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1 The 0,-complex

Let D be a smoothly bounded domain in C". The Cauchy-Riemann operators 0 on C"
induce in a natural way a complex of differential operators on 0D, the tangential Cauchy-
Riemann complex or dy-complex. The Oy-complex was first formulated by Kohn-Rossi
[KR] in the mid 1960s to study the holomorphic extension of CR functions from the
boundary of a complex manifold. Since then, CR manifolds and the 9,-complex have
been extensively studied for their intrinsic interest and because of their application to
other fields of study as partial differential equations and mathematical physics.

Let D = {z € C" : p(z) < 0} be a bounded domain in C" with C° boundary.
Let 0 = g_Z be the complex unit normal (0,1)-form defined on dD. Locally, in an
open neighborhood U N dD, we choose &y, ..., W, 1,0, to be an orthonormal basis for
(0,1)-forms. For each s with 1 < s < oo, we define L, 5 (9D) to be the space of (p,q)-
forms in C™ which has L® boundary values on 0D. Thus f € Efn »(OD) if we can write

f=>20, frudz" Ndz" where f; jlap € L*(OD) for each I,.J. Let
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The space L, (9D) is defined to be the subspace of L, (0D) such that

?p,q)(
if f € L}, (0D), then f € L¢, (9D) and N'uf =0 on 9D.

Since N is the dual to the form @, locally, we can express
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f= Z frow! N7 + Z frawt A&,

[1|=p,|J|=g,n¢J |1|=p,|J|=g,n€J
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are multiindices

where fr ;'s are L*(0DNU) functions and I = (44, .. z'p) = (J1,-- -, Jq)
<W:@ Ao ANw;,. Let 7

in {1,...,n}. We also use the notation w’ = w;; A+ Aw,,
denote the projection map

T j}fp.q)(aD) — L{, (0D)

defined by
!/
T(f) = Z f[JLUI A (.I)J.
|=p,|J|=q,n¢J
The projection 7 is well-defined since it is independent of the choice of {@q,..., @, 1}.

From definition, f € L(p »(0D), if and only if
(1.1) f=7(F) on 0D

where F'is a (p, ¢)-form in [NJ%IL »(0D). Condition (1.1) is also equivalent to the following
condition: for any smooth (n —p,n — ¢ — 1)-form ¢ in C",

A= F N o.
oD

oD

We define the d,-complex on L(p ,-1)(0D) as follows:

Definition 1.1. For any u € L (0D), if for some f € L%p’q)(ﬁD), we have

(p.a—1)
/ U/\a¢ ( )p-i—q/ f/\¢ for any ¢€On —p,n—1—q) (Cn)a
oD oD

then w is said to be in Dom(éb) and Oyu = f. The 0, is a closed, densely defined linear
operator.

In the 1960s, Kohn [Ko1] introduced L? approach to construct solution to the tangen-
tial Cauchy-Riemann complex on the boundary of a strictly pseudoconvex domain. Later,
Henkin [He| developed integral kernels to represent solutions to the tangential Cauchy-
Riemann equations. A closely related topic is the nonsolvability of certain systems of
partial differential equations. In the 1950s, Hans Lewy [Le] constructed an example of a
partial differential equation with smooth coefficients that has no locally defined smooth
solution. In particular, he showed that C'*° cannot replace real analytic in the state-
ment of the Cauchy-Kowalevsky theorem. Lewy’s example is a kind of the tangential
Cauchy-Riemann equations on the Heisenberg group in C2. His example illustrates that
the tangential Cauchy-Riemann complex on a strictly pseudoconvex boundary is not al-
ways solvable at the top degree. Later, Henkin [He] developed a criterion for solvability
of the tangential Cauchy-Riemann complex at the top degree.

2 Known results

(1) Strictly pseudoconver case. In 1965, Kohn [Kol] proved Sobolev estimates for 0 by
using subelliptic estimates for [J,. Holder and LP-estimates for 0, were proved by Folland-
Stein [F'S] in 1974. In 1976 through 1977, Skoda [Sk], Henkin [He|, and Romanov [Rom]
introduced integral kernel method for 8,, independently.
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(2) Weakly pseudoconvez case. In 1982, Rosay [Ros] proved C* solvability for Op. In 1985
through 1986, some results on L? and Sobolev estimates for d, have been proved by Shaw
[Sh1], Boas-Shaw [BS], and Kohn [Ko2], independently.

(3) A case of pseudoconver domains of finite type. In 1988, Holder estimates for J; on the
boundaries of pseudoconvex domains of finite type in C? were proved by Fefferman-Kohn
[FK] by using the L? estimates and microlocal analysis. Shaw ([Sh2], [Sh3]) proved Holder
and L? estimates for 0, on the boundaries of real ellipsoids in C™ and weakly pseudoconvex
domains of uniform strict type M in C?. Let me state the Shaw’s results more precisely.
Theorem 2.1. Let D = {z € C": p(z) = Z?Zl(xinj + yjmj) — 1 < 0}, where z; = xj +
iy;,nj,m; € Nyn > 2. Let M = maxi<j<p,{2n;,2m;}. Let f € L’(’O’l)(ﬁD), 1 <p< oo,
and f satisfy the compatibility conditions:

(1) If n =2, [,, f N =0 for every D-closed (2,0)-form o whose coefficients are in
C>=(D).

(2) If n > 2, Oyf = 0 in the distribution sense.

Then there exists a solution u of Oyu = f on 0D in the distribution sense which satisfies
the following estimates:

(i) For any 1 < p,r < oo with 1/r > 1/p —1/((n — 1)M + 2) we have |[u||rr@op) <
CHfHLfOYl)(BD)'

(ii) For p > (n — 1)M + 2 we have ||ul|a, D) < CHf||L€071)(aD) fora=1/M — ((n —

1)M +2)/(Mp). Here ||u||a,@op) is the Holder norm of order ac on 0D.
The constants in (1) and (ii) depend only on p, M, and D.

Remark 2.2. (i) Chen-Ma [CM] proved the optimal case 1/r =1/p—1/((n — 1)M + 2)
in (i) of Theorem 2.1 on the boundaries of real ellipsoids by using weak type estimates
for the solution operator of d,. The result is an improvement of a theorem of Shaw [Sh3].

(ii) The Holder exponent 1/M — ((n — 1)M + 2)/(Mp) in (ii) of Theorem 2.1 is
optimal. In [Sh3] Shaw gave an example on a real ellipsoid of finite type M which shows
the exponent 1/M — ((n — 1)M + 2)/(Mp) is the best possible.

3 Non-isotropic support functions

Let D be a smoothly bounded convex domain in C". A point z € 9D is said to be of
finite type if the order of contact of complex lines with 9D at z is finite. The domain D
is said to of finite if every point on 9D is of finite type. We denote by M the maximum
of the types of points on dD.

From now on we always denote by D = {z € C" : p(z) < 0} a bounded convex domain
with C*°-smooth boundary of finite type M. We also define Ds := {z € C" : p(z) < 4}
for small absolute values |§|. The defining function p can be chosen in such a way that
there exists a neighborhood U of 0D such that |dp(z)| > 1/2 for all ( € U and all the
domains D, are convex domains of finite type M.



If n, is the unit outward normal vector at ¢ on the hypersurface {z : p(z) = p(¢)} we
define w = ®(¢)(z — (), where the unitary matrix ®(() satisfies ®({)n¢ = (1,0,...,0) for
all ¢ € U. The following definitions are in [DF]:

pe(w) = p(C + ((C)) w),

M .
i 1o N
Se(w) := 3w, + Kwi — ¢ E N%o; E aaji (0)w
Jj=2 Lalzg ’

for N > 0 suitably large, ¢ > 0 suitably small (all independent of {). We define
; 08,
J . “o¢ .
Q = tw)dt =1,...
C(w) \/0 8wj ( 'LU) ) J ) » 1,

and

Q<Z7 C) = (Ql(za C)a ce 7Qn(z7 C))
= @(¢) (Q(P(C)(2 = Q)), - - QE(R(C) (2 = ).
We put S(z,() := Sc(@(()(2 — (). Then S(z,() is a non-isotropic support function on

D, holomorphic in z € D and C*° in ¢ € U with the following estimates. Let v be a unit
vector complex tangential to the level set {p = p(¢)} at . Define

a—+
reons’

Then there are constants K, c,d > 0, such that one has for all points z written as z =
¢ + pne + Av with g, A € C the estimate

tap(C,v) = (€ + Av)[r=o-

2Re S(z,() < — |Re p| — K(Im p)?
(31) —e>T S JauslC )NV + dsup{0, p(z) — p(O)}:
j=2 a+f=j

The non-isotropic support function S is the key factor in the kernels of the solution
operators for .

4 Our results

Using above (1,0)-form Q(z, () and support function S(z, () we define two kernels

n—q—2

K(z¢) = ) Kz, K(z¢= ZK*zc

7=0
where 0 < g <n — 2 and
QADA(IQ) A (D)™ 4> A (9.b)"
5z, (il — R
Q"N 0.0 1 (00
S*(2, Q)72 — ¢[Hn==1)
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Ki(2,¢) =¢;

K7 (z,¢) = d;



Here b = Z?Zl(éj — (;)d¢j, cj,d; are suitably chosen constants for our purpose, Q* =

Q"(2,¢) = Q((, z) and §7(z,¢) := 5(¢, 2).
Next we introduce two integral operators. Let f € L%07q+1)(8D), 0 < g <n-—2. Define

R7f(z) = BDK(Z,OAf(C), zeD

R f(z):= 8DK*(z,C)/\f(C), z€ D :=C"\D.

Theorem 4.1 ([AC]). Let f € L, ,,(9D) for p> (n—1)M + 2. Then we have

7 1 (n—1)M+2
Rt R _ _
H f||Aa(D) || fHAa(Dc) < C||fHL’(’OJ)(8D) for a= W Mp .

By Theorem 4.1, for p > (n — 1)M + 2 the integrals RT f and R~ f are continuously
extended up to the boundary. So we can define

Tf(z):= | K(zQNFQ), Sflz)=[ K(zA[f(), z€ID.
oD oD
for f € L?OJ)(@D), p > (n—1)M +2. Moreover, if f satisfies the compatibility conditions,
then )
W(Tf—=Sf)=1rf
in the distribution sense (see Theorem (2.13) of [Sh3| for details). Now we consider the
case 1 < p < (n—1)m+2. Even though the integrals R f and R~ f have boundary values
almost everywhere for z € 0D, we do not know whether they are continuously extended

up to boundary. In this case, by approximation argument [Rom|, we can assume that
feCxy(0D).

Theorem 4.2 ([AC]). Let D and M be as above. Let f € L, ,(9D), 1 <p < oo, and
f satisfy the compatibility conditions:

(1) If n = 2, fan A = 0 for every O-closed (2,0)-form ¢ whose coefficients are in
C>=(D).

(2) If n > 2, Oyf = 0 in the distribution sense.

Then there exists a solution u of Oyu = f on OD in the distribution sense which satisfies
the following estimates:

(i) For any 1 < p,r < oo with 1/r > 1/p —1/((n — 1)M + 2) we have ||ul|zr@p) <
Clfler,, om)

(i) For p > (n —1)M + 2 we have ||ul|a,@p) < CHfHLﬁ’O,l)(aD) fora =1/M — ((n —

)M +2)/(Mp). Here ||u||a,op) is the Holder norm of order a on 0D.
The constants in (i) and (ii) depend only on p, M, and D.

For the proof of the theorem we define a nonisotropic polydisc suited to the geometry
of boundaries of convex domains of finite type and estimate the support function S,
components of @, dQ and d.Q in this polydisc. In this case (3.1) is the key inequality
for the estimates of these factors in the integral solution operators for d,. We can see the
proof of Theorem 4.2 in [AC].
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