algebraic branch point of y(x).

5 Proof of Theorem 2.3

Suppose that (Ek) admits an entire solution y∗(x). If y∗(x) is a polynomial, then
y∗(x) = c0x

d + o(xd−1), d ∈ N∪{0}, c0 �= 0 around x = ∞. Substituting this into
(Ek), we get 2dk = 1, which is a contradiction. Hence y∗(x) is transcendental and
entire. Observe that m(r, y∗) = T (r, y∗). By Lemma 3.2, there exists a positive
number K0 such that T (r, y∗) ≤ K0 log r outside an exceptional set E0 with
total length µ0 < ∞. For each r, we may choose a number r′(r) ≥ r satisfying
r′(r) − r ≤ 2µ0 and r′(r) �∈ E0. Hence

T (r, y∗) ≤ T (r′(r), y∗) ≤ K0 log(r′(r)) ≤ K0 log(r + 2µ0) = O(log r)

for r > 0, which contradicts the transcendency of y∗(x). This implies that (Ek)
admits no entire solution. Furthermore, by Theorem 2.2, for k ≥ 2, every solution
of (Ek) has no pole, so that there exists no meromorphic solution.

6 Proof of Theorem 2.4

Suppose that (Ek) admits an algebraic solution ỹ(x). For each branch point
xι �= ∞, the degree of ramification is eι − 1 = 2k − 2. Furthermore, at x = ∞,

ỹ(x) = γkx
1/(2k) +

∞∑
j=0

bjx
−j/(2k), γk �= 0,

which implies that the degree of ramification for x = ∞ is e∞−1 = 2k−1. These
facts contradict the Riemann-Hurwitz formula

2(1 − g) = 2n−
∑
ι �=∞

(eι − 1) − (e∞ − 1).

Therefore (Ek) admits no algebraic solution.
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7 Proof of Theorem 2.5

Suppose that the solution y(x) of (Ek) satisfies the initial condition y(0) = y0,
y′(0) = y1. For ε > 0, by y = ((2k − 1)2/4)1/(2k−1)ε−1Y and x = ε(2k−1)/2t,
equation (Ek) and y(x) are changed into, respectively,

(7.1) Ÿ = (k + 1/2)Y 2k + (4(2k − 1)−2)1/(2k−1)ε3k−1/2t

(˙ = d/dt) and its solution Yε(t) satisfying

Yε(0) = χ0(ε) := (4(2k − 1)−2)1/(2k−1)εy0,

Ẏε(0) = χ1(ε) := (4(2k − 1)−2)1/(2k−1)ε(2k+1)/2y1.

Putting ε = 0 in (7.1), we have

(7.2) Ÿ = (k + 1/2)Y 2k.

The solution Y0(t) of (7.2) with Y0(0) = χ0(ε), Ẏ0(0) = χ1(ε) satisfies

(7.3) Ẏ 2 = Y 2k+1 + χ1(ε)
2 − χ0(ε)

2k+1.

If χ1(ε)
2 − χ0(ε)

2k+1 �= 0, then Y0(t) is expressible by the Abelian integral

t =

∫ Y0(t)

χ0(ε)

ds√
s2k+1 + χ1(ε)2 − χ0(ε)2k+1

,

and hence Y0(t) is infinitely many-valued. Using this fact and an asymptotic
property of (7.1), we derive the conclusion of the theorem.
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( �`�¡��©���£����������¡�;�È���æ� £������®ÍD���y� �¤�`�¡����� � �;±D�B¦;����£�� �*)­�I¦4�®�¤��ª����j�����;���j�=�

¥����Ò�����¡��� ¥`�4�®���¤�j����� º k # ½ � £����é�ç��� ±2� ¥`�j�,�;¥`�����¡�B� �j�	�¡��� � � £®� �,���¡�¡�I«Y�
�¡��©�ÊA���¤�=� �¡��� Á,+.- ã0/2143 äxÝ65ÅÝDä7/83:9Wäxà�á�â<;{Þ�=_á�å�á>9:1°ä7?A@­ÞPåCBD3WÝFE43HGI9JB°ÞPàF3H/}ßWäAK�ÞPÝ
áLK_ÞPàME®áDKH/NK_ÞPàME2â�3POµà�á�ÝDä ãçÞPâQB ñ BD3ARD3WÝ�3Wß`á�/83:9{ãçÞPßS9IÞPàF3NEDÞPäxÝ4/0 Ù ñUT
B°ÞV3:9U/21°ä�9�äxàME2â»åW/21®á�/�/2143Wß�3X3PO;ä�9H/79�áY1DÞPâ¡ÞPàÈÞPß8E41°äAK{à�áHE ì Á Ð ï ñ[Z ä7/71
 Ù ìT¸}Ð À�\�]
Ñ £D���®³°����� ¶ ¥`�4�®¦2ý¿� � £®�¤�;¥`�¤�����������j�¡�¤��¥���£D�B� ��£��¤¥`���WÏ4���`� �{�`�;���È���;�°�

�¤�;�®�`�_�B�A�·£��;���;����¥�ª�£������È��ªëì Á Ð ï ñ ���'��£�� � �;±��B¦����`£��y�8)��I¦°���j�éª����j�4�
���;���j��¥��¡���¡���®�¤©;�j���¤¥��B� ���B�����;����ª2�;�¡���^ !��� ñ�l�¶ �®���y���¡�·�������j�¡�ç�B¥·� £D�P�
ì²�ç����±2���_£��;�`�¤�²���������_£²� «Y�ç¦���£D�B�_ ��¡�Y������£����¡����©;�n�;¥­�B�Î���ç���=�­�¡����£��
�¤���;����¥`�Y���G� £®�Î�¡����©;� la` �2�¤�;��¥`��� ¾ �P�TÍD¥��=�Å���'�¡�°�;³A�0��±��`��¥��{� £��B�Å���¤©��¤���j¥ ���W¦
���$� £®� � �;±D�B¦;����£�� �*)­�I¦4�®�¤��ª��`�¤���������W� ¥������B�Ç�;����ª2�;�¡���b ��`£��;�������;���y¦������
ª���¦���£����WÏ4���`� �j���¤���������®�;�4���j�;���=�_������£����¡�;���;¥�ª®£��¡���È�Bª²� ���`�;����ªD��¥=�����
ñ �}�B¥n�ç«Ç�ç¦É�B�c ������É��£��;�®�¡�²�®���·����ª®��¦È��£����WÏ4�¡�=� �¤�®�¤�����T�������4���j�;���`� �����
�È�Bª!ì Á Ð ï ñ «­£��;�`�����È��©����¤�;���¤�­�j�¡�;�`��� �d l
Ñ £A�����;�����¡�Î���¤��� ��ªs���`� �®���B���

e�|s�Df¤�°~(�hgæ�[�2�jik3H/ î =H3�álK_ÞPàME®áDKH/_K_ÞPàME2â�3PO�à�á�ÝDä ãçÞPâQB Tam Ù îon!p 9:9HG4àF3
/21®á�/q/2143näxÝ65ÅÝDä7/83:9Wäxà�á�âr;{Þ�=_á�å;á>9:1°ä7?A@­ÞPå�BD3WÝsE49V3HG�B°ÞPàF3H/}ßSäAK�ä�9tBD3ARD3WÝ�3Wß�á�/83�ÞPÝ
u�v îon
w 143WÝx/2143Wß�3d3PO;ä�9H/79{á�ÝgÞPÝ4?yK_ÞPÝr9H/Má�Ý4/z1DÞPâ¡ÞPàÈÞPß{E41°äAK�à�áHE²ì Á Ð ï î Z ä7/71

ìT¸$# À Ö mqn

k;l1�®l ��|�g6� �.�
� �æ�A�B�7|�} �[�2|2�
����û$�W� î ±2�����¤����ª����WÏë�È���®���,�;���²�¤ÊA����ª�ª2�¤�
«­����£���£®�¤¥������������È���W� ¥����!~ l ú �;¥Y�ç�B�_£É£����¡�;���;¥�ª®£��¡�n�È��ª!ì Á Ð ï î �����
�ç���_£²ªs�;����� Ø�Ù Ð¢«9� ���ç¦É�®�[«¢�¤���¡�j�����P� ��� £������;¥�� �B�0� £������¤¥`��ËB�B� ���0��ì
�B� Ø «­�y� £!¥��¤�`ªs�j�j�n� ��� £����¤���j�¡�����ç�������j��¥��¡���;�ÉÐ¢������~²�;� îÒl û$�j�nÃ¹±2�
���j�����`�n�B�0£��;���;����¥�ª�£������È�Bª��nì Á Ð ï ¸ î�� ~ À «­�y� £É±s�;�®�����¤�É���¤¥`��ËB�B����Ë;�j�
¸}� l � l �,�;¥Î�jË��¤¥=¦ëì Ù Ã���£��¤¥`���������A��� ±s�j¥ õ�� #{�`���_£É��£D�B�­� £��������¤ÊA�D��������¦
Ú¡Ú ��ì>� Ú�ÚæÛ¹õ £��;�������,�;¥����¡� Ø Ù Ð ÀWl ûæ�W� ì Á Ð ï î ±2���!�����4���j�;���`� �����
�È�Bª��¡����£��¡�T�j�����`�ÅÃ lk� �¡��ì[í�¸ msÀ Ö§ìT¸2� msÀ ��£��¡�'�È��ª�ì�¦°���¤�¡�®�0�����;�4�Â���;¥������
�}�����¡��¦����6����ª���ì[í Á Ô ï îÒl
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¸}�¤���¡�j�����B���¤��«­�y� £!¥��¤�`ªs�j�j��� �{� £®���j���¤���¡���¤�������W� ¥������;�!Ð§¥��j��ª l Ôø���®�!��£��
£��¤¥`���y� �¡�������W� ¥�������� îüÀ �¡��±s�;�®�����¤� l ú �;¥��ç���_£é���'� £���ìIí����jÍD�®�¤�ü��±2�[Ë��
� £������j¥��yË��P� ��Ë��{�¡���¤���ç��¥`��¦É±s���������j� ¾ �`�¡���j�ÈÔÓ�¡��¥��j���B����Ë��¤��¦²�¤�;��ªD���W���¡�üÐ ¾
����� ìIí Á Ð ï î �WÏ°���¤������� £®¥��;��©�£Õ� £���±2�;��������¥`¦ l Ñ £A����ì[í²�¡�{�é���;�°�
���;¥`�È���6�}��������¦É�¡�üÃ�� l �Â�9� £�� ¶ ���4�_£üª�¥������¤��ª��¡� £��;�¡�®���,��¥�Ã�� ¾ � £®�¡���¡��ª��¡���¤�
� £����SÏ®���`���¤���j�����'�{���;�4�Â�¤�;�®�`�_�B�A��£����¡�;���;¥�ª®£��¡�n�È��ª�� Á Ð ï î �¡��Ã l
Ñ £A��� Ál- ãX/7143��­â¡ÞVK:1SE2ßSäxÝ�KWä E2â�3N1DÞPâQB>9�ãçÞPß�Ã�� T /7143S3PO;ä�9H/83WÝ�K:3ëÞOãÉá ÝgÞPÝ4?

K_ÞPÝr9H/Âá�Ý4/F1DÞPâ¡ÞPàÈÞPß{E41°äAK à�áHE ì äxÝ	Ã äxàME2â»äA3:9,/7143 3PO;ä�9H/83WÝ�K:3µÞOã á¬ÝgÞPÝ4?
K_ÞPÝr9H/Âá�Ý4/!1DÞPâ¡ÞPàÈÞPß{E41°äAK�à�áHE�� äxÝ Ã Z ä7/71 /2143ëáIBIB�ä7/}äMÞPÝ2á�âaE2ß_Þ:E43Wß'/}å /71®á�/
Ú¡Ú ��� Ú�Ú ä�9 =WÞ>G4Ý�BD3yB n
¶ ¥`�4�®¦2ý¿�Î� £��j�;¥��j� �¡��ª����¡�¤��� £D�P�Y� £����Î�¡�Y�������j�¤��� ¥`������� ¾ ©;��Ë��¤�!�{�¤�;��ªD���W�

�¤�;��ª����WÏ��������y�,�;�¡� îÒ¾ «Ç�È�¤�;���`�¡���j¥���£��È�`�j��Ãø���­�����0£��;�¡�����;¥`ª�£����{�È��ª®�
«­����£�ËB�������¤�Î��� îÒl
� �I«9�jË��¤¥ ¾ «Ç��«­���¡��©;��Ë������Ò�SÏ��B��ª����È���n�ë�j�;��ª����j�{�j�;��ª��¡�SÏ �������y�,�;�¡�

îÒ¾ �B�é�;ªs�j�é����±®���j���¢���®����ªs�;����� m Ù �	�`���_£é� £D�B�·� £����·ª�¥`�;ªs�j¥`��¦²���4�j�
������£����¡�é���9Ã �¡���_£��;�`�¤� ����� £����}�B������¦!���9���¡�6£��;���;����¥�ª�£���� ����ª���ì «­����£
�¡����©;�n�¤�;���_�B�¡���j�É�����¯�����²ìT¸$# À Ö mæl

k;l! �l 
��A�q}®�>}0	 � �I�P�#"I} �I�}|2�Å� Ñ £���³��W¦����W� £��°���,�;¥Îª�¥`�[Ë°����©�� ¶ ���4�_£�ª®¥��¡�°�
�¤��ª��¡���¡�·��£�� �,�;���¡�I«­�¡�®© Á û$�j��ìIí Á Ô ï ñ ±s�������;�4�Â���;¥������$�}�����¡�y¦ l�Ñ £��¤�
«Ç� �¡�°�;³��,�;¥����²�¡���j¥��ç�B���¡�®©����jÊ°�®�¤���j���B�9�®�¡��³!Ô%$'&�«­£����_£é�WÏ4£D�����=� ��Ð ¸}� l � l
�¡���)(jíÒÖ+*�, À �����¨�ü�`�¤ÊA���¤�®�¤�ë���·£��;���;����¥�ª�£����È����ª��.-$í Á Ô/$'& ï Ô
�����_£�� £��B��������±®���¤ÊA���j���¤�È���Çì[í�0�-æí��j�;��Ë;�j¥�©;�j��¸,�¡�°�ç������¦������y�,�;¥�����¦ À � �!�
���;�4�Â�¤�;�®�`�_�B�A��£����¡�;���;¥�ª®£��¡�n�È��ª��,¥`�;�øÐÄ��� ñ�l
ú �;¥{� £���ª�¥`�4�B�����·£��¡�{� £®�¤�;¥`�¤� ¶ ¥`�4�®¦Õ�����j�µ� £������¡���¤� ¾ � ��³A�¡��©ü�¤����±��y�

�D�B���¡�;���������BÆ����S�����¡���¤��¥�����ª���«­����£Ò���®���;���;¥�ª�£®�¡���������Y� £®�����¡�`³é�,�;¥���£��
-æí l
1 �����¤����� ¸ º kI¼P½xÀ �¡��Ë��¤�`���¡©��P� �¤� ��� £��j¥ ¥`�¤ªD��¥������j� ¥`�32¤�B� ���;����«­£��¤¥`�È� £®��-$í

� £��j���`�¤�yË;�¤���B¥����BÆ��4�Â�¡�����ç��¥�����ª�� ¾ �ë�j�;���j�¤ª®��«­£����_£Ò£D����� £®�����®ËB�����_�B©;�
� £D�P�­���­�ç�B�É�B�¡����±2����ª�ª����¡�¤������£D��¥����;�������È�Bª�� l

k;l544l �<g76�|r}��P�}� �[�,�
��|�8b}�60�°z}� }�� |r}��P�}� �[�,�
����û$�j��9Ä±2��� �j�;��ª®�¡�WÏ��B±s�j�¡���B�
ËB��¥����j��¦ ¸,� l � l ���¤�;��ªD���W���¤�;��ª��¡�SÏë���;¥�����«­£����_£ �������¡� ����� �����¤�������y¦ë��ª�¥��P�
: �¤�W� ��Ë�� �B�¡©;�j±�¥ ������ËB��¥����j��¦ À �B��� î ���`��±�Ë��B¥��¡�W��¦ l û$�j�<; ���¤�®��� ��� £����������;�
���s���¡�°� ¥��������¡�B� �j�0���s�¤�;��ª��¡�SÏ{�`��±®� ��¥��D���=9 «­£��¡�_£���¥`�Î�¤�;��� ���¡���j����� îÒl �Â�Å���
³A���I«­��� £D�B�'� £����'�������;� ���'�j��� £®�¤¥0�����A��� î �;¥'�·ª�¥���ªs�j¥0���¡©��¤±�¥����¡�Å���®±AËB��¥`�¡�W��¦
¸ º?>P½�ÀWl
@ �����¤�A9 �¡�.�Î�¤�;��ªD���W�.�¤�;��ª��¡�SÏ����;¥����$��£��¤¥`�9���æ�CBG�P�6£®�¤¥����������������j��¥����T�;�

9¨���������j�¤��±�¦�� £®�Ç�¤�®�¤�¡�����ç�B� ���j� ¥`�¡�Å�;�{ÐEDÎË°���F9HG§ÐIDKJKL l ´µ£����¡�;���;¥�ª®£��¡�
�È�Bª�ì Á Ð ï 9¹£D�B��±s���������j�é���¤¥`��ËB�B� �yË;� «­�y� £ë¥`�¤�`ªs�j�j��� ��� £��������W� ¥`�¡�����
�������;���y¦��y�'�y�Î�¡�Î���������j�¤�²±�¦��B�É�PÆ��®�W�����¡���¤��¥Î����ª��,¥��;�øÐ¯� ��ÐED l
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ú ¥��;�§��£��¡� ¾ �;�®�Ç�ç�B�����¤�®���¤�Y��£D�B�TìT¸bÐ À ó ;¬�,�;¥.�jË��¤¥=¦�£��;���;���;¥�ª�£®�¡�0����ª

ì Á Ð ï î «­�y� £�±s�;�®�����¤�{�®�¤¥��yËB�B� �yË;� l ���yË;�j� � £��9ª�¥��WË°�¡�;���'�¤�;���`�¡���j¥ �B���¡�;�®�
��±2�;�®�Î� £®� ¶ �¡�°�_£!ª®¥��¡�®�¤�¡ª®�¡� ¾ ���Î���Î� £A���­�D�B����¥ ���c�����¤�;� : �j�j����¥�� Á
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�¤�;� : �¤�j����¥�� � ���`� l � l! ±�¦ @ l ûæ����©É�¡� º��B½bl ��� ��£����j�;��� �WÏ°�{�B�­�¤���B�����yÍD�ç�P� �¡���
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	��®lV�;ÀWl
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�¡�·���¡�`�È���®ª�ªs��¥`� �j��±A¦!� £®� �}�����;���·¥`�¤�`�������B� ú �B��� ����©;��¸ º!4P½�À «­����£²«­£����_£é£��
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�¡� ; l
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û$�j��� $ � �æÖ�¸���� ��� $ � � ÀWl � ��£D�çË;�

� �$ � � ¸ # À Ö�¸�� �� ¸$# ÀH� � � ¸	���O¸$# À`À � �� ¸$# À * ( À Ö�¸ ¼ � �S¼ � � ¸ � ( À �7* ( À
` ±����j¥`Ë;��� £��B�

¸#( � � À��ï ¼ �
¼ � � ¸ � ( À � * (

���jÍ����¤� �!���¤¥`�;����¥�ª�£������,�����W� �¡��� �;� Ð & «­����£Õ��ªs�;�������B�Y�¡�®���j���¤¥����¡�����j¦
�B��¸$# � # ÀWl'Ñ £��¡�­�¡�Y��¥�����¥`�¤©���¥`���¡�j���­���.� £���ËB����������� � � ¸ � ( ÀSl
Ñ £A���T�WË;�¤¥=¦����j�¡©;£A±2�;¥�£®�4�°���B�.¸$# � # À �j�;���_�������T��ªs���¡���Î¸ ( � � À�÷Ö�¸$# � # À �����_£

� £D�P��� �$ � � ¸$# À ���­���®�;�4� 2j�¤¥`�����®��� ��ª��¡�n��� � l
� �SÏ°�.«9�Å�������T� £D�B�Å¸
� � Ø À��ï ���=¸ Ø À ���jÍ����¤�.�Îª�¥���ªs�j¥c�È�Bª��,¥��;� < (j¸bÐ � # À �

ÐÄ� ��Ð l·Ñ £��j¥��W�,�;¥���� £��j¥����¡�����¤�;���=�_����� õ�� #������_£²��£D�B� Ú Ø Ú®Û õ�¾ «­£��j�4�
�jË��¤¥­� £��j¥����WÏ4�¡�=� ���{ªD��¥������W� �j¥ �9���®�_£É� £��B� Ú � Ú � k ����� Ú ���`¸ Ø ÀIÚ �D� l
�Â�Y������£��¤¥`�j�,�;¥`�·ª2�;���`�¡±����Î� � �_£®�4�;�`�·��«9���A����±2�¤¥�� ( � �0�¡�������_£���«Y�ç¦�� £D�P�
¸ k[À � �$ � � ¸$# À �¡�­�{���;�4� 2¤�j¥������������¡ª����·��� � ¾
¸ ¼;À!Ú � ÚAÛÄk �B���
¸ ��À!Ú ¼ ( õ�ÚAÛ�� � l
� �I«Ó���`�������²� £��B� Ø �  Ù Ð «­����£ Ú ���=¸ Ø À[Ú � � �Î����� Ú  Ú�Û (

& � � l§¶ ¦
� £�� ���jÍD�®��� ���;�ë���0��£����j�;���`� ����� õ�¾ � £����·�¡��ª����¡�¤� Ú Ø ÚsÛ§õ�l û$�j��¸�� ( � �/& À Ö
� $ � �=¸ Ø À *¯¸$# �  ÀSlTÑ £��¤�

Ú �/&"���°¸�� ( À[Ú Ö Ú � & � �A¸ � ( À *)( Ø *  Ú�Û�Ú � & � �A¸ � ( À[Ú * Ú ( õ�Ú * k¼ � � Û

Û ¸ � � � � À * k¼ � � *
k
¼ � � Ö ��!

� �I« Ú �/& � �A¸�� ( À[ÚAÛ � �¡���¤�;��±®�¡�D�B���¡�;��«­����£ Ú � ( Ú Ö Ú ���`¸ Ø ÀIÚ �D� � �¡��ª��¡���¤�
:�¸�� ( � �/& À Ù � l � �j���¤��� $ � �`¸ Ø À * ¸$# �  À Ù :�� ( ¸ � À ���®���¤¥Y��£��¡�­���`������ª®���¡�;� l
Ñ £A������£����¤�¡���¡� �¡�Îª�¥`�IË;�¤� l
	�l\Ì­l���l
` ��¥Å���WÏ°�9�`���¤ªÈ���0� ���¤�;���=� ¥`���j�Ç���j�¡�;�`�¤������±®���j� 9 ���$Ðµ����«­£����_£�«9�n«­���¡�

��ª�ª��y¦�´n¥ ��³B�¤��¦;���É��ª�ª�¥`�IÏ4���È�B���¡�;� l
û$�j��9 � ±2�{� £��{���®�¡�;����� <���� � ¸$# À ����� <���� ¸  gÀ �,�;¥����¡�  Ù L � l �Â��� ÷Ù � ¾

� £��j� � ( ÷Ù 9 � l � �¤�®�¤��������£��¡�9�ç���`�n«9���ç�����_£��°�;����
 � #��`���_£�� £D�P� <�� ¸ � ( À
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�¡�Y�®�¡� : ���¡���Y� �/9 � �B�������jÍD�®��9�(Ç���Y� £������®�¡�;����� 9 � «­�y� £�� £����Y�¤���;���j��±D���¡�<�� ¸ � ( ÀSl �Â� � Ù � ¾ «9���`�¡��ª���¦��_�B³���9 (0ÖH9 � l� �SÏ°��«Ç���_£��°�;�������¤���`���¤�������_��±���� �`��±����W� � ��(�ó �A� �j¸ � À ¸,«­£®�¤¥�� �A���j¸ � À
���¤�®��� �j�'� £��9�¡��� �j¥����;¥6�B� � À ����� � &·ó �'& lq� �Ç��±����j¥`Ë;�Y��£D�B�TÐ � 9 (�ª�¥`� : �¤�W� �
����¥ : �¤�W� ��Ë��¤�y¦��;��� �<;�� � � ������� £��B�æ� £��ÅÍD±2�¤¥��6���°� £����6ª�¥`� : �¤�W� ���;� �B¥��Å�¡�®Í��������
���¡�`�¤¥`�j� �n����±®���j���Y���æÐ l ú �;¥0� £����9¥`�ç���`�;�È«9���ç�B��ÍD���È���¤ÊA���j���¤�j� ��í ��� í��¡��Ð
�����_£!� £D�P�

� &ÇÖ × :�¸��;í ��� í ÀÇÁ � Ù�� Ü
�����������2��£�� �;í{�B¥��������`���¡���W�Î�¤���¤���¤��� �Y�B�'Ð � 9�(Å«­����£��¡�¡��í���� Ú �;í Ú Ö *�, l
�Â�Î�,�;�¡���I«­�Y� £D�B�

	 Ö × ��í Á � Ù�� Ü
�¡� �ë���¡�`�¤¥��W� ���`��±����W�����nÐ «­£����_£ £������¤��ª®��¦ �¡��� �j¥����j�j���¡�;�Õ«­�y� £ 9 ( ll� �
���jÍ�����9 &ÎÖ 9 ( � 	 l
� � Í®Ï²�È±�� : �¤�j���¡�;��
 Á L ��� × # Ü
�ï ��(n�B���é���ë�j�A�����j¥ �B���¡�;�W� �ï  í����

L � � × # ÜAl6Ñ £®�¤��«Ç�­�ç�B���_£��°�;�`���`�¤ÊA���j���¤�j�Ç���2�¤����ª����WÏ��°�®��±s�j¥����_í � �;í·�����_£
� £D�P�Î� £����,�;���¡�I«­�¡��© ª�¥��;ª2�¤¥=� ���¤�Î£��;�����,�;¥­���¡��� Ù��
¸ k[À :�¸��Sí � �;í À Ö�
G¸  í ÀS¾
¸ ¼;À!Ú �_í��  í ÚAÛ � �s�����
¸ ��À!Ú �;í����°¸��Sí À[ÚAÛ��°l
� ���®�jÍD����9¯Ö �
� ( ¸#9�& ÀWl

e z }D� 	 �c� p ß�á��I3Wâ»å�á�ÝÉáHEIE2ß Þ O;äxà�á�/bäMÞPÝ�ä�9�áHEIE2â»äAK�áI=¤â�3M/�Þ 9 T ä n 3 n × , Ü �É¸}Ð �
9 À ä�9 K_ÞPÝDÝ�3:KH/*3yBÈá�Ý�B�â¡ÞVK�á�âxâ»å K_ÞPÝDÝ�3:KH/83yB n
` ±����j¥`Ë°�¡�®©n� £��B�6«9�Ç�¤��� �®�j�,�;¥`� <���� � ¸bÐ � # À � � <���� ¸}Ð � # ÀW¾ «Ç�����j�����¤�9�,¥��;�

ª�¥���ª l0k � £D�B� �
� ( ¸#9 � À £D����� £������j���¡¥`�¤�üª�¥���ªs�j¥`��¦ l � �I« 9 ���®� �
� ( ¸#9 � À�����s�¤¥Ç�;����¦�±�¦�¥`�¤���[Ë°����©�� £���ª®¥��¤���È�B©;�·���6�{�¤���;���j�����¡�`��������±�¦�¥`�¤���[Ë°����©
�����¡�`�¤¥`�j� ���j�;�����_��±®�¡�{���W��¸}�D�B���j��¦ � � ( ¸ 	 À`ÀWl�Ñ £��¡���¤�������������j�`��¥��I¦��¤�;�°�
���¤�W� �yË4�y��¦ ¾ £��¤���j�������Î������¦ × , Ü �é¸}Ð � � � ( ¸ 9 � À`À ±��®�­�B�¡��� × , Ü ��¸bÐ � 9 À�¡�Î�j�;�����j�j� �j�ë���®�É���4�¤���¡�y¦��j�;�����j�j���¤� l�Ñ £A������£����¤�¡���¡� �¡�Îª�¥`�IË;�¤� l
� ��«­�¡�¡�2���I«¯���jÍD�®�����j�;��� ���°�®�;���Y�,�����W� ���;�Y~!�;� 9 ¾ «­£����_£!���Y£��;���;���;¥=�

ª�£����{�¡���������¡��� �j¥��¡��¥ ¾ ���®�ü«­£����_£ü«9��«­�¡�¡�.� £��j�Õ��ª®ª�¥��çÏ4�¡���B� � ±A¦ü�B�ü�j��� �¡¥`�
�,�����W� �¡��� ¾ ���`�¡��©�´·¥���³��j��¦;���cý¿����£��¤�;¥`�¤� l
�Â� � ÷Ù � ¾ «Ç�ü�_��³B�,~æ¸ Ø À Ö � ¸ Ø À ��� �
� ( ¸ <�� ¸ � ( À�À ����� ~ Ö � �;�

� � ( ¸ <�� � � ¸$# À�ÀWl
�Â� � Ù � ¾ «9�����jÍD�®� ~É��� �
� ( ¸ < � � � ¸ # À=À �B� � ¸ Ø ÀSl
� �SÏ°� ¾ �,�;¥Î�jË��¤¥=¦ � Ù�� ¾ «9�����jÍD�®� ~æ¸ Ø À �B�

~æ¸ Ø À Ö �A¸���¸ Ø À �  í À * �;í�� �A¸��Sí À
«­£��¤�®�jË;�j¥ Ú �È¸ Ø À �  í Ú �D� � l
ú ���D���¡�y¦ ¾ «Ç�����jÍ�����~É��� �
� ( ¸ 	 À ±�¦��`� ��ª����¡�B� ����©�� £D�P�t~æ¸ Ø À Ö � í�«­£��j�4�

�jË��¤¥ �È¸ Ø À Ö �;í��,�;¥­���°�®��±s�j¥_� Ù�� l
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¶ ¦É� £����j�;���=� ¥��®�j� ���;�é���n¸	� ���ëÀ «9�{³°�®�[« � £��B�>:�¸	�È¸ # ÀH� ~.¸ # À�À Ö �é�����
� £D�P��¸����}¸$# ÀH� ~ �,¸ # À�À �¡�­�������y� ��ª��¡�n��� � l0Ñ £®���_£®�;�¡�j���B� ~��¡��ª��¡���¤�9���;¥`�¤�IË;�j¥
� £D�P����( � � &n���Î�¤�;���_�B�¡���j�É������£����¡����©;�n��� Ø �ï :Å¸���¸ Ø À'� ~æ¸ Ø À`ÀWl
� �SÏ°�Ç«9�n���WÍD���·���¤���A���¡�A���;�®�9ª2�;���y� �yË;�Î�,�����W� �¡��� A­Á 9 ï���� ���Å�,�;���¡�I«­� Á
" A���k �;��� � ( ¸ <�� ¸ � ( À�À �y� � ÷Ù � l
" A�� (

& � �G�;� � � ( ¸ <���� � ¸$# À�ÀWl
" A ¸ Ø À Ö (í ��� �È¸ Ø À Ö �;í l
" A ¸ Ø À Ö ������� (í � (& ¸ � � Ú ��í � �A¸ �_í ÀIÚ À
	 «­£®�¤���WË;�¤¥ Ú ��¸ Ø À �  í Ú �D� � l

( �`�¡��©�ª�¥`�;ª l�¼4¾ «9�É���j�����j�!��£D�B��� £��j¥����WÏ4���`� ����� �¤�����¡¥����,���®�j� ���;�)� Á
Ð ï Ð¯�����_£!� £D�B�
¸ k[À!Ú ��¸ Ø À �o~.¸ Ø À[Ú°ÛDA ¸ Ø À �,�;¥­����� Ø�Ù 9 l
¸ ¼;À ��¸$# À Ö ~æ¸ # À ���������x¸$# À Ö ~��x¸$# ÀSl
¶ ¦¯� £��Ò�`�¤�¤�������j�;�����y� ���;�Ä«9�Ò�;±®�_�B�¡�§� £��B� :�¸	�È¸ # ÀH� ��¸$# À�À Ö � �����

� £D�P�{¸	� � ¸ # ÀH� � � ¸$# À`À ���·�È� �������¡ª�������� � lnÑ £���ÍD¥��=���¤�����������¡�;�É�¤���`��¥��j��� £D�P�
:�¸���¸ Ø ÀH� ��¸ Ø À`À Ù �¨�,�;¥������ Ø�Ù Ð l �Â�Ç���������¤���`��¥���� £D�P����£����¡����©;�Î�¡�Å���j����� Á
�������j�¤� ¾ �¡�W��� Ù �'& l'Ñ £®�¤����£��¤¥`�Î�¡�Å�����jÊA���¤���j�·���2ª2�;�¡�����0�¡� � &��¤�;��Ë;�j¥�©;����©
� � � l­¶ �4� � &�Ö × :�¸��;í ��� í À�Á � Ù � Ü �����!� £����¤�;���=� ¥`���j���¡�;�É���A� �¡��ª��¡���¤�
� £D�P�.�,��¥6�WË;�¤¥=¦s� Ù�� ��£��¤¥`�Ç�WÏ4���`� �'�n�A����±2�¤¥ Ø í Ù ÐÒ���®�_£�� £D�B����¸ Ø í À Ö �;í
����� Ú �È¸ Ø í À � � í Ú2Û (í l �Â���,�;���¡�I«­�­� £D�B�·� £��j¥��{�¡�·������±®���¤ÊA���j���¤� Ø í��������_£
� £D�P�Å�¡�¡��
 :�¸���¸ Ø í � À'� �È¸ Ø í � À�À Ö � l �Â� � Ù � ¾ «Ç�n��¥�©����­���¡���¡�¡��¥�����¦ ¾ «­�y� £ ��(
�¡��� £®��¥`�;�¡����� � & lÇÑ £A����� £���«­£��;�����`�j� ��(Î�¡�­���!��£����j�¡�;�`��¥������6� £����¡����©;�
���.� £�������ª Ø �ï :�¸���¸ Ø ÀH� ��¸ Ø À`À �,¥��;� Ð¬� � u l
ú ���D���¡�y¦ ¾ �¡�j��� ±s���ë�j�;��ª®�¡�WÏ �A����±2�¤¥{�`���_£ ��£D�B���Å¸	� � ¸$# À'� � � ¸ # À�À Ö �

���������WÍD���
ì'¸ Ø À Ö :�¸	�È¸�� Ø ÀH� �È¸�� Ø À�À

Ñ £��¤�²ì Á Ð ï ��(Y�¡�­�{£��;���;���;¥�ª�£®�¡�·����ª�«­����£�� £������j���¡¥`�¤�Éª�¥��;ª2�¤¥=� ���¤� l

�®l���q ��� �"!��"�.o�� �"�Gqgr �6w�� ��p$wxr6o���w�p �µwxoæp �2q �Gr�!#�®p$wxr'o
� ��«­���¡�s���¤�j�ë�{�����¡©;£��­�¡��ª�¥`�[Ë��¤���¤���­���6´·¥���³��j��¦��B�cý\�­� £®�¤�;¥`�¤� l
� ��¥`�¤�¤���¡�g��£���� £��j�;¥��j� ���6´·¥ �B³��¤�y¦���� ¸}�`�¤� º kj½xÀSÁ

� �æ�A|2�[�
	��c�zik3H/=9 =H3�ádKWâ¡ÞV9V3yBt9HG�=H9V3H/TÞOãÅÐ T�� Ö! (ç¸}Ð À � 9 T A�Á 9 ï����
áWK_ÞPÝ4/bäxÝ4GDÞ>G 99ã'G°Ý�KH/bäMÞPÝ á�Ý�B�ì � Á 9 ï Ð áWK_ÞPÝ4/}äxÝ4GGÞ>GI9Çã'G°Ý�KH/}äMÞPÝ Z 1°äAK:1Éä�9
1DÞPâ¡ÞPàÈÞPß{E41°äAK!äxÝ /7143ëäxÝ4/83WßSäMÞPß�ÞOã 9 n&p 9:9HG4àF3�/71®á�/ � ä�9 K_ÞPÝDÝ�3:KH/*3yB á�Ý�B
â¡ÞVK�á�âxâ»åNK_ÞPÝDÝ�3:KH/*3yB n
w 143WÝ /7143Wß�3N3PO;ä�9H/29�á 1DÞPâ¡ÞPàÈÞPß{E41°äAKYã'G°Ý�KH/bäMÞPÝ � Á Ð ï Ð Z ä7/21 Ú ��¸ Ø À �

ìT¸ Ø À[ÚAÛDA ¸ Ø À ãçÞPß�á�âxâ Ø�Ù 9 n
� �ü«Ç�����²��� Ë��¤¥��y�x¦ � £D�P�É´n¥ ��³B�¤�y¦����cý¿�É��£��¤��¥��¤� ���!��ª�ª����¡�ç�B±��¡�é���¬����¥

���y� �D�B���¡�;� l
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# Û � � Û � Ö

k
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Ú  ÅÚ

i�3H/�9<��Ö ×PØ§Ù Ð Á �2¸ Ø � L À � � � Ü Ö � ����� <���� ¸bÐ �� gÀhT Ã Á Ð ï Ðôá
ÝgÞPÝ4?yK_ÞPÝr9H/Âá�Ý4/�EDÞPâ»åPÝgÞPà{ä}á�âæá�Ý�B � Ö × , Ü � ¸bÐ��­Ã
� ( ¸#9F� À�À n
w 143WÝ � ä�9 K_ÞPÝDÝ�3:KH/83yB�á�Ý�BÈâ¡ÞVK�á�âxâ»åNK_ÞPÝDÝ�3:KH/*3yB n

� ß_ÞIÞOã n ú ��¥��=��«9� «Ç������� ��Ë;�j¥����x¦���£D�B� � �j�;���_�������·����±s���������j�é�¤�;���®�¤�j���¤�
�¤�;��ª2�;���¤��� l �������¤�j� ¾ ���`��������� £D�P�Y� £��j¥������Y�����_£!���j�;�����j�j� �j�É�j�;��ªs�;�®�¤���
õ�l �Â���­±s�;�®���D��¥=¦�� õ �¡���{�¤�;���®�¤�j���¤�É���j������ª�ª2�¤�!�¡��� �

� ����� <���� ¸  gÀ
±�¦�� l4Ñ £��¡�Ç�¡�Î������� : �;�����Y�������;�����®��� ��� £®���_£��;���¤����� � � l � �¤���j���¤�;�����¡�A������¦
���6Ã��¡��ª����¡�¤��� £D�P�Î� £��j¥����¡�Î�;�®���¤�¡�j���j���  Ù L �`���_£É��£D�B� Ú ÃÈ¸ Ø À �  ÅÚ �D� �
�,�;¥­����� Ø�Ù � õ�l
¶ �®� õ ó � �¡��ª��¡���¤� Ú Ã�¸ Ø À �  ÅÚ � � � �,�;¥������ Ø!Ù õ�¾  Ù L lnÑ £��¡�n�¡�·���
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ARITHMETIC JET SPACES

(WORK IN PROGRESS)

Paul Vojta

University of California, Berkeley

28 January 2005

Abstract. When defined as iterated Kähler differentials, jet differentials are not suitable
for working on varieties in positive characteristic or on schemes of mixed characteristic

(such as arithmetic varieties). Instead, it is better to use Hasse-Schmidt divided differ-

entials dnx (think: (1/n!)dnx ). These will be discussed briefly; for fuller details see
[V 2]. These differentials allow one to define jet spaces for arbitrary scheme morphisms

X → Y ; such spaces are analogous to generalizations of the relative tangent bundle,

adding information on higher derivatives.
In his 1995 talk at Santa Cruz [D], J.-P. Demailly discussed compactified quotient

jet spaces due originally to J. G. Semple and others. These correspond to certain closed

subspaces of the iterated space of lines in the tangent bundle of a complex manifold: X ,
P(Ω1

X/C) , P(Ω1
P(Ω1

X/C)/C) , etc.

I tried to generalize the Semple-Demailly jet spaces to arbitrary characteristic, but

was not successful. Instead, though, I have found another definition of jet space, iso-

morphic to the Semple-Demailly jet spaces away from the “vertical” part, but generally
nonisomorphic for 3-jets and higher. This definition will be discussed.

Let X be a complex manifold, and consider the sequence of manifolds X̃0 , X̃1 ,
. . . defined inductively by letting X̃0 = X and X̃n+1 = P(Ω eXn/C) for n ≥ 0 . Here,
and in what follows, P(E ) for a sheaf E is defined to be Proj

⊕∞
n=0 SnE , so that if

E is a vector sheaf over X then a point on P(E ) over a point x ∈ X corresponds to
a hyperplane in the fiber of E at x . For example, X̃1 = P(ΩX/C) is the space of lines
in the tangent bundle of X . This is the definition used in [EGA].

The space X̃n then incorporates information up to the nth derivative. However, if
X has dimension d , then X̃n has dimension 2n(d−1)+1 , which is growing far faster
than the information that it is intended to capture. J. G. Semple [S], J.-P. Demailly
[D], and others investigated certain proper closed subspaces Xn of X̃n of dimension
d + n(d − 1) having the property that they contain all canonical liftings to X̃n of
holomorphic curves C → X .
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For reasons described in Section 1, I have been trying to find a way to generalize
this definition to give similar jet spaces for an arbitrary scheme morphism X → Y .
Of course, one can take X̃0 = X and X̃n+1 = P(Ω eXn/Y ) as before, but the problem

with this is that there is no lifting of a curve C → X to X̃n in characteristic p > 0
when n ≥ p , since nth derivatives vanish in this situation. A definition using divided
differentials (see [V 2]) may work, but the combinatorics of such a definition have
eluded me so far.

However, I did find a different type of jet space, isomorphic to the Semple-Demailly
jet spaces away from the “vertical” part, but nonisomorphic in general. This talk
describes work in progress on this definition, as well as possible applications. More
complete notes will appear elsewhere, when the work is finished.

§1. The Quest
The motivation for this work stems from a search for an answer to a question that has
plagued number theorists for a long time:

How does one “differentiate” in number theory?

Derivatives are ubiquitious in Nevanlinna theory, and a major obstacle to trans-
lating proofs from Nevanlinna theory to number theory comes from the fact that there
is no known way to translate the concept of derivative. Here, for a variety X over a
number field k , we are looking for a “derivative” in the relative tangent bundle

V(ΩX/k) = Spec
⊕
n≥0

SnΩX/k ,

so the notion of derivative desired here is different from that occurring in the function
field case. In fact, there is no known counterpart to this derivative in the function
field case unless there is a canonical projection from the absolute tangent bundle to the
relative tangent bundle (e.g., in the split case).

As a possible partial answer to this question, we could ignore the magnitude of
the derivative and just look for its direction; this would involve looking for a point in
P(ΩX/k) . Similarities between Ahlfors’ proof of Cartan’s theorem on approximation to
hyperplanes in projective space, and Schmidt’s proof of his Subspace Theorem ([V 1],
Ch. 6), seem to suggest that one should look at successive minima. Therefore, a candi-
date for the direction of the derivative might be given by extending X to an arithmetic
variety X over Y := Spec Ok . A rational point on X would then correspond to a
section of the map X → Y ; the restriction of the relative cotangent bundle ΩX /Y

to this section gives a vector bundle over Y . Together with Arakelovized information
at infinity, this gives something that looks more classically like a lattice in Rd (with
d = dim X ) together with a length function. The first successive minimum corresponds
to a line subsheaf of ΩX /Y of maximal degree; this may be the desired derivative (or,
rather, at least its direction).

In the case of curves over k , though, we have P(ΩX/k) = X , so there is nothing
to work with. We have to work in higher dimensions. Work in Nevanlinna theory then
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strongly suggests that we have to work with higher jets. (This is also in keeping with
the general dictum that if you’re working on something and can’t get anywhere, look
at a special case, and if you’re still stuck, look at a generalization.)

§2. Just what is a jet space, anyway?
There are (at least) two types of jet spaces in common use. Both are generalizations of
spaces associated with Kähler differentials.

Jets of arcs:
• generalize the Zariski tangent space Homk(Spec k[ε]/ε2, X) for schemes X/k ;
• parametrize (infinitesimal) arcs Spec k[t]/tm+1 → X over k ;
• are often studied via (higher) jet differentials.

Jets of functions:
• generalize the construction of Kähler differentials as I /I 2 , where I is the

sheaf of ideals defining the diagonal in X ×X ;
• parametrize elements of the completed local ring at points of X ;
• are often studied via Grothendieck’s theory of principal parts.

This talk considers jets of arcs.

§3. Arithmetic Jets
This section briefly summarizes some things from [V 2] for the convenience of the
reader, then concludes with a brief discussion of various types of quotients of jets.

Throughout this paper, all rings (and algebras) are assumed to be commutative.
Moreover, N = {0, 1, 2, . . . } .

Recall from the Introduction that if X → Y is a morphism of schemes, then
P(ΩX/Y ) parametrizes the set of all lines in the relative tangent bundle.

Also recall that if B is an A-algebra, then ΩB/A is the B-module with generators
{db : b ∈ B} and relations:

d(b1 + b2) = db1 + db2; da = 0; d(b1b2) = b1db2 + b2db1

for all b1, b2 ∈ B and all a ∈ A .
If we formally allow d to be iterated, then we get

dn(xy) =
∑

i+j=n

(
n

i

)
dix djy .

Letting dnx =
1
n!

dnx , this becomes

dn(xy) =
∑

i+j=n

dix djy .

Differentials satisfying this identity are called Hasse-Schmidt differentials.
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Definition. Let m ∈ N and let B be an A-algebra. The Hasse-Schmidt algebra is the
B-algebra HSm

B/A given as the quotient of the polynomial algebra

B[x(i)]x∈B, i=1,...,m

by the ideal I generated by the union of the sets

{(x + y)(i) − x(i) − y(i) : x, y ∈ B; i = 1, . . . ,m} ,

{f(a)(i) : a ∈ A; i = 1, . . . ,m} , and{
(xy)(k) −

∑
i+j=k

x(i)y(j) : x, y ∈ B; k = 0, . . . ,m} ,

where we identify x(0) with x for all x ∈ B . The image of x(i) in HSm
B/A is

denoted dix ; we also write d1x = dx . The resulting algebra HSm
B/A is an algebra

over B ; it can also be viewed as an algebra over A via f . It is also a graded
algebra (either over B or over A ) in which dix has degree i .

If X → Y is an arbitrary morphism of schemes, then we get a graded sheaf HSm
X/Y

of OX -algebras, and we define the jet space

Jm(X/Y ) = Spec HSm
X/Y .

Theorem (Jet desideratum). For all A-algebras R , we have a natural bijection

HomA(HSm
B/A, R) → HomA(B,R[t]/(tm+1))

in which a map φ ∈ HomA(HSm
B/A, R) is associated to the map B → R[t]/(tm+1)

or B → R[[t]] given by

x 7→ φ(d0x) + φ(d1x)t + · · ·+ φ(dmx)tm (mod (tm+1)) .

In the context of schemes, this becomes

HomY (Spec OZ [[t]]/(tm+1), X) ∼−→ HomY (Z, Jm(X/Y )) .

From now on assume m > 0 .
For all a ∈ R∗ , the map t 7→ at gives an automorphism of R[t]/(tm+1) , hence

an action of Gm,X on Jm(X/Y ) . A quotient of this action can be defined; it is the
Green-Griffiths projectivized jet space

Pm(X/Y ) := ProjHSm
X/Y .

But, why not mod out by all of AutR(R[t]/(tm+1)) ? The rationale for doing so
is that, like throwing out the magntude information for vectors in the relative tangent
bundle, it focuses on the information that is most likely to be useful.
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§4. Groups, Group Actions, and Quotients
The definitions of group schemes and group actions are well known, so the definitions
are only briefly summarized here. For a more complete reference, see [M-F] or [SGA 3].

Definition. Let S be a scheme. A group scheme Γ/S is a morphism of schemes
π : Γ → S , together with morphisms µ : Γ ×S Γ → Γ , β : Γ → Γ , and e : S → Γ
over S (expressing the group operation, inverse, and the identity element, respec-
tively), satisfying the following conditions.
(a). (Associativity) The following diagram commutes:

Γ×S Γ×S Γ
IdΓ×µ−−−−→ Γ×S Γyµ×IdΓ

yµ

Γ×S Γ
µ−−−−→ Γ

,

(b). (Inverse) The diagrams

Γ Γ×S Γ Γ×S Γ Γ

S

∆ IdΓ×β µ

π e

and
Γ Γ×S Γ Γ×S Γ Γ

S

∆ β×IdΓ µ

π e

commute. (Here ∆ is the diagonal morphism.)
(c). (Identity) The compositions

Γ ∼−→ S ×S Γ e×IdΓ−−−−→ Γ×S Γ
µ−→ Γ

and
Γ ∼−→ Γ×S S

IdΓ×e−−−−→ Γ×S Γ
µ−→ Γ

both equal the identity on Γ .

Group actions are defined in a similar vein. Details are left as an exercise for the
reader.

As for quotients, the definition can be quite delicate. We use here the definition
of Mumford and Fogarty [M-F]. The details of this definition do not matter for this
application, though, because we only use the fact that the following is an example of a
quotient morphism:

138



6 PAUL VOJTA

Example. Let Γ be a group scheme over S , let X ′ be an S-scheme with trivial Γ-
action, and let X = Γ ×S X ′ , with Γ acting on itself via left translation. Then the
projection X = Γ×S X ′ → X ′ is a quotient morphism.

Lemma (“Quotient lemma”). Let Γ/S be a group scheme, let X0 be an S-scheme with
an action of Γ (not necessarily trivial), and let X = Γ ×S X0 . Then a quotient
of X by its product action exists, and is isomorphic (as an S-scheme) to X0 . If
σ0 : Γ×S X0 → X0 expresses the action of Γ on X0 , then the quotient morphism
is given by σ0 ◦ (β × IdX0) .

More generally, if T → X is a Γ-torsor (over X ) (i.e., a principal fibre bundle),
then X is a quotient of T .

§5. Semple-Demailly Quotient Jet Spaces
Throughout this section, let B be an A-algebra, and let m ∈ Z>0 .

Let
Γm,B = Spec B[z1, z

−1
1 , z2, . . . , zm]

be the group scheme of automorphisms of B[t]/(tm+1) , where z1, . . . , zm corresponds
to the automorphism

t 7→ z1t + z2t
2 + · · ·+ zmtm

and the group law is given by function composition modulo tm+1 . The group operation
Γm × Γm → Γm corresponds to a ring homomorphism

B[z1, z
−1
1 , z2, . . . , zm] −→ B[y1, y

−1
1 , y2, . . . , ym]⊗B B[z1, z

−1
1 , z2, . . . , zm]

given by
zi 7→ pi1(z1)y1 + pi2(z1, z2)y2 + · · ·+ pii(z1, . . . , zi)yi ,

with pij ∈ Z[z1, . . . , zj ] . For example:

p11 = z1 ;

p21 = z2 , p22 = z2
1 ;

p31 = z3 , p32 = 2z1z2 , p33 = z3
1 ;

p41 = z4 , p42 = z2
2 + 2z1z3 , p43 = 3z2

1z2 , p44 = z4
1 .

Via the “jet desideratum,” we also get a right action of Γm on HSm
B/A ; this

satisfies:
dix 7→

∑
j∈N

pij(z1, . . . , zj)djx

So, similarly, we have:

(d1x)γ = a1 d1x ;

(d2x)γ = a2
1 d2x + a2 d1x ;

(d3x)γ = a3
1 d3x + 2a1a2 d2x + a3 d1x ;

(d4x)γ = a4
1 d4x + 3a2

1a2 d3x + (a2
2 + 2a1a3)d2x + a4 d1x .
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where γ is the automorphism

t 7→ a1t + a2t
2 + · · ·+ amtm .

We define Q◦
m(B/A) to be the quotient of Jm(B/A) by the action of Γm , and

likewise Q◦
m(X/Y ) .

Example. If m = 1 then Γm = Gm , and

Q◦
1(X/Y ) = P1(X/Y ) = P(ΩX/Y ) .

If B is a polynomial algebra B = A[xi]i∈I , then the “quotient lemma” applies
over open affines D+(dxi) in P(ΩB/A) , and these pieces patch together to give schemes
Q◦

m(B/A) . For general B , write B as a polynomial algebra modulo an ideal; this ideal
is preserved by the group action and allows us to define the quotient Q◦

m(B/A) also in
this case. Further patching yields Q◦

m(X/Y ) for arbitrary scheme morphisms X → Y .
(In other words, Jm(B/A) is a torsor, trivialized over the Zariski-open subsets

D+(dxi) of P(ΩB/A) .)
We get morphisms

Q◦
m(B/A) −→ Q◦

m−1(B/A) −→ . . . −→ Q◦
1(B/A) = P(ΩB/A) .

One should note that Q◦
m(X/Y ) are affine over Q◦

1(X/Y ) = P(ΩX/Y ) , but the
jet spaces of Semple and Demailly are proper over P(ΩX/Y ) (and therefore proper over
X ).

§6. Completing Q◦
m(B/A)

( A → B and m are as before.)
We want to define a “completion” Qm(B/A) such that:
(i). if B is of finite type over A , then Qm(B/A) is proper over Spec B ; and
(ii). Q◦

m(B/A) embeds as an open subset of Qm(B/A) .
Recall that the Semple-Demailly quotient jet spaces are defined by taking

P(ΩX/C), P(ΩP(ΩX/C)/C), etc.

and passing to certain closed subsets.
For x1, . . . , xn ∈ B and n ∈ Z>0 define the Wronskian-like determinant

D(x1, . . . , xn) =

∣∣∣∣∣∣
d1x1 . . . dnx1

...
. . .

...
d1xn . . . dnxn

∣∣∣∣∣∣ .

A group element γ : t 7→ a1t+a2t
2+· · ·+amtm acts on the above matrix by column op-

erations, in which each column is replaced by a linear combination of itself and columns
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to its left. Also, the same-column coefficient for the ith column is ai
1 . Therefore, the

effect of γ on the determinant is to multiply it by a
n(n+1)/2
1 . Thus

(dg)−n(n+1)/2D(x1, . . . , xn)

is invariant under the action of Γm .
We then define Qm(B/A) inductively on m by giving an open covering by affines

U = Ug1,...,gm
( g1, . . . , gm ∈ B ) with

O(U) ⊆
(
HSm

B/A

)
(ω)

;

here ω = D(g1)D(g1, g2) · · ·D(g1, . . . , gm) .
Let S be the graded quasi-coherent sheaf on Qm(B/A) determined by

S (Ug1,...,gm) = O(Ug1,...,gm)
[
D(x1, . . . , xm+1) : x1, . . . , xm+1 ∈ B

]
⊆

(
HSm+1

B/A

)
ω

.

Then we define

Qm+1(B/A) = ProjS .

Let g1, . . . , gm−1, x1, . . . , xm ∈ B . Then

∣∣∣∣∣∣∣
D(x1) D(g1, x1) . . . D(g1, . . . , gm−1, x1)

...
...

. . .
...

D(xm) D(g1, xm) . . . D(g1, . . . , gm−1, xm)

∣∣∣∣∣∣∣
= D(g1)D(g1, g2) . . .D(g1, . . . , gm−1) ·D(x1, . . . , xm) .

Therefore

S (Ug1,...,gm
) = O(Ug1,...,gm

)
[
D(g1, . . . , gm, x) : x ∈ B

]
.

By induction, we then have:

O(Ug1,...,gm) = B

[
D(x)
D(g1)

, . . . ,
D(g1, . . . , gm−1, x)

D(g1, . . . , gm)

]
.

(Of course the above discussion omits the technical details of showing that S
indeed glues over the whole scheme.)
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§7. Comparison with Semple-Demailly Jet Spaces

We can canonically embed Q◦
m(B/A) into Qm(B/A) . Its image is the open subset⋃

g∈B

Ug,g2,...,gm .

This uses the identity D(g, g2, . . . , gm) = (dg)m(m+1)/2 .
If A = C , then we can also embed Q◦

m(B/A) as an open subset of the Semple-
Demailly jet space.

If m ≤ 2 and m! is invertible in B , then Qm(B/A) coincides with the Semple-
Demailly jet space. If m = 0 or m = 1 this is trivially so, because they’re both equal
to Spec B or P(ΩB/A) . If m = 2 this is because of the identity

d

(
dx

dg

)
=

d2x dg − d2g dx

(dg)2
=

2D(g, x)
(dg)2

.

If m ≥ 3 , though, the two types of jet spaces are different.
Among the relative benefits of the two types of jet spaces are the following:
• I know how to define Qm(X/Y ) .
• Semple-Demailly jet spaces have nice intuitive properties.
• Semple-Demailly jet spaces are nonsingular if X/Y is smooth. It is unclear

whether the jet spaces defined here are smooth, even if X is smooth over Y .

§8. Possible Applications
Once the work on these jet spaces themselves is finished, directions for further research
include:

1. The original motivation for looking at jets stemmed from a search for a new
proof of the following theorem.

Theorem (Faltings). Let X be a closed subvariety of an abelian variety A over a
number field k . Assume that X has trivial Ueno fibration (i.e., it is not invariant
under a positive-dimensional subgroup of A ). Then X(k) is not Zariski dense.

I’d like to find another proof of this theorem using methods similar to those of
Schmidt’s Subspace Theorem. It has been known for some time that this proof is
similar to Ahlfors’ proof of the corresponding theorem for holomorphic curves. Where
Schmidt used successive minima, though, Ahlfors used derivatives. Past attempts to
extend Schmidt’s methods to give a proof of the above theorem failed, due to an inability
to find a version of Davenport’s lemma valid in the context of abelian varieties. Working
with jets, though, may allow me to get around this problem.

[Added after the talk: It seems likely, however, that this problem specifically needs
to use Semple-Demailly jet spaces, due to the way they would be used in the problem.
This task may therefore be put on hold.]
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2. It may be possible to extend work of Demailly and El Goul [D-E] to higher
jets using these jet spaces. Their work extended work of Bogomolov from the cotan-
gent bundle (i.e., 1-jets) to 2-jets, but were unable to work with higher jets due to
combinatorial difficulties with working with Schur functors. Since this definition of jets
given here arose as an alternative to combinatorial difficulties associated with Semple-
Demailly jet spaces, and since this definition agrees with the Semple-Demailly definition
only up to 2-jets, it may be the case that the work of Demailly and El Goul can be
extended using the jets proposed here. It was this possibility, in fact, that led me to
view the definition given here as a viable alternative to Semple-Demailly jet spaces. See
also [R].
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HOLOMORPHIC CURVES INTO ALGEBRAIC VARIETIES

Min Ru

This manuscript is based on the talk given at the Hayama Symposium on several

complex variables 2004 @ Shonan Village Center, Japan, December 18-21. In this
manuscript, we will outline the proof given by the author which establishes a defect

relation for algebraically nondegenerate holomorphic mappings into an arbitrary non-

singular complex projective variety V (rather than just the projective space) inter-
secting possible non-linear hypersurfaces, extending H. Cartan’s result. Our method

consists of embedding V into a linear variety by means of a suitable Veronese map

and then apply Cartan’s defect relation. In doing so, we first derive, for a projective
variety X, an explicit lower bound of the m-th normalized Hilbert weight of X in

terms of the normalized Chow weight of X (or Mumford’s degree of contact). The
full manuscript has been written (see [Ru4]) and was submitted elsewhere.

1. Introduction and statements

Let f : C → P
n(C) be a linearly non-degenerate holomorphic map, and Hj , 1 ≤

j ≤ q, be hyperplanes in Pn(C) in general position. In 1933, H. Cartan [Ca] proved

the defect relation(or a Second Main Theorem)

q
∑

j=1

δf (Hj) ≤ n+ 1. Since then, re-

searches of higher dimensional Nevanlinna theory have been carried out along these

two directions: (i) study the algebraically nondegenerate holomorhic mappings into

an arbitrary non-singular complex projective variety V ; (ii) replace targets of the hy-

perplanes appearing in Cartan’s result by curvilinear divisors. However, over nearly

70 years, substantial progress along these two directions is still limited. Known results

are mainly restricted to either V = Pn or V is an abelian variety.

This paper studies the defect relation for holomorphic curves f : C → V intersect-

ing hyperpsurfaces, where V is an arbitrary non-singular complex projective variety.

Let V ⊂ PN (C) be a smooth complex projective variety of dimension n ≥ 1. Let
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2 MIN RU

D1, . . . , Dq be hypersurfaces in PN (C). D1, . . . , Dq are said to be in general position

in V if for every subset {i0, . . . , in} ⊂ {1, . . . , q},

V ∩ suppDi0 ∩ · · · ∩ suppDin
= ∅, (1.1)

where supp(D) means the support of the divisor D. In this manuscript, we will

outline the proof of the following theorem, claimed in the talk given at the Hayama

Symposium on several complex variables 2004 @ Shonan Village Center, December

18-21. The full manuscript has been written (see [Ru4]) and was submitted elsewhere.

Main Theorem. Let V ⊂ PN (C) be a smooth complex projective variety of dimen-

sion n ≥ 1. Let D1, . . . , Dq be hypersurfaces in PN (C) of degree dj, located in general

position in V . Let f : C → V be an algebraically non-degenerate holomorphic map.

Then, for every ε > 0,

q
∑

j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ε)Tf (r),

where the inequality holds for all r ∈ (0,+∞) except for a possible set E with finite

Lebesgue measure.

Define the defect, with respect to a hypersurface D of degree d,

δf (D) = lim inf
r→+∞

mf (r,D)

dTf (r)
.

The main theorem then implies that

q
∑

j=1

δf (Dj) ≤ dimV + 1.

The case when V = Pn was obtained by the author [Ru3] earlier, which completely

settles a long-standing conjecture of B. Shiffman.
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DEFECT RELATION 3

2. Motivations

The result is motivated by the analogy between Nevanlinna theory and Diophan-

tine approximation, discovered by C. Osgood, P. Vojta and S. Lang. etc.. It is now

known that Cartan’s Second Main Theorem corresponds to Schmidt’s subspace the-

orem. In 1994, G. Faltings and G. Wüstholz [FW] extended Schmidt’s result to the

systems of Diophantine inequalities to be solved in algebraic points of an arbitrary

projective variety. Whereas Schmidt’s proof of his subspace theorem is based on tech-

niques from Diophantine approximation and geometry of numbers, Faltings and G.

Wüstholz developed a totally different method, based on Faltings’ Product Theorem

(cf. [FW], Theorem 3.1, 3.3). Moreover they introduced a probability measure on R

whose expected value is the crucial tool in the proof of their main result. R.G. Ferretti

(see [F1], [F2]) later observed that their expected value can be reformulated in terms

of the Chow weight of X (or Mumford’s degree of contact). In fact, for every N -tuple

c = (c0, . . . , cN ) where c0, . . . , cN are integers with c0 ≥ · · · ≥ cN , R.G. Ferretti

observed that Ec,∞ =
ec(X)

(dim(X) + 1) deg(X)
, where Ec,∞ is the Faltings-Wüstholz

expected value with respect to c and ec(X) is the Chow weight of X with respect to

c. Ferretti’s observation brought the geometric invariant theory (Mumford’s degree of

contact is a birational invariant often considered in Geometric Invariant Theory (see

[Mu], [Mo])) into the study of Diophantine approximation. Later, J.H. Evertse and

R. Ferretti (cf. [EF1], [EF2]) further developed this technique and derived a quantita-

tive version of Faltings and Wüstholz’s result directly from Schmidt’s (quantitative)

subspace theorem. They also extended Schmidt’s subspace theorem with polynomials

of arbitrary degree (see also [CZ]). This paper is inspired by these developments.

3. Chow Weights and Hilbert Weights

Chow Form: Let X ⊂ PN (C) be a projective subvariety of dimension n and degree
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4 MIN RU

4. To X we can associate, up to a constant scalar, a unique irreducible polynomial

FX(u0, . . . ,un) = FX(u00, . . . , u0N ; . . . ;un0, . . . , unN )

in n+1 blocks of variables ui = (ui0, . . . , uiN ) (i = 0, . . . , n), which is called the Chow

form ofX, with the following properties: FX is homogeneous of degree 4 in each block

ui(i = 0, . . . , n); and FX(u0, . . . ,un) = 0 if and only if X∩Hu0
∩· · ·∩Hun

6= ∅, where

Hui
(i = 0, . . . , n) are the hyperplanes given by ui · x = ui0x0 + · · ·+ uiNxN = 0.

Chow Weight: Let c = (c0, . . . , cN ) ∈ RN+1. Consider

FX(tc0u00, . . . , t
cNu0N ; . . . ; tc0un0, . . . , t

cNunN )

=
r

∑

k=0

tekGk(u0, . . . ,un)

with GkC[u00, . . . , u0N ; . . . ;un0, . . . , unN ], k = 0, . . . , r and e0 > e1 > · · · > er. We

define the Chow weight of X with respect to c by

eX(c) := e0.

Hilbert function and Hilbert Weight: Let I = IX be the prime ideal in C[x0, . . . , xN ]

defining X, and let C[x0, . . . , xN ]m be the vector space of homogeneous polynomials of

degree m (including 0). Put Im := C[x0, . . . , xN ]m ∩ I and define the Hilbert function

HI of I by, for m = 1, 2, . . . ,

HI(m) := dim (C[x0, . . . , xN ]m/Im) .

Then

HI(m) = 4 ·
mn

n!
+ O(mn−1).

We define the m-th Hilbert weight SI(m, c) of I with respect to c = (c0, . . . , cN ) ∈

RN+1 by

SI(m, c) := max





HI(m)
∑

i=1

ai · c



 ,
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DEFECT RELATION 5

where the maximum is taken over all sets of monomials xa1 , . . . ,xaHI (m) whose residue

classes modulo I form a basis of C[x0, . . . , xN ]m/Im. According to Mumford, we have

SI(m, c) = eI(c) ·
mn+1

(n+ 1)!
+ O(mn),

which implies that

lim
m→∞

1

mHI(m)
· SI(m, c) =

1

(n+ 1)4
· eI (c).

Write HX(m) = HIX
(m), SX(m, c) = SIX

(m, c), where I = IX be the prime ideal in

C[x0, . . . , xN ] defining X. We can prove the following theorem, which gives a lower

bound of SX(m, c) in terms of eX(c) with the explict coefficients (see [Ru4] for the

proof).

Theorem 3.1. Let X be a subvariety of PN of dimension n and degree 4. Let

m > 4 be an integer and let c = (c0, . . . , cN ) ∈ R
N+1
≥0 . Then

1

mHX(m)
SX(m, c) ≥

1

(n+ 1)4
eX(c) −

(2n+ 1)4

m
·

(

max
i=0,...,N

ci

)

.

We also need the following lemma (see [Ru4] for the proof).

Lemma 3.1. Let Y be a subvariety of P
q−1 of dimension n and degree 4. Let

c = (c1, . . . , cq) be a tuple of reals. Let {i0, . . . , in} be a subset of {1, . . . , q} such that

Y ∩ {yi0 = 0, . . . , yin
= 0} = ∅.

Then

eY (c) ≥ (ci0 + · · ·+ cin
) · 4.
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4. Vojta’s extension of Cartan’s theorem

We first introduce some standard notations in Nevanlinna theory: Let f : C →

PN (C) be a holomorphic map. Let f̃ = (f0, . . . , fN) be a reduced representative

of f , where f0, . . . , fN are entire functions on C and have no common zeros. The

Nevanlinna-Cartan characteristic function Tf (r) is defined by

Tf (r) =
1

2π

∫ 2π

0

log ||f̃(reiθ)||dθ

where

‖f̃(z)‖ = max{|f0(z)|, . . . , |fN (z)|}.

The above definition is independent, up to an additive constant, of the choice of the

reduced representation of f . Let D be a hypersurface in PN (C) of degree d. Let Q be

the homogeneous polynomial (form) of degree d defining D. The proximity function

mf (r,D) is defined as

mf (r,D) =

∫ 2π

0

log
‖f̃(reiθ)‖d‖Q‖

|Q(f̃)(reiθ)|

dθ

2π
,

where ‖Q‖ is the maximum of the absolute values of the coefficients of Q. To define

the counting function, let nf (r,D) be the number of zeros of Q ◦ f̃ in the disk |z| < r,

counting multiplicity. The counting function is then defined by

Nf (r,D) =

∫ r

0

nf (t,D) − nf (0, D)

t
dt+ nf (0, D) log r.

The Poisson-Jensen formula implies:

First Main Theorem. Let f : C → P
N (C) be a holomorphic map, and let D be a

hypersurface in PN (C) of degree d. If f(C) 6⊂ D, then for every real number r with

0 < r <∞

mf (r,D) +Nf (r,D) = dTf (r) + O(1),
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DEFECT RELATION 7

where O(1) is a constant independent of r.

The following Second Main Theorem on holomorphic curves intersecting hyper-

planes extends H. Cartan’s result. It is due to P. Vojta (see [V2]). The theorem is

also stated and proved in [Ru1] (see Theorem 2.1 in [Ru1]).

Theorem 4.1. Let f = [f0 : · · · : fn] : C → Pn(C) be a holomorphic map whose

image is not contained in any proper linear subspace. Let H1, ..., Hq be arbitrary

hyperplanes in P
n(C). Let Lj , 1 ≤ j ≤ q, be the linear forms defining H1, . . . , Hq.

Then, for every ε > 0,

∫ 2π

0

max
K

log
∏

j∈K

‖f(reiθ)‖‖Lj‖

|Lj(f)(reiθ)|

dθ

2π
≤ (n+ 1 + ε)Tf (r),

where the inequality holds for all r outside of a set E with finite Lebesgue measure,

the maximum is taken over all subsets K of {1, . . . , q} such that #K = n+ 1 and the

linear forms Lj , j ∈ K, are linearly independent, and ‖Lj‖ is the maximum of the

absolute values of the coefficients in Lj.

5. Proof of the Main Theorem

We now prove our Main Theorem.

Proof of the Main Theorem. Let D1, . . . , Dq be the hypersurfaces in PN (C), located

in general position on V . Let Qj , 1 ≤ j ≤ q, be the homogeneous polynomials in

C[X0, . . . , Xn] of degree dj defining Dj . Replacing Qj by Q
d/dj

j if necessary, where

d is the l.c.m of d′js, we can assume that Q1, . . . , Qq have the same degree of d. For

every b = [b0 : · · · : bN ] ∈ PN (C), consider the function

‖b, Dj‖ =
|Qj(b)|

‖b‖d‖Qj‖
, (5.1)

where ‖b‖ = max0≤j≤N |bj| and ‖Qj‖ is the maximum of the absolute values of the

coefficients of Qj. By the “in general position” condition, at each point b ∈ V , there
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‖b, Dj‖ can be zero for no more than n indicies j ∈ {1, . . . , q}. For the remaining

indices j, we have ‖b, Dj‖ > 0 and by the continuity of these functions and the

compactness of V , there exists C > 0 such that ‖b, Dj‖ > C for all b ∈ V and all

Dj , except for at most n of them. Hence, for any holomorphic map f : C → V ,

q
∑

j=1

mf (r,Dj) =

∫ 2π

0

q
∑

j=1

log
1

‖f(reiθ), Dj‖

dθ

2π

=

∫ 2π

0

log

q
∏

j=1

‖f(reiθ)‖d‖Qj‖

|Qj(f)(reiθ)|

dθ

2π

≤

∫ 2π

0

max
{i0,...,in}

{

log

n
∏

k=0

‖f(reiθ)‖d‖Qik
‖

|Qik
(f)(reiθ)|

}

dθ

2π
+ O(1).

(5.2)

Define a map φ : x ∈ V 7→ [Q1(x) : · · · : Qq(x)] ∈ Pq−1(C) and let Y = φ(V ). By the

“in general position” assumption, φ is a finite morphism on V and Y is a complex

projective subvariety of Pq−1(C). We also have dimY = n and deg Y := 4 ≤ dnD,

where D = deg V . For every a = (a1, . . . , aq) ∈ Z
q
≥0, denote by ya = ya1

1 · · · y
aq

q . Let

m be a positive integer. Put

nm := HY (m) − 1, qm :=

(

q +m− 1
m

)

− 1. (5.3)

Consider the Veronese embedding

φm : P
q−1(C) ↪→ P

qm(C) : y 7→ (ya0 , . . . ,yaqm ), (5.4)

where ya0 , . . . ,yaqm are the monomials of degree m in y1, . . . , yq, in some order. De-

note by Ym the smallest linear variety of P
qm containing φm(Y ). Then, clearly, a linear

form
∑qm

i=0 γizi vanishes identically on Ym if and only if
∑qm

i=0 γiy
ai , as a polynomial

of degree m, vanishes identically on Y . In other words, there is an isomorphism

C[y1, . . . , yq]/(IY )m ' Y ∨
m : yai 7→ zi, i = 0, . . . , qm,
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where IY is the prime ideal in C[y1, . . . , yq] defining Y , (IY )m is the vector space of

homogeneous polynomials of degree m in IY , and Y ∨
m is the vector space of linear

forms in C[z0, . . . , zqm
] modulo the linear forms vanishing identically on Ym. Hence

Ym is an nm-dimensional linear subspace of P
qm(C) where nm = HY (m)−1. Since Ym

is an nm-dimensional linear subspace of Pqm(C), there are linear forms L0, . . . , Lqm
∈

C[w0, . . . , wnm
] such that the map

ψm : w ∈ P
nm(C) 7→ (L0(w), . . . , Lqm

(w)) ∈ Ym (5.5)

is a linear isomorphism from P
nm(C) to Ym. Thus ψ−1

m φm is an injective map from Y

into Pnm . Let f : C → V be the given holomorphic map and let F = ψ−1
m ◦φm ◦φ◦f :

C → Pnm . Then F is a holomorphic map. Furthermore, since f is algebraically non-

degenerate, F is linearly non-degenerate. For every z ∈ C, let cz = (c1,z, . . . , cq,z)

where

cj,z := log
‖f(z)‖d‖Qj‖

|Qj(f)(z)|
, j = 1, . . . , q. (5.6)

Obviously, cj,z ≥ 0 for j = 1, . . . , q. For every z ∈ C there is a subset Iz of {0, . . . , qm}

of cardinality nm+1 = HY (m) such that {yai : i ∈ Iz} is a basis of C[y1, . . . , yq]/(IY )m

and

SY (m, cz) =
∑

i∈Iz

ai · cz. (5.7)

Note that, for every w ∈ Pnm , we have Li(w) = yai , i = 0, . . . , qm. Hence, using

(5.7), we have

log
∏

i∈Iz

‖Li‖

|Li(F )(z)|
= log

∏

i∈Iz

1

|Q1(f)(z)|ai,1 · · · |Qq(f)(z)|ai,q
+ O(1)

= log
∏

i∈Iz

[(

‖f(z)‖d‖Q1‖

|Q1(f)(z)|

)ai,1

· · ·

(

‖f(z)‖d‖Qq‖

|Qq(f)(z)|

)ai,q
]

− dHY (m)m log ‖f(z)‖ + O(1)

=
∑

i∈Iz

ai · cz − dmHY (m) log ‖f(z)‖ + O(1)

= SY (m, cz) − dmHY (m) log ‖f(z)‖ + O(1). (5.8)

152



10 MIN RU

Hence

SY (m, cz) ≤ max
J

log
∏

j∈J

‖Lj‖

|Lj(F )(z)|
+ dmHY (m) log ‖f(z)‖ +O(1)

= max
J

log
∏

j∈J

‖F (z)‖‖Lj‖

|Lj(F )(z)|
+ dmHY (m) log ‖f(z)‖ − (nm + 1) log ‖F (z)‖ + O(1),

(5.9)

where the maximum is taken over all J ⊂ {0, . . . , qm} such that #J = nm + 1 and

Lj , j ∈ J, are linearly independent. By Theorem 3.1

1

mHY (m)
SY (m, cz) ≥

1

(n+ 1)4
eY (cz) −

(2n+ 1)4

m

(

max
1≤i≤q

ci,z

)

, (5.10)

and by Lemma 3.1, for any {i0, . . . , in} ⊂ {1, . . . , q}, since D1, . . . , Dq are in general

position in V ,

eY (cz) ≥ (ci0,z + · · ·+ cin,z) · 4. (5.11)

Combining (5.6), (5.10) and (5.11) gives

1

mHY (m)
SY (m, cz) ≥

1

(n+ 1)
(ci0,z + · · ·+ cin,z) −

(2n+ 1)4

m

(

max
1≤i≤q

ci,z

)

=
1

(n+ 1)
log

(

‖f(z)‖d‖Qi0‖

|Qi0(f)(z)|
· · ·

‖f(z)‖d‖Qin
‖

|Qin
(f)(z)|

)

−
(2n+ 1)4

m

(

max
1≤j≤q

log
‖f(z)‖‖Qj‖

|Qj(f)(z)|

)

. (5.12)

By (5.9) and (5.12) we have

max
i0,...,in

log

(

‖f(z)‖d‖Qi0‖

|Qi0(f)(z)|
· · ·

‖f(z)‖d‖Qin
‖

|Qin
(f)(z)|

)

≤
(n+ 1)

mHY (m)



max
J

log
∏

j∈J

‖F (z)‖‖Lj‖

|Lj(F )(z)|
− (nm + 1) log ‖F (z)‖





+ d(n+ 1) log ‖f(z)‖ +
(2n+ 1)(n+ 1)4

m

(

max
1≤j≤q

log
‖f(z)‖‖Qj‖

|Qj(f)(z)|

)

+ O(1).
(5.13)
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Applying integration on the both sides of (5.13) and using the First Main theorem

yield
∫ 2π

0

max
i0,...,in

log

(

‖f(reiθ)‖d‖Qi0‖

|Qi0(f)(reiθ)|
· · ·

‖f(reiθ)‖d‖Qin
‖

|Qin
(f)(reiθ)|

)

dθ

2π

≤
(n+ 1)

mHY (m)





∫ 2π

0

max
J

log
∏

j∈J

‖F (reiθ)‖‖Lj‖

|Lj(F )(reiθ)|

dθ

2π
− (nm + 1)TF (r)





+ d(n+ 1)Tf (r) +
(2n+ 1)(n+ 1)4

m

∑

1≤j≤q

mf (r,Dj) +O(1)

≤
(n+ 1)

mHY (m)





∫ 2π

0

max
J

log
∏

j∈J

‖F (reiθ)‖‖Lj‖

|Lj(F )(reiθ)|

dθ

2π
− (nm + 1)TF (r)





+ d(n+ 1)Tf (r) +
(2n+ 1)(n+ 1)q4

m
Tf (r) +O(1), (5.14)

here we note that various constants in the “O(1)” term above depend only onQ1, . . . , Qq,

not on f and z. For the ε > 0 given in the Main Theorem, take m large enough so

that

(n+ 1)

HY (m)
< ε/3d, and

(2n+ 1)(n+ 1)q4

m
< ε/3. (5.15)

Fix such an m. Applying Theorem 5.1 with ε = 1 to holomorphic map F and linear

forms L0, . . . , Lqm
, we obtain that

∫ 2π

0

max
J

log
∏

j∈J

‖F (reiθ)‖‖Lj‖

|Lj(F )(reiθ)|

dθ

2π
≤ (nm + 2)TF (r) (5.16)

holds for all r outside of a set E with finite Lebesgue measure. By combining (5.2),

(5.14), (5.15) and (5.16), we get

q
∑

j=1

mf (r,Dj) ≤
ε

3dm
TF (r) + d(n+ 1)Tf (r) + (ε/3)Tf (r) + O(1) (5.17)

where the inequality holds for all r outside of a set E with finite Lebesgue measure.

By the definition of the characteristic function, we have TF (r) ≤ dmTf (r). Hence

(5.17) becomes
q

∑

j=1

mf (r,Dj) ≤ (d(n+ 1) + 2ε/3)Tf (r) + C (5.18)
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where the inequality holds for for all r outside of a set E with finite Lebesgue measure,

and where C is a constant, independent of r. Take r big enough so we can make

C ≤ (ε/3)Tf (r). Thus we have

q
∑

j=1

mf (r,Dj) ≤ (d(n+ 1) + ε)Tf (r)

where the inequality holds for for all r outside of a set E with finite Lebesgue measure.

This proves the Main Theorem. �
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RELATIVE ENDS AND PROPER HOLOMORPHIC MAPPINGS TO
RIEMANN SURFACES

TERRENCE NAPIER

This talk describes joint work with Mohan Ramachandran and is arranged as follows:
1. The main result.
2. De�nitions.
3. History.
4. The theorem of Gromov and Schoen.
5. The proof.

1. The main result

We will consider the following generalization of a recent result of [Delzant-Gromov 2004]:

Theorem 1.1 ([N-Ramachandran 2004]). Let X be a connected noncompact complete Käh-
ler manifold which has bounded geometry, which is weakly 1-complete, or which admits a
positive symmetric Green's function G that vanishes at in�nity. If ẽ(X) ≥ 3, then X

admits a proper holomorphic mapping onto a Riemann surface (i.e X is holomorphically
convex with 1-dimensional Cartan-Remmert reduction).

2. Definitions

De�nition 2.1. Let M be a connected noncompact manifold.
(a) Depending on the context, by an end of M we will mean either a component E of

M \K with noncompact closure, where K is a given compact subset of M , or an
element of

lim
←

π0(M \K)

where the limit is taken as K ranges over the compact subsets of M whose comple-
ment M \K has no relatively compact components. The cardinality of the above
set is denoted by e(M). For a compact set K such that M \ K has no relatively
compact components, we get an ends decomposition

M \K = E1 ∪ · · · ∪ Em,

Date: December 20, 2004.
1
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RELATIVE ENDS AND PROPER HOLOMORPHIC MAPPINGS TO RIEMANN SURFACES 2

where E1, . . . , Em are the distinct components of M \K.
(b) For Υ : M̃ → M the universal covering of M , following [Kropholler-Roller 1989]

(and language due to Geoghegan), we will call the set

lim
←

π0[Υ
−1(M \K)],

where the limit is taken as K ranges over the compact subsets of M whose com-
plement M \K has no relatively compact components, the set of �ltered ends (or
relative ends or KRends) for the pair M̃ and M . We will denote the cardinality of
this set of relative ends by

ẽ(M) = e(M̃, M).

Clearly, ẽ(M) ≥ e(M). In fact, for k ∈ N, we have ẽ(M) ≥ k if and only if there exists an
ends decomposition M \K = E1∪· · ·∪Em for M such that, for Γj = im (π1(Ej) → π1(M))

for j = 1, . . . , m, we have
m∑

j=1

[π1(M) : Γj] ≥ k.

De�nition 2.2. A complete Kähler manifold X has bounded geometry (of order 2) if there
exists a constant C > 0 and, for each point p ∈ X, a biholomorphism Ψ of a neighborhood
U of p onto B(0; 1) ⊂ Cn such that Ψ(p) = 0, C−1Ψ∗gCn ≤ g ≤ CΨ∗gCn , and |Dkg|gCn ≤ C

for k = 1, 2.

For example, a connected covering manifold of a compact Kähler manifold has bounded
geometry.

3. History

Theorem 3.1 ([Li 1990], [Gromov 1991], N-Ramachandran [1995[). Let X be a connected
noncompact complete Kähler manifold which has bounded geometry, which is weakly 1-
complete, or which admits a positive symmetric Green's function G that vanishes at in�nity.
If e(X) ≥ 3, then X admits a proper holomorphic mapping onto a Riemann surface.

Sketch of the proof. For an ends decomposition X \K = E1 ∪ E2 ∪ E3, there exist pluri-
harmonic functions ρ1, ρ2 such that, the limit inferior at in�nity is ∞ or 1 for ρ1 and
−∞ or 0 for ρ2 along E1, −∞ or 0 for ρ1 and ∞ or 1 for ρ2 along E2, and −∞ or 0 for
both ρ1 and ρ2 along E3 ([Nakai 1962], [Nakai 1970], [Sario-Nakai 1970], [Sario-Noshiro
1966], [Sullivan 1981]). These conditions guarantee that ρ1, ρ2 are independent. On the

158



RELATIVE ENDS AND PROPER HOLOMORPHIC MAPPINGS TO RIEMANN SURFACES 3

other hand, Gromov's cup product lemma [Gromov 1991] and other considerations im-
ply that ∂ρ1 ∧ ∂ρ2 ≡ 0. Stein factorization of the map ∂ρ1

∂ρ2

: X → P1 gives the required
mapping. ¤

Theorem 1.1 is a generalization of the following:

Theorem 3.2 ([Delzant-Gromov 2004]). Let X be a connected noncompact complete Käh-
ler manifold which has bounded geometry and which admits a positive symmetric Green's
function G that vanishes at in�nity. If ẽ(X) ≥ 3, then X admits a proper holomorphic
mapping onto a Riemann surface

Their proof relies on the existence of Pluriharmonic maps into trees ([Gromov-Schoen
1992], [Sun 2003]). The proof in [N-Ramachandran 2004] relies only on the existence and
properties of pluriharmonic functions.

Counter-examples (for example, the example of [Cousin 1910] of a covering space X of
an Abelian variety A such that ẽ(X) = e(X) = 2 but O(X) = C) demonstrate that, even
with much stronger conditions, Theorem 1.1 fails for 2 (�ltered) ends.

4. The theorem of Gromov and Schoen

A closely related topic is the study of Kähler groups; i.e. fundamental groups of compact
Kähler manifolds. Theorem 1.1 can be used to prove the following:

Theorem 4.1 ([Gromov-Schoen 1992]). Let X be a connected compact Kähler manifold
whose fundamental group admits an amalgamated product decomposition

π1(X) = Γ1 ∗Γ Γ2

where the index of Γ in Γ1 is at least 3 and the index of Γ in Γ2 is at least 2. Then some
�nite (unrami�ed) covering of X admits a surjective holomorphic mapping onto a curve of
genus g ≥ 2.

Like Delzant and Gromov's proof of Theorem 3.2, Gromov and Schoen's proof of The-
orem 4.1 relies on the existence of Pluriharmonic maps into trees. Theorem 1.1 also gives
the following:

Theorem 4.2 ([N-Ramachandran 2001], [N-Ramachandran 2004],). Let X be a compact
Kähler manifold such that π1(X) is a proper ascending HNN extension. Then X admits a
surjective holomorphic mapping onto a curve of genus g ≥ 2.
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5. The proof

We will illustrate the main ideas of the proof of Theorem 1.1 by considering the following
special case:

Sketch of the proof for X of bounded geometry and e(X) = 2 with both ends nonparabolic.
In this case, X admits an ends decomposition X\K = E0∪E1 such that Γ1 = im [π1(E1) →
π1(X)] is a proper subgroup. There exists a pluriharmonic function ρ1 : X → (0, 1) with
�nite energy (i.e.

∫ |∇ρ|2 < ∞) such that

lim inf
x→∞

ρ1|E0
(x) = 0 and lim sup

x→∞
ρ1|E1

(x) = 1.

Moreover, if Υ : X̂ → X is a connected covering space with Υ∗π1(X̂) = Γ1, then Υ maps
a component Ω1 of Υ−1(E1) isomorphically onto E1 and Ω2 = Υ−1(E1) \ Ω1 6= ∅. Let
Ω0 = Υ−1(E0) and let ρ̂1 = ρ1 ◦ Υ. Fix r with maxK ρ1 < r < 1 and let V = { x ∈ E1 |
ρ1(x) > r }.

The set Ω1 is D-massive in the sense of [Grigor'yan 1999] (see Section 6) with the �nite
energy admissible subharmonic function

α ≡
{

max(ρ̂1 − r, 0) on Ω1

0 on X̂ \ Ω1

Similarly, Ω0 and Ω2 are plurimassive sets. Hence there exists a pluriharmonic function
ρ2 : X̂ → (0, 1) with �nite energy such that

lim inf
x→∞

ρ2|Ω0∪Ω2
(x) = 0 and lim sup

x→∞
ρ2|Ω1

(x) = 1.

If Ω2 → E1 is a �nite cover, then e(X̂) ≥ 3 and X̂ admits a proper holomorphic mapping
onto a Riemann surface (Theorem 3.1). If an in�nite cover, then dρ̂1|Ω2 6∈ L2 but dρ2|Ω2 ∈
L2. Hence dρ̂1 and dρ2 are linearly independent. A version of Gromov's cup product
lemma in Υ−1(V ) ∩ Ω1

∼= V implies that ∂ρ̂1 ∧ ∂ρ2 ≡ 0. Stein factorization of the map
∂ρ̂1

∂ρ2

: X̂ → P1 gives a proper holomorphic mapping of V onto a Riemann surface Z. From
this, one concludes that the required mapping on X must exist. ¤

6. Appendix: Massive sets

De�nition 6.1 ([Grigor'yan 1999[). Let Ω be an open subset of a Riemannian manifold
M .
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• If there exists a continuous subharmonic function α : M → [0, 1] such that α ≡ 0

on M \ Ω and supΩ α > 0, then we call Ω a massive set and α an admissible
subharmonic function for Ω.

• If α may be chosen to have �nite energy, then we call Ω a D-massive set.
• If M is a complex manifold and we may choose α to be plurisubharmonic, then we
call Ω plurimassive.
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Analytic aspects in the local and
global theory of ideals of holomorphic

functions

Henri Skoda

Hayama Symposium
december 2004

By this talk I have chosen to describe how some analytical tools of com-
plex analysis contributed to make decisive progress in local and global ana-
lytic geometry for the past thirty years.
Let me briefly recall that the Oka-Cartan theorem states that on a Stein
manifold X, a holomorphic function f belongs to the ideal generated by a
finite number of holomorphic functions g1, g2, . . . , gp if and only if it is locally
true in the ring of germs of holomorphic functions at every point P ∈ X.
In 1965, L. Hörmander, in his book [Hör66], proved a similar result in the
space of entire functions of exponential type and for polynomial generators
gj using for the first time the fundamental L2 estimates for the ∂̄ operator.
Let me now state the following theorem [Sko72a] giving in terms of L2 es-
timates a sufficient condition about f so that f belongs to the ideal
I generated by the holomorphic functions g1, g2, . . . , gp.
As usual, let us call: |g|2 := |g1|2 + |g2|2 + . . .+ |gp|2.

1
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Theorem 1 (1972) .
Let Ω be an open pseudoconvex set in ICn and φ be a plurisubharmonic func-
tion on Ω. Let gj, 1 ≤ j ≤ p, be holomorphic functions on Ω. Let q be the
integer: q = min(p− 1, n) and k > q be a given number.
Let f be an holomorphic function on Ω satisfying the estimate:

(1)
∫
Ω
|f |2 |g|−2k−2 e−φ dλ < +∞

Then there exists holomorphic functions hj in Ω such that:

(2) f = gh = g1h1 + g2h2 + . . .+ gphp

and:

(3)
∫
Ω

|h|2 |g|−2k e−φ dλ ≤
k

k − q

∫
Ω

|f |2 |g|−2k−2 e−φ dλ

where dλ is the usual Lebesgue measure on ICn.

Let’s observe that the choice of the integer q and of the real number k is
the best because the local finiteness of the integral has to imply the vanishing
of f on the common zeros-set of the functions gj.
But, of course, application of the theorem needs more information than the
vanishing of f on the common zeros-set. You need to know that f is small
enough at every point where |g| is small.
Let me just give the main idea of the proof. We solve a very specific ∂̄-
equation:

∂̄u = v

where v is a (0,1) differential form closely connected with g and for that, we
use Hörmander’s L2 identity for (0,1) form with weight, involving the Levi
form of the plurisubharmonic function k log |g|2.
This result can be easily iterated and provides a similar result for the
powers I l of the ideal I. If l ≥ 1 is a given integer, one can substitute
k + l − 1 to k. One obtains the more general estimation:

(4)
∫
Ω
|h|2 |g|−2k−2l+2 e−φ dλ ≤ k + l − 1

k + l − 1− q

∫
Ω
|f |2 |g|−2k−2l e−φ dλ

2
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By induction we can iterate the estimation (4) and the relation (2). We
obtain the existence of coefficients hl such that:

(5) f = gl hl :=
∑

|J|=l
gJhl,J =

∑
j1,j2,...,jl

gj1gj2 . . . gjl hl, j1,j2,...,jl

where J = (j1, j2, . . . , jl) ∈ {1, p}l is a multi-index of length l (with repeti-
tion), with the estimate:

(6)
∫
Ω

|hl|2 |g|−2k e−φ dλ ≤ (
k

k − q
)l

∫
Ω

|f |2 |g|−2k−2l e−φ dλ

The basic fact is that in the estimate:

(7)
∫
Ω
|hl|2 |g|−2k e−φ dλ < +∞

the weight |g|−2ke−φ does not depend on l, so that the behaviour of the
functions hl is, roughly speaking, independent on l.

At that time (1973), the first main motivation for such a result was the
search of a very precise control of the global behaviour of the functions hj
using the weight φ to develop the theory of entire functions in ICn in the same
vein as L. Hörmander and E. Bombieri [Bom70]. It was an amazing fact that
such a theorem also implies very strong results in the local theory of ideals.

At first let me recall some basic definitions and results about ideals.

Definition
A germ of homorphic function f is said to integral over the ideal I if
and only if there exist an integer l and germs of functions aj ∈ Ij such that
we have the following relation:

(8) f l + a1f
l−1 + . . .+ ajf

l−j + . . .+ al = 0

The set of functions f which are integral over Iis called the integral closure
of Idenoted by Ī

The following result gives classical characterizations of the integral clo-
sure.

3
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Proposition
The three following statements are equivalent:
1) f is integral over I.
2) For every germ of holomorphic curve γ: IC,0 → Cn,0 the pullback f ◦ γ
belongs to the ideal γ?I of O generated by g1 ◦ γ, g2 ◦ γ, . . . , gp ◦ γ.
3) In some neigbourhood U of 0, there exists a constant C such that in U , f
verifies the inequality:
|f | ≤ C|g|.

First of all we need that the third point is a consequence of the first. The
proof of that is an easy application of the Cauchy-Schwarz inequality in ICl.

Of course if f is integral over I, f vanishes on the set of common zeros
of the generators g1, g2, . . . , gp of I and therefore, as a consequence of the
Nullstellensatz theorem, some power fN belongs to I.
The following result [BS74] provides a very simple and optimal value for the
integer N .

Theorem 2, J. Briançon-H. Skoda 1973.
Let r be the integer defined by r = min(p, n). Then we have the following
inclusion:

(9) Īr ⊂ I

Proof:
Using the third characterization of Ī, a function f ∈ Ī verifies an inequality:
|f | ≤ C|g| in some neigbourhood U of 0, so that in U :

|f q+1| ≤ Cq+1|g|q+1

or
|f q+1|2|g|−2q−2 ≤ C2q+2

Therefore we can apply theorem 1 to f q+1 with Ω = U , φ = 0, k = q + ε
where ε > 0 is taken small enough such that the integral

∫
U |g|−2εdλ < +∞

is finite so that theorem 1 implies: f q+1 ∈ I.
For p > n, we only obtain fn+1 ∈ I. We have to work a little more to obtain
fn ∈ I (using some algebraic results). But we’re not giving details today (cf.

4
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[BS74]).

Using the iteraded version of theorem 1 for the ideal I l, we obtain by the
same method, for all integer l, the inclusion:

(10) (Ī)r+l−1 ⊂ I l

Application to the Jacobian Ideal:

Let f ∈ OICn be such that f(0) = 0. We consider the Jacobian ideal

(11) Jf = (
∂f

∂z1

,
∂f

∂z2

, . . . ,
∂f

∂zn
)

generated by the partial derivatives of f at 0.
Of course for n = 1, f ∈ (∂f

∂z
). For n > 1, It is not always true that:

f ∈ (
∂f

∂z1

,
∂f

∂z2

, . . . ,
∂f

∂zn
)

Netherveless, we have:

Corollary
If f is a germ of holomorphic function at 0 vanishing at the origin, then fn

belongs to the Jacobian ideal:

(12) fn ∈ (
∂f

∂z1

,
∂f

∂z2

, . . . ,
∂f

∂zn
)

The result is sharp taking into account the following example:

(13) f = (z1z2 . . . zn)
3n + z3n−1

1 + z3n−1
2 + . . .+ z3n−1

n

It is easy to see that: fn−1 /∈ Jf , invoking homogeneity reasons.

Proof of the corollary.
The second characterization of Ī using holomorphic curves γ running through
the origin proves that f is in the integral closure of the Jacobian ideal be-
cause the result is true for f ◦ γ in the case of one variable.

5
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Therefore fn ∈ Jf .

In 1973, no algebraic proof of these results was known except for n = 2.
The first algebraic proofs were obtained by B. Tessier, J. Lipman and
A. Sataye in 1981 [LS81] and [LT81] and these analytical results were a
powerful motivation for further closely related developments in homological
algebra as it appears in the R. Lazarsfeld and Hochster’s works (for instance
the Hochster’s work on the ”tight closure of an ideal” [WB96]).

Multiplier ideal sheaves and the Briançon-Skoda theorem

In this section, we’ll show how the theorem 1 can be useful to study
the properties of multiplier ideal sheaves. We briefly recall the definition
and main properties of multiplier ideal sheaves. These have been originally
explicitly introduced by A. Nadel (1989) [Nad89] for the study of the ex-
istence of Kähler-Einstein metrics although these ideals were implicitly used
in the E. Bombieri and Y.T Siu ’s works in 1970 [Bom70], [Siu74].

Definition
Let ϕ be a plurisubharmonic function on an open subset Ω ⊂ X . The follow-
ing ideal sheaf I(ϕ) is associated to ϕ. It is the subsheaf of the sheaf OΩ of
germs of holomorphic functions f ∈ OΩ,x such that |f |2e−2ϕ is integrable
with respect to the Lebesgue measure in some local coordinates system near x.

The zero variety V (I(ϕ)) is thus the set of points in a neighbourhood
of which e−2ϕ is not integrable. Such points occur only if ϕ has logarith-
mic poles, according to the following basic lemma due to H. Skoda (1972)
[Sko72b].
Let’s recall the definition of the Lelong’s number of the plurisubharmonic
function φ at the point x:

(14) ν(ϕ, x) := lim
r→0

[
1

log r
max
|z−x|≤r

φ(z)]

6
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Lemma (H. Skoda)
Let ϕ be a plurisubharmonic function on an open set Ω and let x ∈ Ω.
a) If ν(ϕ, x) < 1, then e−2ϕ is integrable in a neighbourhood of x, particularly
I(ϕ)x = OΩ,x.
b) If ν(ϕ, x) ≥ n+s for some integer s ≥ 0, then e−2ϕ ≥ C|z−x|−2n−2s in
a neighbourhood of x and I(ϕ)x ⊂ ms+1

Ω,x , where mΩ,x is the maximal ideal
of OΩ,x.

In fact, the ideal sheaf I(ϕ) is always a coherent ideal sheaf and therefore
its zero variety is an analytic set. This result is due to Nadel (1989).

Proposition (A. Nadel)
For any psh function ϕ on Ω ⊂ X, the sheaf I(ϕ)is a coherent sheaf of
ideals over Ω.

Proof:
It is a consequence of the classical Oka’s coherence theorem for the sheaf O
and of the L. Hörmander’s L2 estimates for ∂̄.
The importance of multiplier ideal sheaves comes from the following basic
vanishing theorem due to Nadel and also J.P. Demailly [Dem90] et [Dem94],
which is a direct consequence of the Andreotti-Vesentini-Hörmander’s L2 es-
timates. If (L, h) is an hermitian line bundle, we denote I(h) = I(ϕ) where ϕ
is the weight function of h relatively to any trivialization of L over an open set.

Nadel’s vanishing theorem 3
Let (X,ω) be a compact Kähler manifold and let L be an holomorphic line
bundle over X with a singular hermitian metric h such that its curvature
form Θh(L) verifies in the sense of currents Θh(L) ≥ εω for some contin-
uous strictly positive function ε on X. Then:

(15) Hq(X,KX

⊗
L

⊗
I(h)) = 0

for all q ≥ 1.

7

168



Now we are trying to understand somewhat better the behaviour of the
multiplier ideal sheaf I(lϕ) as l goes to +∞. Our feeling is that the ideal
grows more or less “linearly” with l.

The following result [Dem9] provides a natural inclusion for mutiplier
ideal sheaves in the same vein as the Briançon-Skoda’s theorem. It is a local
result.

Theorem 4 (J.P. Demailly)
Let X be a complex manifold of dimension n and let φ and ψ be plurisub-
harmonic functions on X. Then for any integer l, we have the following
inclusions:

(16) I(lφ+ ψ) ⊂ I(φ)l−n−1 I(ψ)

Proof.
It is equivalent to prove that:

(17) I((l + n+ 1)φ+ ψ) ⊂ I(φ)l I(ψ)

for all l ∈ IN. Since the result is local, we can assume that X = Ω is a
bounded pseudoconvex open set. In that case, after shrinking a little Ω if
necessary, the coherence of the multiplier ideal sheaf I(ϕ) shows that I(ϕ) is
generated by a finite number of elements g = (g1, . . . , gp) ∈ O(Ω) such that:

(18)
∫
Ω
|gj|2e−2ϕdλ < +∞.

It’s a consequence of J.P. Demailly’s estimation [Dem99] using the Ohsawa-
Takegoshi’s extension theorem that:

(19) ϕ ≤ log |g| + C

for some constant C > 0.
Now, let f ∈ I((l+n+1)ϕ+ψ)z0 be a germ of holomorphic function defined
on a neighbourhood V of z0 ∈ Ω. If V is small enough, the inequality (19)
implies:

(20)
∫
V
|f |2|g|−2l−2n−2e−2ψdλ ≤ C ′

∫
V
|f |2e−2(l+n+1)ϕ−2ψdλ < +∞.
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By the iterated form of the division theorem 1 with q = n, k = n + 1, this
implies that f can be written as:

(21) f = gl.hl =
∑
gj1gj2 · · · gjlhl,j1j2...jl

for a multi-indexed collection hl = (hl,j1j2...jl) of holomorphic functions on V
such that:

(22)
∫
V

|hl|2|g|−2n−2e−2ψdλ ≤ (n+ 1)l
∫
V

|f |2|g|−2l−2n−2e−2ψdλ

The last L2 inequality shows that hl ∈ I(ψ)z0 . The theorem follows.

J.P. Demailly [Dem99] used this result to give a new proof of Fujita’s
theorem about the global structure of a big line bundle L on a projective
manifold.
If L is a line bundle over X we define the volume of L as:

(23) v(L) = lim sup
k→+∞

n!

kn
h0(X, kL).

L is big if and only if v(L) > 0 or h0(X, kL) = ckn + o(kn) for some constant
c > 0 as k → +∞. One can prove that L is big if and only if L can be written
m0L = E+A where m0 is an integer, E is an effective divisor and A is ample.

Fujita’s decomposition theorem 6.
Let L be a big line bundle. Then for every ε > 0, there exists a modifi-
cation µ : X̃ → X and a decomposition µ?L = E + A , where E is an
effective IQ-divisor and A an ample IQ-divisor, such that An > v(L)− ε.
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Another strong geometrical consequence of the theorem 1 is the following
Siu’s result. It was first observed by Y.T. Siu [Siu98] for his proof of the
invariance of plurigenera:

Theorem 7 (Y.T. Siu 97).
Let E be an ample holomorphic line bundle over an n-dimensional compact
complex manifold X such that for every point P of X there is a finite number
of global sections of E which all vanish to order at least n+1 at P and do’nt
simultaneously vanish outside P .
Then for every holomorphic line bundle L over X with an Hermitian metric
locally of the form e−φ , φ being plurisubharmonic, of associated ideal sheaf
Iφ, the space of global sections of the sheaf Iφ

⊗
(L+E +KX) generates

the stalk of the sheaf Iφ
⊗

(L+ E +KX) at every point of X.

It will be easier to read the following formulas if we also denote by Iφ the
multiplier ideal I(φ).

Proof:
Let us fix arbitrarly P ∈ X and take an arbitrary germ s of (Iφ)P . Let
z = (z1, z2, . . . , zn) be a local coordinates system on some open neighbour-
hood U of P with z(P ) = 0 such that L|U is trivial. Let ρ be a cutoff function
centered at P so that ρ is a smooth, non-negative-valued function with com-
pact support in U which is identically 1 on some Stein open neighbourhood
Ω of P . Let us choose global sections u1, u2, . . . , uN of E whose common
zero-set consists of the single point P and which all vanish to order at least
n+ 1 at P .
We suppose that E has a given smooth hermitian metric whose curvature
form is strictly positive at every point of X
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By the standard Hörmander’s method of L2 estimates for ∂̄, we can solve
the ∂̄-equation:

(24) ∂̄σ = s ∂̄ρ

for a smooth section σ of the line bundle L+E+KX which is L2 with respect
to the singular Hermitian metric of L + E defined by multiplying the given
metric of E by the weight:

(25)
1

(
∑N
j=1 |uj|2)1−η

where η > 0 is chosen small enough such that

(26) (n+ 1)(1 − η) > n,

that is η < 1
n+1

. This new metric has still strictly positive curvature and we
have the classical L2 estimate:

(27)
∫
X

|σ|2

(
∑N
j=1 |uj|2)1−η dλ ≤

Cte

η

∫
X

|s ∂̄ρ|2

(
∑N
j=1 |uj|2)1−η dλ < +∞

The crucial point is: we’ll use the division theorem 1 to prove that σ has
to be in the right ideal.
Since s ∂̄ρ is identically 0 on Ω, σ is holomorphic on Ω. We now apply
the division theorem 1 on Ω to the case gj = zj, q = n − 1 and k + 1 =
(n + 1)(1 − η) > n, k > n − 1 such that the assumptions of theorem 1 are
valid. It follows that σ can be written:

(28) σ =
n∑
j=1

zjτj

on Ω for some holomorphic τ1, τ2, . . . , τN .
and:

(29)
∫
Ω

|τU |2 |z|−2k e−φ dλ ≤
k

k − n+ 1

∫
Ω

|σU |2 |z|−2k−2 e−φ dλ

where σU and τj,U are the trivialization of σ and τj over U (|σ|2 = |σU |2e−φ).
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Since u1, u2, . . . , uN vanish to order at least n+ 1 the integral:∫
Ω
|σ|2 |z|−2k−2 e−φ dλ =

∫
Ω
|σ|2 |z|−2(n+1)(1−η) e−φ dλ ≤

(30) Cte
∫
Ω
|σ|2 e−φ

(
∑N
j=1 |uj|2)1−η < +∞

is finite (the first equality comes from the definition of k and the integral is
finite because of (28)).
The key point is now the following: because of the estimate (29), τ1, τ2, . . . , τN are
in (Iφ)P and because of the division identity (28), σ ∈ mP (Iφ)P , where
mP is the maximum ideal of X at P .
Let J be the ideal at P generated by the global sections over X of the sheaf
Iφ

⊗
(L+ E +KX) over (OX)P . It follows from:

(31) ρs− σ ∈ Γ(Iφ
⊗

(L+ E +KX)) ⊂ J

that:

(32) s ∈ J +mP (Iφ)P

(because ρ = 1 in a neighbourhood of P ).
Since s is an arbitrary element of (Iφ)P , it follows that:

(33) (Iφ)P ⊂ J +mP (Iφ)P

By Nakayama’s lemma, this implies that:

(34) (Iφ)P ⊂ J

Clearly we have: J ⊂ (Iφ)P so that:

(35) J = (Iφ)P
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This last theorem together with the use of Nadel’s multiplier ideal sheaves
and of the Ohsawa-Takegoshi-Manivel’s extension theorem [OT87], [Ohs88]
et [Man93] is an essential tool in Siu’s proof of the invariance of the pluri-
genera [Siu98]:

Theorem 8 (Y.T. Siu)
Let π : X → ∆ be a smooth projective family of compact complex
manifolds parametrized by the unit disk ∆. Let’s assume that the fibers
Xt = π−1(t), t ∈ ∆, are of general type (the canonical bundle of Xt is am-
ple). Then for every integer m the plurigenus dim Γ(Xt,mKXt)is
independent of t ∈ ∆ , where KXt is the canonical line bundle of Xt.

By the family π : X → ∆ being projective, we mean that there exists a
positive holomorphic line bundle on the total space X of the family.

Let me give some hints about the proof:
The theorem is equivalent to the statement that for every t ∈ ∆ and every
positive integer m, every global section in Γ(Xt,mKXt) can be extended to
a global section of Γ(X,mKX).
As we will use the Oshawa-Takegoshi-Manivel’s extension theorem, we need
to construct a suitable metric with positive curvature on KX . Using global
sections of mKX and mKX0 , Y.T Siu constructs singular metrics on mKX

and mKX0 and he has to compare these two metrics. But this is essentially
equivalent to prove that their multiplier ideal sheaves are very close one to-
gether. He considers a germ of the multiplier ideal sheaf defined on the fiber
X0. The first crucial step is: he substitutes to this germ a global section of
the same multiplier ideal sheaf on the fiber X0 using the last theorem about
global generation of mutiplier ideal sheaf. The second crucial step is
to use Oshawa-Takegoshi extension theorem to extend this global sec-
tion on the fiber X0 to a global section of the multiplier ideal sheaf defined
on the total space X and this allows him to achieve the comparison between
the two metrics. Y.T. Siu uses for the last time Oshawa-Takegoshi-Manivel’s
theorem to end the proof.
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Analytic compactifications of C
2/Zn

Makoto ABE, Mikio FURUSHIMA and Tadashi SHIMA

1 Introduction

Let G be the cyclic group of order n generated by the 2× 2-matrix

(

ρ 0
0 ρq

)

,

where n and q are integers with (n,q) = 1 and 0 < q < n and ρ is a primitive

n-th root of 1. Let Xn,q := C
2/G be the geometric quotient surface and let π :

C
2 → Xn,q be the quotient map, which is a proper surjective morphism. Then

Xn,q is a normal affine algebraic surface with an isolated singularity x := π(0,0)

and π : C
2 \ {(0,0)} → X \ {x} is an unramified cyclic covering of order n. The

fundamental group π1(X \ {x} ; x0), where x0 6= x, is isomorphic to G ∼= Zn. Let

ψ : X̂n,q → Xn,q be the minimal resolution with the exceptional set E =
⋃r

i=1 Ei =

ψ−1(x). Then each irreducible component Ei of E is a smooth rational curve with

the self-intersection number (E2
i ) =−bi ≤−2 and the (weighted dual) graph Γ(E)

of E is as in Figure 1, where

n
q

= b1 −
1

b2 −
1

. . . −
1

br

is the continued fractional expansion of n/q.
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Figure 1.

Let (M,C) be a minimal normal analytic compactification of X̂n,q (see Morrow

[4]), i.e., M is a smooth compact complex analytic surface and C =
⋃s

i=1Ci is a

compact analytic curve satisfying the following three conditions:

(i) M \C is biholomorphic to X̂n,q,
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(ii) any singular point of C is an ordinary double point, and

(iii) no non-singular rational irreducible component of C with the self-

intersection number −1 has at most two intersection points with the other

components of C.

Then Abe-Furushima-Yamasaki [1] proved that M is a rational surface and the

graph Γ(C) of C is a linear tree of smooth rational curves as in Figure 2, where

ni := (C2
i ) for 1 ≤ i ≤ s and max1≤i≤s {ni} ≥ 0.
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Figure 2.

2 Main results

We use the term of semi-stable compactification to indicate the minimal normal

compactification (M∗,C∗) of X̂n,q with the graph Γ(C∗) as in Figure 3, where m 6=

−1 and mi ≥ 2 (1 ≤ i ≤ k).
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Figure 3.

Theorem 1 There exists a semi-stable compactification (M∗,C∗) of the (minimal

resolution of) the cyclic quotient affine surface Xn,q. In particular {m j}1≤ j≤k satisfy

n
n−q

= m1 −
1

m2 −
1

. . . −
1

mk

or
n

n− p
= m1 −

1

m2 −
1

. . . −
1

mk

,

where 0 < p < n and pq ≡ 1 (mod n).

Theorem 2 Let (M,C) be the minimal normal compactification of the minimal

resolution X̂n,q of the cyclic quotient affine surface Xn,q. Then the possible types of

the graph Γ(C) are classified according to the following cases.
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(i) (n > 1)......................................
........
.........
...................................

n

(ii) (m1 > 0, m2 ≥ 2, m1m2 +1 = n)......................................
........
.........
................................... ......................................

........
.........
...................................

m1 −m2

...............................................................................

(iii) (m 6= −1)......................................
.........
.........
.................................. ......................................

.........
.........
.................................. ......................................

.........

.........
..................................

0 m −n

............................................................................... ...............................................................................

(iv) (m 6= −1,0)......................................
........
.........
................................... ......................................

........
.........
................................... ......................................

........

.........
...................................

m 0 −(m+n)

............................................................................... ...............................................................................

(v) (m1 > 0, m2, m3 ≥ 2, m1m2m3 −m1 +m3 = n)......................................
........
.........
................................... ......................................

........
.........
................................... ......................................

........

.........
...................................

m1 −m2 −m3

............................................................................... ...............................................................................

(vi) (m2 > 0, m1, m3 ≥ 2, m1m2m3 +m1 +m3 = n)......................................
.........
.........
.................................. ......................................

.........
.........
.................................. ......................................

.........

.........
..................................

−m1 m2 −m3

............................................................................... ...............................................................................

(vii) (s ≥ 4, m 6= −1, mi ≥ 2, [m1,m2, . . . ,ms−2] = n)......................................
........
.........
................................... ......................................

........
.........
................................... ......................................

........

.........
................................... ......................................

........
.........
...................................

0 m −m1 −ms−2

............................................................................... ............................................................................... ............. ............. ............. ............. ............. .............

(viii) (s ≥ 4, m 6= −1,0, mi ≥ 2 for i ≥ 2)......................................
........
.........
................................... ......................................

........
.........
................................... ......................................

........

.........
................................... ......................................

........
.........
...................................

m 0 −m2 −ms−1

............................................................................... ............................................................................... ............. ............. ............. ............. ............. .............

(ix) (s ≥ 4, m > 0, mi ≥ 2 for i ≥ 1)......................................
.........
.........
.................................. ......................................

.........
.........
.................................. ......................................

.........

.........
.................................. ......................................

.........
.........
..................................

m −m1 −m2 −ms−1

............................................................................... ............................................................................... ............. ............. ............. ............. ............. .............

(x) (s ≥ 4, m > 0, mi ≥ 2 for i ≥ 1)......................................
........
.........
................................... ......................................

........
.........
................................... ......................................

........

.........
................................... ......................................

........
.........
...................................

−m1 m −m2 −ms−1

............................................................................... ............................................................................... ............. ............. ............. ............. ............. .............

(xi)

(s ≥ 4, 2 ≤ i0 ≤ s−2, m 6= −1, mi ≥ 2 for i 6= i0, i0 +1)

......................................
........
.........
................................... ......................................

........
.........
................................... ......................................

........
.........
................................... ......................................

........
.........
................................... ......................................

........
.........
................................... ......................................

........
.........
...................................

−m1 −mi0−1 0 m −mi0+2 −ms

............................................................................... ............................................................................... ............................................................................................ ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

(xii)

(s ≥ 4, 3 ≤ i0 ≤ s−2, mi0 > 0, mi ≥ 2 for i 6= i0)

.......................................
........
.........
.................................. .......................................

........

.........
.................................. .......................................

........

.........
.................................. .......................................

........

.........
.................................. .......................................

........

.........
.................................. .......................................

........

.........
..................................

−m1 −mi0−1 mi0 −mi0+1 −mi0+2 −ms

............................................................................... ............................................................................... ............................................................................................ ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............

When every self-intersection number of all irreducible components of C is non-

zero, we say the minimal normal compactification (M,C) is of the non-zero type.

For given (n,q), there exist finitely many minimal normal compactifications of X̂n,q

of the non-zero type. On the other hand, the surface X̂n,q possesses countably many

minimal normal compactifications of which C has a irreducible component with its

self-intersection number 0.

Each minimal normal compactification of X̂n,q of the non-zero type belongs to

one of the types (i), (ii), (v), (vi), (ix), (x), (xii) of Theorem 2, and we can count

how many minimal normal compactifications of each type exist. In the following

table, we collect the numbers of minimal normal compactifications of each type.
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3 Table

We only treat the case that the sequence (b1,b2, · · · ,br) is not symmetric, that is

(b1,b2, · · · ,br) 6= (br,br−1, · · · ,b1), and c = c(n/q) indicates the number of −bi =

(E2
i ) less than −2, 1 ≤ i ≤ r.

Type q = 1 q > 1
∑(bi −2) = 0 ∑(bi −2) = 1 ∑(bi −2) > 1

A B C D E otherwise
F G H

i 1 0 0 0 0 0 0 0 0 0
ii 0 1 1 0 1 0 0 0 0 0
v 0 0 1 1 0 0 1 (bk = 3) 0 0 0

0(bk > 3)

vi 0 0 0 1 0 1 0 0 0 0
ix 0 0 0 0 1 2 1(bk = 3) 2 2 2

2(bk > 3)

x 0 0 0 0 0 0 1 2 1 0
xii 0 0 0 0 0 0 0 c−2 c−2 c−2

• A : b1 or br = 3.

• B : b j = 3, 1 < j < r.

• C : ∑r
i=1(bi −2) = b1 −2 or br −2.

• D : ∑r
i=1(bi −2) = b j −2, 1 < j < r.

• E : ∑r
i=1(bi −2) = b j −2+bk −2, j = 1 or r, 1 < k < r.

• F : b1, b2 = 2.

• G : b1 = 2, br 6= 2 or b1 6= 2, br = 2.

• H : b1, b2 6= 2.
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