DEFECT RELATION FOR RATIONAL FUNCTIONS AS TARGETS

KATSUTOSHI YAMANOI

ABSTRACT. The second main theorem in Nevanlinna theory is proved when targets are rational functions. We use Ahlfors' theory of covering surfaces for a proof.

1. Introduction

The purpose of this paper is to prove the following.

Theorem. Let f be a transcendental meromorphic function on the complex plane \mathbb{C} . Let a_1, \dots, a_q be distinct rational functions on \mathbb{C} . Then there is a set $E \subset \mathbb{R}_{>0}$ of finite linear measure such that

$$(q-2)T(r,f) \leq \sum_{i=1}^{q} \overline{N}(r,a_i,f) + o(T(r,f)) \quad \textit{for} \quad r \to \infty, \quad r \notin E.$$

The notations T(r, f) and $\overline{N}(r, a_i, f)$ are standard in Nevanlinna theory (cf.[H],[N2]) and also given in the following section.

Our theorem gives a special case of so-called second main theorem for small functions, which was suggested by R. Nevanlinna ([N1]) and improved by Ch. Osgood and N. Steinmetz ([O],[St]). In the forthcoming paper [Y], we shall prove the general case of this problem.

We briefly mention our method of the proof.

We consider the complex projective line $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$ equipped with the Riemannian metric coming from the length element $\frac{1}{\sqrt{\pi}} \frac{|dw|}{1+|w|^2}$, which is normalized such that the total area of \mathbb{P}^1 is equal to 1. Since a_i is rational function, the value $a_i(\infty) \in \mathbb{P}^1$ is well defined.

As already pointed out by A. Sauer [Sa], when $a_i(\infty) \neq a_j(\infty)$ for $i \neq j$, our theorem follows from the following argument.

For $i=1,\ldots,q$, take a small spherical disc E_i in \mathbb{P}^1 centred at $a_i(\infty)$ such that $\overline{E_i} \cap \overline{E_j} = \emptyset$ for $i \neq j$. Let $R(r_0,r)$ be the ring domain $\{z \in \mathbb{C}; r_0 < |z| < r\}$. Apply Ahlfors' theory of covering surfaces to the subcovering $f: R(r_0,r) \to \mathbb{P}^1$ to get

(1.1)
$$\sum_{i=1}^{q} \operatorname{card}(\mathcal{H}_i) \ge (q-2)S - hL.$$

Here S = S(r) is the mean sheet number, L is the length of the relative boundary and \mathcal{H}_i is the set of islands over E_i of the covering $f: R(r_0, r) \to \mathbb{P}^1$. By Rouché's Theorem (cf. Lemma 3), we have

$$\operatorname{card}(\mathcal{H}_i) \leq \overline{n}(a_i, f, R(r_0, r)),$$

when $r_0 \gg 0$. Hence using (1.1), we get non-integrated version

$$\sum_{i=1}^{q} \overline{n}(a_i, f, R(r_0, r)) \ge (q-2)S - hL$$

of our theorem. Taking the integral $\int_1^r \frac{dt}{t}$ of the both hand side of this inequality, we get our theorem (cf. J. Miles [M]).

The next simple case is that $a_1(\infty) = a_2(\infty)$ and $a_i(\infty) \neq a_j(\infty)$ for $2 \leq i \neq j \leq q$. For $i = 2, \ldots, q$, take a small spherical disc E_i centred at $a_i(\infty)$ such that $\overline{E_i} \cap \overline{E_j} = \emptyset$ for $i \neq j$. Apply Ahlfors' theory of covering surfaces to the subcovering $f: R(r_0, r) \to \mathbb{P}^1$ to get

(1.2)
$$-\sum_{H \in \mathcal{H}_2} \rho(H) - \sum_{P \in \mathcal{P}_2} \rho^+(P) + \sum_{i=3}^q \operatorname{card}(\mathcal{H}_i) \ge (q-3)S - hL.$$

Here S, L and \mathcal{H}_i are the same as above and \mathcal{P}_2 is the set of peninsulas over E_2 of the covering $f: R(r_0, r) \to \mathbb{P}^1$.

2000 Mathematics Subject Classification: 30D35.

Next, what we have to do is to *separate* the functions a_1 and a_2 . To do this, we consider the function $\lambda(w) = \frac{w-a_1}{a_2-a_1}$. Let E_1' and E_2' be small spherical discs centred at 0 and 1, respectively. Assume that $\infty \notin \overline{E_1'} \cup \overline{E_2'}$ and $\overline{E_1'} \cap \overline{E_2'} = \emptyset$. Then we apply Ahlfors' theory to the covering

$$\lambda(f) = \frac{f - a_1}{a_2 - a_1} : f^{-1}(E_2) \to \mathbb{P}^1$$

to get the inequality

(1.3)
$$\sum_{H \in \mathcal{H}_2} \rho(H) + \sum_{P \in \mathcal{P}_2} \rho^+(P) + \sum_{i=1}^2 \operatorname{card}(\mathcal{H}_i') \ge S' - hL'.$$

Here S' = S'(r) is the mean sheet number, L' is the length of the relative boundary and \mathcal{H}'_i is the set of islands over E'_i of the covering $\lambda(f): R(r_0, r) \to \mathbb{P}^1$. Combining (1.2) and (1.3), we get

(1.4)
$$\sum_{i=1}^{2} \operatorname{card}(\mathcal{H}'_i) + \sum_{i=3}^{q} \operatorname{card}(\mathcal{H}_i) \ge (q-3)S + S' - h(L+L').$$

Here the cancellation of the term

$$(1.5) \sum_{H \in \mathcal{H}_2} \rho(H) + \sum_{P \in \mathcal{P}_2} \rho^+(P)$$

is very important in this paper. In Lemma 2, we study inequality of type (1.2) and (1.3) in general form. By Rouché's Theorem, we get

$$\operatorname{card}(\mathcal{H}'_1) \le \overline{n}\left(0, \frac{f - a_1}{a_2 - a_1}, R(r_0, r)\right) = \overline{n}(a_1, f, R(r_0, r))$$

and

$$\operatorname{card}(\mathcal{H}_2') \le \overline{n}\left(1, \frac{f - a_1}{a_2 - a_1}, R(r_0, r)\right) = \overline{n}(a_2, f, R(r_0, r))$$

for $r_0 \gg 0$. Hence using (1.4), we get non-integrated version

$$\sum_{i=1}^{q} \overline{n}(a_i, f, R(r_0, r)) \ge (q-3)S + S' - h(L + L')$$

of our theorem. Taking the integral $\int_1^r \frac{dt}{t}$, we obtain our theorem as before. Here, we also use the fact

$$\int_1^r \frac{S'(t)}{t} dt = \int_1^r \frac{S(t)}{t} dt + O(\log r),$$

which follows from the fact $T(r, a_i) \leq O(\log r)$.

To prove the general case of our theorem, we first construct a tree Γ which has information to separate the functions a_1, \ldots, a_q . Then we apply Lemma 2 for adjacent vertices of Γ to get analogous inequalities for (1.2) and (1.3), and take summation for every edges of Γ to get analogous inequality for (1.4). Here, as above, the cancellation of the terms such as (1.5) is very important. Using Rouché's Theorem, we obtain non-integrated version of our theorem (Lemma 5). Taking the integral $\int_1^r \frac{dt}{t}$, we obtain our theorem. Here we also need a combinatorial lemma to estimate the right hand side of the integration of Lemma 5 (cf. Lemma 4).

The author is very grateful to Professors H. Fujimoto, A. Eremenko and J. Noguchi for interesting and valuable comments.

Table of Contents

- 1. Introduction
- 2. Notations
- 3. Review of Ahlfors' Theory
- 4. Topological Lemma (Lemma 1)
- 5. Application of Ahlfors' Theory (Lemma 2)
- 6. Rouché's Theorem (Lemma 3)
- 7. Construction of Tree (Lemma 4)
- 8. Non-Integrated Version of Theorem (Lemma 5)
- 9. Conclusion of Proof of Theorem

In this paper, all domains of a Riemann surface are taken such that whose boundaries, if exist, are piecewise analytic. We also assume that all curves on a Riemann surface are piecewise analytic.

Let \mathscr{F} be a Riemann surface. We say that F is a *finite domain* of \mathscr{F} when F is a compactly contained, connected domain of \mathscr{F} and F is bordered by a finite disjoint union of Jordan curves. Then F is compact if and only if \mathscr{F} is compact and $F = \mathscr{F}$. We denote by \overline{F} the closure of F and by ∂F the boundary of F.

Take a triangulation of \overline{F} by a finite number of triangles, where \overline{F} may be a bordered surface. We define the characteristic $\rho(F)$ of F by

-[number of interior vertices] + [number of interior edges] - [number of triangles].

Then it is well known that this definition is independent of the choice of the triangulation. This characteristic is normalized such that $\rho(\text{disc}) = -1$ as usual in Ahlfors' theory. We also put $\rho^+(F) = \max\{0, \rho(F)\}$.

Let Ω be an open subset of \mathscr{F} . Let f and a be meromorphic functions on \mathscr{F} . Assume that $f \neq a$. Put

$$\overline{n}(a, f, \Omega) = \operatorname{card} (\{z \in \Omega; \ f(z) = a(z)\}).$$

We denote by $\omega_{\mathbb{P}^1}$ the Fubini-Study form on the projective line \mathbb{P}^1 ; i.e.,

$$\omega_{\mathbb{P}^1} = \frac{1}{(1+|w|^2)^2} \frac{\sqrt{-1}}{2\pi} dw \wedge d\overline{w}.$$

Put

$$A(f,\Omega) = \int_{\Omega} f^* \omega_{\mathbb{P}^1}.$$

Let γ be a Jordan arc on \mathscr{F} . We denote by

$$l(f, \gamma)$$

the length of the curve $f|_{\gamma}: \gamma \to \mathbb{P}^1$ with respect to the associated Kähler metric for $\omega_{\mathbb{P}^1}$, whose length element is

(2.1)
$$\frac{1}{\sqrt{\pi}} \frac{|dw|}{1 + |w|^2}.$$

Let f be a meromorphic function on \mathbb{C} . We use the following notations, which are standard in Nevanlinna theory. For a meromorphic function a on \mathbb{C} such that $f \neq a$, define the truncated counting function by

$$\overline{N}(r, a, f) = \int_{1}^{r} \frac{\overline{n}(a, f, \mathbb{C}(t))}{t} dt,$$

where $\mathbb{C}(t) = \{z \in \mathbb{C}; |z| < t\}$. We define the spherical characteristic function by

$$T(r,f) = \int_{1}^{r} \frac{A(f,\mathbb{C}(t))}{t} dt.$$

Then by Shimizu-Ahlfors theorem, this function T(r, f) is equal to the usual characteristic function up to bounded term in r.

3. Review of Ahlfors' Theory

Let F_0 be a finite domain of \mathbb{P}^1 . Let \mathscr{F} be a Riemann surface, $F \subset \mathscr{F}$ be a finite domain and ζ be a non-constant meromorphic function on \overline{F} . Assume that $\zeta(\overline{F}) \subset \overline{F_0}$. Then we may consider $\zeta : F \to F_0$ as a covering surface in the sense of [N2, p.323].

We call $\zeta^{-1}(F_0) \cap \partial F$ as relative boundary and

$$l(\zeta, \zeta^{-1}(F_0) \cap \partial F)$$

as length of the relative boundary, which is often denoted by L.

Let $\Omega \subset F_0$ be an open subset which is bounded by a finite number of disjoint Jordan curves. We call

$$S_{\Omega} = \frac{A(\zeta, \zeta^{-1}(\Omega))}{\int_{\Omega} \omega_{\mathbb{P}^1}}$$

for the mean sheet number of ζ over Ω . We often write S_{F_0} as S and call for the mean sheet number of ζ .

We apply Ahlfors' theory to the above situation $\zeta: F \to F_0$.

Covering Theorem 1. ([N2, p.328]) There exists a positive constant $h = h(F_0, \Omega) > 0$ which is independent of F and ζ such that

$$(3.1) |S - S_{\Omega}| < hL.$$

Main Theorem. ([N2, p.332]) There exists a positive constant $h = h(F_0) > 0$ which is independent of F and ζ such that

Let \mathscr{F} be a Riemann surface. Let Ω and G be two open subsets in \mathscr{F} . We define two subsets $\mathcal{I}(G,\Omega)$, $\mathcal{P}(G,\Omega)$ of the set of connected components of $G \cap \Omega$ by the following manner. Let G' be a connected component of $G \cap \Omega$, then G' is contained in $\mathcal{I}(G,\Omega)$ if and only if G' is compactly contained in Ω , otherwise G' is contained in $\mathcal{P}(G,\Omega)$. Then a connected component G' in $\mathcal{I}(G,\Omega)$ is also a connected component of G.

Let $F \subset \mathscr{F}$ be a finite domain and ζ be a non-constant meromorphic function on \overline{F} . Let E be a domain in \mathbb{P}^1 . We consider the following condition for ζ and E;

(4.1) Let
$$a \in \overline{F}$$
 be a branch point of ζ . Then $\zeta(a) \notin \partial E$.

We will use this condition just for simplicity (see argument in [N2, p.342]).

The following lemma will be used in a proof of Lemma 2.

Lemma 1. Assume that a finite number of disjoint simple closed curves γ_i $(i=1,\cdots p)$ divide \mathbb{P}^1 into connected domains D_1,\cdots,D_{p+1} . Let ζ be a non-constant meromorphic function on \overline{F} , where F is a finite domain of a Riemann surface \mathscr{F} . Assume that the condition (4.1) is satisfied for ζ and D_i $(1 \leq i \leq p+1)$. Put $\mathcal{A} = \bigcup_{i=1}^{p+1} \mathcal{I}\left(\zeta^{-1}(D_i), F\right)$, $\mathcal{B} = \bigcup_{i=1}^{p+1} \mathcal{P}\left(\zeta^{-1}(D_i), F\right)$. Then we have

$$\rho^+(F) \ge \sum_{A \in \mathcal{A}} \rho(A) + \sum_{B \in \mathcal{B}} \rho^+(B).$$

Proof. Let $\sigma_1, \dots, \sigma_s$ be the curves on F which lie over the curves γ_i $(i=1,\dots p)$. Here note that the curves $\sigma_1, \dots, \sigma_s$ are simple by the condition (4.1). Let t be the number of curves σ_j $(1 \leq j \leq s)$ which are not closed. Assume that $\sigma_1, \dots, \sigma_t$ are not closed, and $\sigma_{t+1}, \dots, \sigma_s$ are closed. First, the cross-cuts $\{\sigma_i\}_{i=1}^t$ divide F into domains F'_1, \dots, F'_u , where $u \leq t+1$. Next, the loop-cuts $\{\sigma_i\}_{i=t+1}^s$ divide each domain F'_j $(1 \leq j \leq u)$ into domains $F''_{j,1}, \dots, F''_{j,w_j}$. Then we have $A \cup B = \{F''_{j,w}\}_{1 \leq j \leq u, 1 \leq w \leq w_j}$. Note that if one of $F''_{j,1}, \dots, F''_{j,w_j}$ is simply connected and also contained in B, then there are no loop-cuts $\{\sigma_i\}_{i=t+1}^s$ on F'_j , i.e., $w_j = 1$ and $F'_j = F''_{j,1}$. In this case, F'_j is also non-compact.

Let r be the number of connected components in \mathcal{B} which are simply connected. Then by the above observation, we have $r \leq u$ and

$$(4.2) r \le t + 1.$$

If r = t + 1, then r = u = t + 1, and every F'_i are simply connected and non-compact. Using

$$\rho(F) = \sum_{1 \le j \le u} \rho(F'_j) + t \qquad \text{(cf. [N2, p.323 (1.1)])}$$

and $\rho(F_i) = -1$, we get $\rho(F) = -1$.

Since we have equality

(4.3)
$$\rho(F) = \sum_{B \in \mathcal{A} \cup \mathcal{B}} \rho(B) + t,$$

we have the following inequality

$$\rho(F) \ge \sum_{A \in \mathcal{A}} \rho(A) + \sum_{B \in \mathcal{B}} \rho^+(B) + \eta$$

where $\eta = 0$ if r < t and $\eta = -1$ if r = t + 1. But in the case $\eta = -1$, we have $\rho(F) = -1$. Hence we have

$$\rho^+(F) \ge \sum_{A \in \mathcal{A}} \rho(A) + \sum_{B \in \mathcal{B}} \rho^+(B).$$

This proves our lemma. \Box

5. Application of Ahlfors' Theory

The following lemma is a modification of Ahlfors' second main theorem (see the remark below).

Lemma 2. Let E^{\dagger} be a Jordan domain in \mathbb{P}^1 or \mathbb{P}^1 itself. Let $E_1, \dots, E_p, E_{\infty}$ be Jordan domains in \mathbb{P}^1 . Assume that the closures $\overline{E_j}$ of E_j 's $(j=1,\dots,p,\infty)$ are mutually disjoint. Then there is a positive constant h>0 which only depends on E_1,\dots,E_p,E_{∞} with the following property: Let F be a finite domain of a Riemann surface $\mathscr F$ and v,ζ be two non-constant meromorphic functions on \overline{F} . Assume that

(5.1)
$$\zeta\left(\upsilon^{-1}(\mathbb{P}^1\backslash E^{\dagger})\cap \overline{F}\right) \subset E_{\infty}$$

and that ζ and E_j satisfy the condition (4.1) for $j=1,\cdots,p,\infty$. Put

$$\mathcal{H}^{I} = \mathcal{I}\left(v^{-1}(E^{\dagger}), F\right), \ \mathcal{H}^{P} = \mathcal{P}\left(v^{-1}(E^{\dagger}), F\right),$$
$$\mathcal{G}_{i}^{I} = \mathcal{I}\left(\zeta^{-1}(E_{i}), F\right), \ \mathcal{G}_{i}^{P} = \mathcal{P}\left(\zeta^{-1}(E_{i}), F\right) \quad for \ j = 1, \cdots, p,$$

and

$$\mathcal{G}_{\infty}^{I} = \mathcal{I}\left(\zeta^{-1}(E_{\infty}), F \cap v^{-1}(E^{\dagger})\right).$$

Let S be the mean sheet number and L be the length of the relative boundary with respect to the covering $\zeta: F \to \mathbb{P}^1$. Then we have the following inequality.

$$(5.2) \quad \vartheta(\zeta, v) + \sum_{H^I \in \mathcal{H}^I} \rho(H^I) + \sum_{H^P \in \mathcal{H}^P} \rho^+(H^P) - \sum_{j=1}^p \sum_{G_j^I \in \mathcal{G}_j^I} \rho(G_j^I) - \sum_{j=1}^p \sum_{G_j^P \in \mathcal{G}_j^P} \rho^+(G_j^P) - \sum_{G_{\infty}^I \in \mathcal{G}_{\infty}^I} \rho(G_{\infty}^I) \ge (p-1)S - hL,$$

where $\vartheta(\zeta, v)$ is the number of connected components H^I in \mathcal{H}^I such that $\zeta(H^I) \subset E_{\infty}$.

Remark. (1) In the case $E^{\dagger} = \mathbb{P}^1$, the condition (5.1) is satisfied. Moreover if F is non-compact, then we have $\mathcal{H}^P = \{F\}$, $\mathcal{H}^I = \emptyset$ and $\vartheta(\zeta, v) = 0$.

(2) Consider the case that $E^{\dagger} = \mathbb{P}^1$ and F is a simply connected, non-compact domain. Using the facts that $\rho^+(F) = 0$ and $\rho^+(G_i^P) \geq 0$, we have

$$-\sum_{j=1}^p \sum_{G_j^I \in \mathcal{G}_j^I} \rho(G_j^I) - \sum_{G_{\infty}^I \in \mathcal{G}_{\infty}^I} \rho(G_{\infty}^I) \ge (p-1)S - hL.$$

In this case, for $j = 1, ..., p, \infty$, the sets \mathcal{G}_j^I are the sets of islands over E_j with respect to the covering $\zeta : F \to \mathbb{P}^1$. Using $\rho(G_j^I) \geq -1$, we get

$$\sum_{j=1,\ldots,p,\infty} \left(\text{number of islands over } E_j \text{ w.r.t. } \zeta\right) \geq (p-1)S - hL,$$

which is famous Ahlfors' second main theorem.

(3) To get the inequality (1.3), we apply our lemma to v = f, $\zeta = \lambda(f)$, $E^{\dagger} = E_2$, $E_1 = E_1'$ and $E_2 = E_2'$. See a proof of Lemma 5.

Proof of Lemma 2. Let γ_i $(i=1,\cdots,p,\infty)$ be the boundary of E_i , which is a simple closed curve on \mathbb{P}^1 . We first consider the subcovering $\zeta_I: \mathcal{H}^I \to \mathbb{P}^1$ $(H^I \in \mathcal{H}^I)$ of the covering $\zeta: F \to \mathbb{P}^1$. Since H^I is compactly

We first consider the subcovering $\zeta_I: H^I \to \mathbb{P}^I$ ($H^I \in \mathcal{H}^I$) of the covering $\zeta: F \to \mathbb{P}^I$. Since H^I is compactly contained in F, the boundary ∂H^I of H^I does not meet the boundary of F. Hence, by the assumption (5.1), we have

$$\zeta(\partial H^I) \subset E_{\infty}.$$

By this and the condition (4.1), we conclude that the curves $\sigma_1^I, \dots, \sigma_s^I$ lying over the curves γ_j $(i=1,\dots,p,\infty)$ are simple closed curves on H^I . By this system of loop cuts (σ_j^I) , H^I is divided into four classes of connected domains A_1 , A_2 , A_3 and A_4 . A_1 is the set of connected components of $\zeta_I^{-1}(E_1 \cup \dots \cup E_p)$. Put $A_2 = \mathcal{I}\left(\zeta_I^{-1}(E_\infty), H^I\right)$ and $A_3 = \mathcal{P}\left(\zeta_I^{-1}(E_\infty), H^I\right)$. Let Ω be the domain $\mathbb{P}^1\setminus \left(\bigcup_{i=1}^p \overline{E_i} \cup \overline{E_\infty}\right)$ and let A_4 be the set of connected components of $\zeta_I^{-1}(\Omega)$. Since the curves σ_i^I are closed, we have

(5.4)
$$\rho(H^{I}) = \sum_{A_{1} \in \mathcal{A}_{1}} \rho(A_{1}) + \sum_{A_{2} \in \mathcal{A}_{2}} \rho(A_{2}) + \sum_{A_{3} \in \mathcal{A}_{3}} \rho(A_{3}) + \sum_{A_{4} \in \mathcal{A}_{4}} \rho(A_{4}).$$

The components in \mathcal{A}_4 are covering surfaces of Ω and by (5.3), these covering surfaces do not have relative boundaries. Hence by the Hurwitz formula, using $\rho(\Omega) = p - 1$, we have

$$\sum_{A_4 \in \mathcal{A}_4} \rho(A_4) \ge s_I \rho(\Omega) = s_I(p-1).$$

Here s^I denotes the mean sheet number over the domain Ω of the covering surface $\zeta_I: H^I \to \mathbb{P}^1$. Using the equality (5.4), we have

$$\rho(H^I) - \sum_{A_1 \in \mathcal{A}_1} \rho(A_1) - \sum_{A_2 \in \mathcal{A}_2} \rho(A_2) - \sum_{A_3 \in \mathcal{A}_3} \rho(A_3) = \sum_{A_4 \in \mathcal{A}_4} \rho(A_4) \ge s_I(p-1).$$

If $\zeta_I(H^I) \not\subset E_{\infty}$, then components in \mathcal{A}_3 is not simply connected, so $\rho(A_3) \geq 0$. Hence

(5.5)
$$\rho(H^I) - \sum_{A_1 \in \mathcal{A}_1} \rho(A_1) - \sum_{A_2 \in \mathcal{A}_2} \rho(A_2) \ge s_I(p-1).$$

On the other hand, if $\zeta_I(H^I) \subset E_{\infty}$, then we have

(5.6)
$$1 + \rho(H^I) - \sum_{A_1 \in A_1} \rho(A_1) - \sum_{A_2 \in A_2} \rho(A_2) \ge s_I(p-1).$$

This is because $A_1 = A_2 = \emptyset$, $\rho(H^I) \ge -1$ and $s_I = 0$. Here note that H^I is non-compact in this case, because ζ is non-constant. Using (5.5) and (5.6), we have

(5.7)
$$\vartheta(\zeta, v) + \sum_{H^I \in \mathcal{H}^I} \rho(H^I) - \sum_{H^I \in \mathcal{H}^I} \sum_{A_1 \in \mathcal{A}_1} \rho(A_1) - \sum_{H^I \in \mathcal{H}^I} \sum_{A_2 \in \mathcal{A}_2} \rho(A_2) \ge (p-1) \sum_{H^I \in \mathcal{H}^I} s_I.$$

Next we consider the subcovering $\zeta_P: H^P \to \mathbb{P}^1$ of $\zeta: F \to \mathbb{P}^1$ for a component $H^P \in \mathcal{H}^P$. Let $\mathcal{B}_1, \mathcal{B}_2, \cdots, \mathcal{B}_6$ be as follows

$$\mathcal{B}_{1} = \mathcal{I}\left(\zeta_{P}^{-1}\left(\cup_{i=1}^{p} E_{i}\right), H^{P}\right), \mathcal{B}_{2} = \mathcal{P}\left(\zeta_{P}^{-1}\left(\cup_{i=1}^{p} E_{i}\right), H^{P}\right), \mathcal{B}_{3} = \mathcal{I}\left(\zeta_{P}^{-1}(E_{\infty}), H^{P}\right), \mathcal{B}_{4} = \mathcal{P}\left(\zeta_{P}^{-1}(E_{\infty}), H^{P}\right), \mathcal{B}_{5} = \mathcal{I}\left(\zeta_{P}^{-1}(\Omega), H^{P}\right), \mathcal{B}_{6} = \mathcal{P}\left(\zeta_{P}^{-1}(\Omega), H^{P}\right).$$

By Lemma 1, we have

(5.8)
$$\rho^+(H^P) \ge \sum_{B \in \mathcal{B}_1 \cup \mathcal{B}_3 \cup \mathcal{B}_5} \rho(B) + \sum_{B \in \mathcal{B}_2 \cup \mathcal{B}_4 \cup \mathcal{B}_6} \rho^+(B).$$

Since components in $\mathcal{B}_5 \cup \mathcal{B}_6$ are covering surfaces of Ω , using the Hurwitz formula and the main theorem (3.2), there is a positive constant h' which depend only on E_i 's such that

$$\sum_{B_5 \in \mathcal{B}_5} \rho(B_5) + \sum_{B_6 \in \mathcal{B}_6} \rho^+(B_6) \ge s_P(p-1) - h'L_P$$

where s_P is the mean sheet number over Ω for the covering surface $\zeta_P: H^P \to \mathbb{P}^1$ and L_P is the sum of the lengths of the relative boundaries of $B_6 \to \Omega$ over $B_6 \in \mathcal{B}_6$. By summing up for $H^P \in \mathcal{H}^P$ and from (5.8), we have

(5.9)
$$\sum_{H^{P} \in \mathcal{H}^{P}} \rho^{+}(H^{P}) - \sum_{H^{P} \in \mathcal{H}^{P}} \sum_{B \in \mathcal{B}_{1} \cup \mathcal{B}_{3}} \rho(B) - \sum_{H^{P} \in \mathcal{H}^{P}} \sum_{B' \in \mathcal{B}_{2}} \rho^{+}(B')$$

$$\geq (p-1) \sum_{H^{P} \in \mathcal{H}^{P}} s_{P} - h' \sum_{H^{P} \in \mathcal{H}^{P}} L_{P}.$$

Here we use the fact $\rho^+(B_4) \geq 0$ for $B_4 \in \mathcal{B}_4$.

Now consider the covering $\zeta: F \to \mathbb{P}^1$. By the assumption (5.1), we have

$$\zeta^{-1}(\Omega) \subset \bigcup_{H^I \in \mathcal{H}^I} H^I \cup \bigcup_{H^P \in \mathcal{H}^P} H^P \quad \text{on } F.$$

Hence we have

$$\sum_{H^P \in \mathcal{H}^P} L_P \le L.$$

(Recall that L is the length of the relative boundary for $\zeta: F \to \mathbb{P}^1$.) Also using the covering theorem 1 (3.1), we have

$$(5.11) S_{\Omega} = \sum_{H^I \in \mathcal{H}^I} s_I + \sum_{H^P \in \mathcal{H}^P} s_P \ge S - h'' L$$

for some positive constant h'' which only depend on E_i 's. Here S_{Ω} is the mean sheet number of the covering $\zeta: F \to \mathbb{P}^1$ over Ω .

Again by the assumption (5.1), we have

$$\zeta^{-1}(\overline{E_i}) \subset \bigcup_{H^I \in \mathcal{H}^I} H^I \cup \bigcup_{H^P \in \mathcal{H}^P} H^P \quad \text{for } 1 \leq i \leq p \quad \text{on } F.$$

Hence we have $\bigcup_{1 \leq j \leq p} \mathcal{G}_j^I = \bigcup_{H^I \in \mathcal{H}^I} \mathcal{A}_1 \cup \bigcup_{H^P \in \mathcal{H}^P} \mathcal{B}_1$ and $\bigcup_{1 \leq j \leq p} \mathcal{G}_j^P = \bigcup_{H^P \in \mathcal{H}^P} \mathcal{B}_2$. These imply that

(5.12)
$$\sum_{j=1}^{p} \sum_{G^I \in G^I} \rho(G_j^I) = \sum_{H^I \in \mathcal{H}^I} \sum_{A_1 \in \mathcal{A}_1} \rho(A_1) + \sum_{H^P \in \mathcal{H}^P} \sum_{B_1 \in \mathcal{B}_1} \rho(B_1)$$

and

(5.13)
$$\sum_{j=1}^{P} \sum_{G_{i}^{P} \in \mathcal{G}_{i}^{P}} \rho^{+}(G_{j}^{P}) = \sum_{H^{P} \in \mathcal{H}^{P}} \sum_{B_{2} \in \mathcal{B}_{2}} \rho^{+}(B_{2}).$$

We also have $\mathcal{G}_{\infty}^{I} = \bigcup_{H^{I} \in \mathcal{H}^{I}} \mathcal{A}_{2} \cup \bigcup_{H^{P} \in \mathcal{H}^{P}} \mathcal{B}_{3}$, so we have

(5.14)
$$\sum_{G_{\infty}^{I} \in \mathcal{G}_{\infty}^{I}} \rho(G_{\infty}^{I}) = \sum_{H^{I} \in \mathcal{H}^{I}} \sum_{A_{2} \in \mathcal{A}_{2}} \rho(A_{2}) + \sum_{H^{P} \in \mathcal{H}^{P}} \sum_{B_{3} \in \mathcal{B}_{3}} \rho(B_{3}).$$

Summing (5.7), (5.9) and using (5.10), (5.11), (5.12), (5.13), (5.14), we obtain (5.2).

We denote by $\operatorname{dist}(x,y)$ the distance of $x,y\in\mathbb{P}^1$ with respect to the Fubini-Study metric on \mathbb{P}^1 (cf. (2.1)).

Lemma 3. Let $E \subset \mathbb{P}^1$ be a Jordan domain such that $b \in E$. Then there is a positive constant C = C(E,b) with the following property: Let F be a finite domain in a Riemann surface \mathscr{F} and let ζ be a meromorphic function on \mathscr{F} such that $\zeta(F) = E$ and $\zeta(\partial F) = \partial E$. Then for a meromorphic function α on \mathscr{F} such that $\operatorname{dist}(\alpha(z),b) < C$ for $z \in \overline{F}$, there is a point $z \in F$ with $\zeta(z) = \alpha(z)$.

Proof. Using an isomorphism of \mathbb{P}^1 which preserves the Fubini-Study metric, we may assume that $\infty \notin \overline{E}$. Put $d = \min_{w \in \partial E} |w - b|$. Let C = C(E, b) be a constant such that

$$\{z \in \mathbb{C}; \operatorname{dist}(z, b) < C\} \subset \{z \in \mathbb{C}; |z - b| < d\}.$$

By Cauchy's residue theorem, we have

$$\frac{1}{2\pi\sqrt{-1}}\int_{\partial F}\frac{\zeta'(z)}{\zeta(z)-b}dz=n(b,\zeta,F)-n(\infty,\zeta,F)=n(b,\zeta,F)>0,$$

and

$$\frac{1}{2\pi\sqrt{-1}}\int_{\partial F}\frac{\zeta'(z)-\alpha'(z)}{\zeta(z)-\alpha(z)}dz=n(0,\zeta-\alpha,F)-n(\infty,\zeta-\alpha,F).$$

Here $n(b, \zeta, F)$ is the number of solutions of $\zeta(z) = b$ on F with counting multiplicities and similar for other terms.

Hence it suffices to show that

$$\frac{1}{2\pi\sqrt{-1}}\int_{\partial F}\frac{\eta'(z)}{\eta(z)}dz=0,$$

where $\eta(z) = \frac{\zeta(z) - \alpha(z)}{\zeta(z) - b}$. Since we have

$$|\eta(z) - 1| = \left| \frac{b - \alpha(z)}{\zeta(z) - b} \right| < 1 \text{ for } z \in \partial F,$$

we have

$$\frac{1}{2\pi\sqrt{-1}}\int_{\partial F}\frac{\eta'(z)}{\eta(z)}dz=\frac{1}{2\pi}\int_{\partial F}d\arg\eta(z)=0,$$

which proves our lemma. \Box

7. Construction of Tree

We start the proof of our theorem. To prove our theorem, using an automorphism of \mathbb{P}^1 , we may assume without loss of generality that $a_i(\infty) \neq 0, \infty$ for $i = 1, \ldots, q$. Add the new function $a_{q+1}(z) \equiv 0$ to our rational functions. In the following, we prove

$$(q-1)T(r,f) \le \sum_{i=1}^{q+1} \overline{N}(r,a_i,f) + o(T(r,f))$$
 when $r \to \infty$, $r \notin E$

for some set $E \subset \mathbb{R}_{>0}$ of finite linear measure. This immediately implies our theorem because of the inequality $\overline{N}(r, a_{q+1}, f) \leq T(r, f) + O(1)$.

Put $(q+1) = \{1, \dots, q+1\}$. For a subset $\Phi \subset (q+1)$, put $\mathcal{C}_{\Phi} = \{(i,j); i,j \in \Phi, i \neq j\}$. In the case card $\Phi > 2$, we can take $(s,t) \in \mathcal{C}_{\Phi}$ such that

(7.1)
$$\frac{a_i - a_j}{a_s - a_t}(\infty) \neq \infty \quad \text{for all } (i, j) \in \mathcal{C}_{\varPhi}.$$

To see this, for $(k, l) \in \mathcal{C}_{\Phi}$, we define $\mathcal{C}_{\Phi}(k, l) \subset \mathcal{C}_{\Phi}$ by

$$C_{\Phi}(k,l) = \left\{ (i,j) \in C_{\Phi}; \ \frac{a_i - a_j}{a_k - a_l}(\infty) = \infty \right\}.$$

Then it is not difficult to see that $C_{\Phi}(k',l') \subset C_{\Phi}(k,l)$ for $(k',l') \in C_{\Phi}(k,l)$ and $(k',l') \notin C_{\Phi}(k',l')$. Hence $C_{\Phi}(k',l') \subseteq C_{\Phi}(k,l)$ for $(k',l') \in C_{\Phi}(k,l)$ for $(k',l') \in C_{\Phi}(k,l)$. Since C_{Φ} is a finite set, there exists $(s,t) \in C_{\Phi}$ such that $C_{\Phi}(s,t) = \emptyset$, hence (7.1) holds.

Now we define the equivalence relation \sim_{Φ} on the set Φ by

$$i \sim_{\Phi} j \quad (i, j \in \Phi) \iff \frac{a_i - a_j}{a_s - a_t}(\infty) = 0,$$

and the function $\lambda_{\Phi}(w)$ by

(7.2)
$$\lambda_{\Phi}(w) = \frac{w - a_t}{a_t - a_t}.$$

Remark. (1) If there is $(k,l) \in \mathcal{C}_{\Phi}$ such that $a_k(\infty) \neq a_l(\infty)$, then we have $a_s(\infty) \neq a_t(\infty)$. Hence $i \sim_{\Phi} j$ for $i, j \in \Phi$ if and only if $a_i(\infty) = a_j(\infty)$.

(2) For a meromorphic (resp. rational) function g on \mathbb{C} , the function

$$\lambda_{\varPhi}(g)(z) = \frac{g(z) - a_t(z)}{a_s(z) - a_t(z)}$$

is meromorphic (resp. rational) on C.

Let \mathcal{S} be the set of all subsets of (q+1). Let $\Phi = \Phi_1 \sqcup \cdots \sqcup \Phi_r$ be the classification of Φ by the equivalence relation \sim_{Φ} . Put $\omega(\Phi) = \{\Phi_1, \cdots, \Phi_r\}$ which is a subset of \mathcal{S} . Since $a_s \not\sim_{\Phi} a_t$, we have $r \geq 2$. We define the sequence V_0, V_1, \ldots of subsets of \mathcal{S} by the following inductive rule. Put $V_0 = \{(q+1)\}$. Define V_{i+1} from V_i by

$$V_{i+1} = \bigcup_{\Phi \in V_i, \operatorname{card} \Phi \geq 2} \omega(\Phi).$$

Then this sequence V_0, V_1, \ldots, V_k is finite, i.e., card $\Phi = 1$ for all $\Phi \in V_k$ for some $k \geq 0$. Put $V = V_0 \cup \cdots \cup V_k$, which is a disjoint union.

Next we define the graph Γ by the following rule. The set of all vertices of Γ , denoted by $\operatorname{vert}(\Gamma)$, is equal to V. Two vertices v and v' in $\operatorname{vert}(\Gamma)$ are adjacent if and only if $v' \in \omega(v)$ or $v \in \omega(v')$. Then Γ is a tree, i.e., a connected graph without cycles. We denote the $\operatorname{vertex}(q+1)$ by v_o and call the initial vertex. We call a $\operatorname{vertex}(q+1)$ with $\operatorname{card} v = 1$ a terminal vertex. Then Γ has q+1 terminal vertices $\{1\}, \ldots, \{q+1\}$.

For a non-terminal vertex v, put $\Pi(v) = \omega(v) \subset \text{vert}(\Gamma)$. For a non-initial vertex v, let v^{\flat} be the vertex such that $v \in \Pi(v^{\flat})$. Then v^{\flat} is uniquely determined by v. Let d_v be the number of vertices v' which are adjacent to v. Put

$$\operatorname{vert}(\Gamma)_{n.t.} = \{v \in \operatorname{vert}(\Gamma); v \text{ is not terminal}\}.$$

Lemma 4.
$$\sum_{v \in \text{vert}(\Gamma)_{n,v}} (d_v - 2) = q - 1.$$

Proof. We have

(number of terminal vertices of
$$\Gamma$$
) + $\sum_{v \in \text{vert}(\Gamma)_{\text{n.t.}}} d_v = 2 \times \text{(number of edges of } \Gamma\text{)}$

and

(number of edges of
$$\Gamma$$
) = card(vert(Γ)) - 1.

Hence we get

$$q+1+\sum_{v\in\operatorname{vert}(\Gamma)_{\operatorname{n.t.}}}d_v=-2+\sum_{v\in\operatorname{vert}(\Gamma)}2=-2+2(q+1)+\sum_{v\in\operatorname{vert}(\Gamma)_{\operatorname{n.t.}}}2,$$

which proves our lemma. \Box

8. Non-Integrated Version of Theorem

For $v \in \text{vert}(\Gamma)_{n.t.}$, put

$$\zeta_v = \lambda_v(f)$$

which is a meromorphic function on \mathbb{C} . Here λ_v is defined by (7.2), putting $\Phi = v$.

We prove the following non-integrated version of Theorem.

Lemma 5. There are positive constants $r_0 > 0$ and h > 0 such that

$$\sum_{1 \leq i \leq q+1} \overline{n}(a_i, f, R(r_0, r)) \geq \sum_{v \in \text{vert}(\Gamma)_{\text{n.t.}}} \left((d_v - 2) A(\zeta_v, R(r_0, r)) - hl(\zeta_v, \partial R(r_0, r)) \right)$$

for $r > r_0$.

Proof. For $v \in \text{vert}(\Gamma)$, we define $\iota(v) \in v \subset (q+1)$ by the following rule. If $v \in \text{vert}(\Gamma)_{\text{n.t.}}$, then put $\iota(v) = t$ where t is defined by (7.1) putting $\Phi = v$. If v is terminal, then take $\iota(v)$ such that $v = \{\iota(v)\}$.

Put

$$edge(\Gamma) = \{(v, v'); v \in vert(\Gamma)_{n.t.}, v' \in \Pi(v)\}.$$

For $(v, v') \in \text{edge}(\Gamma)$, we define the following objects. Put

$$\alpha_{v,v'} = \lambda_v(a_{\iota(v')}),$$

which is a rational function on \mathbb{C} . Then by the definition of Γ , we have

$$\alpha_{v,v'}(\infty) \neq \infty$$
 (cf. (7.1)).

Let E_{∞} be a small spherical disc in \mathbb{P}^1 centred at ∞ such that

$$0 \notin E_{\infty}$$
 and $\alpha_{v,v'}(\infty) \notin \overline{E_{\infty}}$ for all $(v,v') \in \text{edge}(\Gamma)$.

We also assume that E_{∞} and ζ_v satisfy the condition (4.1) for all $v \in \text{vert}(\Gamma)_{\text{n.t.}}$. Let $E_{v'}^v$ be a small spherical disc in \mathbb{P}^1 centred at $\alpha_{v,v'}(\infty)$ such that

- $\overline{E_{v'}^v} \cap \overline{E_{v''}^v} = \emptyset$ for $v' \neq v'' \in \Pi(v)$ (note that $\alpha_{v,v'}(\infty) \neq \alpha_{v,v''}(\infty)$ by $\iota(v') \not\sim_v \iota(v'')$),
- $\overline{E_{\infty}} \cap \overline{E_{v'}^v} = \emptyset$ for all $(v, v') \in \text{edge}(\Gamma)$,
- $E_{v'}^v$ and ζ_v satisfy the condition (4.1) for all $(v, v') \in \text{edge}(\Gamma)$.

Put

$$edge(\Gamma)_{n.t.} = \{(v, v') \in edge(\Gamma); v' \text{ is not terminal}\}.$$

For $(v, v') \in \text{edge}(\Gamma)_{\text{n.t.}}$, recall that we defined λ_v and $\lambda_{v'}$ by

$$\lambda_v = \frac{w - a_t}{a_s - a_t}$$
 and $\lambda_{v'} = \frac{w - a_{t'}}{a_{s'} - a_{t'}}$ (cf.(7.2)).

Put

$$\delta_{v,v'} = \frac{a_s - a_t}{a_{s'} - a_{t'}},$$

which is a rational function. Then we have

(8.1)
$$\delta_{v,v'}(\infty) = \infty \quad \text{(since } s' \sim_v t'),$$

and

$$\lambda_{v'} = \delta_{v,v'}(\lambda_v - \alpha_{v,v'}).$$

In the following, we put $D(r) = \{z \in \mathbb{C}; |z| > r\}.$

Claim 1: There is a positive constant $r_1 > 0$ such that

$$\zeta_{v'}\left(\zeta_v^{-1}(\mathbb{P}^1\backslash E_{v'}^v)\cap D(r_1)\right)\subset E_{\infty}$$

for all $(v, v') \in \text{edge}(\Gamma)_{n.t.}$.

Proof. By (8.2), we have

$$\zeta_{v'} = \delta_{v,v'}(\zeta_v - \alpha_{v,v'}).$$

Since $E_{v'}^v$ is a neighborhood of $\alpha_{v,v'}(\infty)$, there are positive constant C>0 and $r_2>0$ such that

$$|\zeta_v(y) - \alpha_{v,v'}(y)| > C$$
 on $y \in \zeta_v^{-1}(\mathbb{P}^1 \setminus E_{v'}^v) \cap D(r_2)$

for all $(v, v') \in \text{edge}(\Gamma)_{n,t}$. Hence by (8.1) and (8.3), the image

$$\zeta_{v'}\left(\zeta_v^{-1}(\mathbb{P}^1\backslash E_{v'}^v)\cap D(r)\right)$$

is contained in arbitrary small neighborhood of $\infty \in \mathbb{P}^1$ when $r \to \infty$. This proves our claim. \square We take a positive constant r_0 such that

- $r_0 > r_1$,
- $\operatorname{dist}(\alpha_{v,v'}(z),\alpha_{v,v'}(\infty)) < C(E_{v'}^v,\alpha_{v,v'}(\infty)) \text{ on } z \in D(r_0) \text{ for all } (v,v') \in \operatorname{edge}(\Gamma),$
- the rational functions a_1, \dots, a_q have no pole on $z \in D(r_0)$,
- $a_i(z) \neq a_j(z)$ on $z \in D(r_0)$ for all $1 \leq i \neq j \leq q+1$.

Now for $(v, v') \in \text{edge}(\Gamma)$ and $r > r_0$, we define the integer $\tau_{v,v'}(r)$ by

$$\tau_{v,v'}(r) = -\sum_{G \in \mathcal{P}\left(\zeta_v^{-1}(E_{v'}^v), R(r_0, r)\right)} \rho^+(G) - \sum_{G \in \mathcal{I}\left(\zeta_v^{-1}(E_{v'}^v), R(r_0, r)\right)} \rho(G)$$

when $v' \in \text{vert}(\Gamma)_{n.t.}$, and by

$$au_{v,v'}(r) = -\sum_{G \in \mathcal{I}\left(\zeta_v^{-1}(E_{v'}^v), R(r_0,r)\right)}
ho(G)$$

when v' is terminal.

In the following claim, we formally put $\tau_{v_o^{\flat},v_o}(r)=0$. (Note that v_o^{\flat} is not defined.)

Claim 2: There is a positive constant h > 0 such that

$$\mathrm{IE}(v) \colon \quad -\tau_{v^{\flat},v}(r) + \sum_{v' \in \Pi(v)} \tau_{v,v'}(r) \geq \left(d_v - 2\right) A\left(\zeta_v, R(r_0,r)\right) - hl\left(\zeta_v, \partial R(r_0,r)\right)$$

for all $r > r_0$ and $v \in \text{vert}(\Gamma)_{\text{n.t.}}$.

Proof. We first consider the case $v=v_o$. Then we have $\operatorname{card}\Pi(v_o)=d_{v_o}$. By the assumption made in the beginning of Section 7, for $i=1,\ldots,q$, we have $a_i(\infty)\neq a_{q+1}(\infty)$, so $i\not\sim_{v_o}q+1$. Hence the vertex $\{q+1\}$ in Γ , denoted by \tilde{v} , is contained in $\Pi(v_o)$. Apply Lemma 2 to the case

$$\begin{split} \mathscr{F} &= \mathbb{C}, \ F = R(r_0, r), \ \zeta = v = \zeta_{v_o}, \\ E^{\dagger} &= \mathbb{P}^1, \ \{E_i\}_{i=1}^p = \{E_{v'}^{v_o}\}_{v' \in \Pi(v_o) \setminus \{\tilde{v}\}}, \ E_{\infty} = E_{\tilde{v}}^{v_o}. \end{split}$$

Then we obtain

$$\rho^{+}(R(r_{0},r)) + \sum_{v' \in \Pi(v_{o})} \tau_{v_{o},v'}(r) - \sum_{\substack{v' \in \Pi(v_{o}) \setminus \{\tilde{v}\}\\v': \text{terminal}}} \left(\sum_{G \in \mathcal{P}\left(\zeta_{v_{o}}^{-1}(E_{v'_{o}}^{v_{o}}), R(r_{0},r)\right)} \rho^{+}(G) \right) \\ \geq (d_{v_{o}} - 2) A\left(\zeta_{v_{o}}, R(r_{0},r)\right) - h_{v_{o}} l\left(\zeta_{v_{o}}, \partial R(r_{0},r)\right)$$

for some positive constant h_{v_o} independent of r. Here we note that by the fact $\int_{\mathbb{P}^1} \omega_{\mathbb{P}^1} = 1$, the mean sheet number of the covering $\zeta_{v_o}: R(r_0,r) \to \mathbb{P}^1$ is equal to $A(\zeta_{v_o}, R(r_0,r))$. Using the facts that $\rho^+(R(r_0,r)) = 0$ and $\rho^+(G) \geq 0$, we obtain our claim in this case.

Next we consider the case $v \neq v_o$. Then we have card $\Pi(v) = d_v - 1$. By Claim 1, we may apply Lemma 2 to the case that

$$\mathscr{F} = \mathbb{C}, \ F = R(r_0, r), \ \zeta = \zeta_v, \ v = \zeta_{v^\flat},$$

$$E^\dagger = E_v^{v^\flat}, \ \{E_i\}_{i=1}^p = \{E_{v^\prime}^v\}_{v^\prime \in \Pi(v)}, \ E_\infty = E_\infty.$$

Then we obtain

$$(8.4) \quad \phi_{v}(r) - \tau_{v^{\flat},v}(r) + \sum_{v' \in \Pi(v)} \tau_{v,v'}(r) - \sum_{\substack{v' \in \Pi(v) \\ v': \text{terminal}}} \left(\sum_{G \in \mathcal{P}\left(\zeta_{v}^{-1}(E_{v'}^{v}), R(r_{0},r)\right)} \rho^{+}(G) \right) \\ \geq (d_{v} - 2) A\left(\zeta_{v}, R(r_{0},r)\right) - h_{v}l\left(\zeta_{v}, \partial R(r_{0},r)\right)$$

for some positive constant h_v independent of r. Here $\phi_v(r)$ is defined by

$$\phi_v(r) = \vartheta(\zeta_v, \zeta_{v^\flat}) - \sum_{G \in \mathcal{I}(\zeta_v^{-1}(E_\infty), R(r_0, r) \cap \zeta_{-\flat}^{-1}(E_v^{v^\flat}))} \rho(G).$$

Subcaim: (1)
$$\vartheta(\zeta_v, \zeta_{v^\flat}) = 0$$
.
(2) $-\sum_{G \in \mathcal{I}(\zeta_v^{-1}(E_\infty), R(r_0, r) \cap \zeta_{-v^\flat}^{-1}(E_v^{v^\flat}))} \rho(G) = 0$.

Proof of Subclaim. We first prove (1). Take $G \in \mathcal{I}(\zeta_v^{-1}(E_v^{v^\flat}), R(r_0, r))$. Then by the definition of r_0 and Lemma 3, there is a point $z \in G$ such that

$$\zeta_{v^{\flat}}(z) = \alpha_{v^{\flat},v}(z) \ (\neq \infty).$$

Note that $\delta_{v^{\flat},v}$ has no pole on $R(r_0,r)$. Hence by (8.3), we have $\zeta_v(z) = 0 \notin E_{\infty}$. Hence $\zeta_v(G) \not\subset E_{\infty}$. This proves (1).

Next we prove (2). More precisely, we prove $I = \mathcal{I}(\zeta_v^{-1}(E_\infty), R(r_0, r) \cap \zeta_{v^\flat}^{-1}(E_v^{v^\flat})) = \emptyset$.

Suppose there exists $G \in I$. Then there is a point $z \in G$ such that $\zeta_v(z) = \infty$ (note that $\infty \in E_\infty$). On the other hand, we have $\zeta_{v^\flat}(z) \neq \infty$ because $\infty \notin E_v^{v^\flat}$. But these contradict to (8.3), because we take r_0 such that $\delta_{v^\flat,v}$ and $\alpha_{v^\flat,v}$ have no pole in $R(r_0,r)$. Hence, $I = \emptyset$, which proves our subclaim. \square

Using this subclaim and the fact $\rho^+(G) \geq 0$ in (8.4), we also obtain our claim in the case v is not initial.

Putting $h = \max_{v \in \text{vert}(\Gamma)_{n.t.}} h_v$, we conclude our proof of the claim.

Now, summing up the inequalities IE(v) for all $v \in vert(\Gamma)_{n.t.}$, we get

(8.5)
$$\sum_{v:\text{terminal}} \tau_{v^{\flat},v}(r) \geq \sum_{v\in\text{vert}(\Gamma)_{\text{n.t.}}} \left((d_v - 2) A\left(\zeta_v, R(r_0, r)\right) - hl\left(\zeta_v, \partial R(r_0, r)\right) \right).$$

Here we note that terms $\tau_{v,v'}(r)$ for $(v,v') \in \text{edge}(\Gamma)_{\text{n.t.}}$ appear in the inequality IE(v') with the coefficient -1, and in the inequality IE(v) with the coefficient +1. Hence these terms are canceled, and we have

$$\sum_{v \in \operatorname{vert}(\Gamma)_{\operatorname{n.t.}}} (\operatorname{left\ hand\ side\ of\ } \operatorname{IE}(v)) = -\tau_{v_o^\flat,v_o}(r) + \sum_{v : \operatorname{terminal}} \tau_{v^\flat,v}(r) = \sum_{v : \operatorname{terminal}} \tau_{v^\flat,v}(r).$$

By Lemma 3 and the definition of r_0 , for a terminal vertex v, we have

$$\begin{split} \tau_{v^{\flat},v}(r) &\leq \operatorname{card}\left(\mathcal{I}\left(\zeta_{v^{\flat}}^{-1}(E_{v}^{v^{\flat}}), R(r_{0}, r)\right)\right) \\ &\leq \overline{n}(\alpha_{v^{\flat},v}, \zeta_{v^{\flat}}, R(r_{0}, r)) \\ &= \overline{n}(\lambda_{v^{\flat}}(a_{\iota(v)}), \lambda_{v^{\flat}}(f), R(r_{0}, r)) \\ &= \overline{n}(a_{\iota(v)}, f, R(r_{0}, r)). \end{split}$$

Hence by (8.5) and the equality

$$\sum_{v: \text{terminal}} \overline{n}(a_{\iota(v)}, f, R(r_0, r)) = \sum_{i=1}^{q+1} \overline{n}(a_i, f, R(r_0, r)),$$

we get our lemma.

9. Conclusion of Proof of Theorem

Integrating the inequality of Lemma 5, we get

$$\sum_{1 \leq i \leq q+1} \overline{N}(r, a_i, f) + O(\log r) \geq \sum_{v \in \text{vert}(\Gamma)_{\text{n.t.}}} \left((d_v - 2)T(r, \zeta_v) - hL(r, \zeta_v) \right).$$

Here, we put

$$L(r,\zeta_v) = \int_1^r \frac{l(\zeta_v, \partial \mathbb{C}(t))}{t} dt.$$

By the proof of [M, Theorem], we have

$$L(r,\zeta_v) < o(T(r,\zeta_v))$$
 when $r \to \infty$, $r \notin E_v$

for some set $E_v \subset \mathbb{R}_{>0}$ of finite linear measure. Since we have $T(r, a_i) < O(\log r)$ for $i = 1, \ldots, q+1$, we have

$$T(r, f) \le T(r, \zeta_v) + O(\log r)$$
 when $r \to \infty$.

Hence putting $E = \bigcup_{v \in \text{vert}(\Gamma)_{n.t.}} E_v$, we have

$$\left(\sum_{v \in \text{vert}(\Gamma)_{\text{n.t.}}} (d_v - 2)\right) T(r, f) \leq \sum_{1 \leq i \leq q+1} \overline{N}(r, a_i, f) + o\left(T(r, f)\right) \quad \text{when} \quad r \to \infty, \ r \not\in E.$$

Here note that since f is transcendental, we have $\lim_{r\to\infty}\frac{\log r}{T(r,f)}=0$. Using Lemma 4, we obtain

$$(q-1)T(r,f) \leq \sum_{1 \leq i \leq q+1} \overline{N}(r,a_i,f) + o\left(T(r,f)\right) \quad \text{when} \quad r \to \infty, \quad r \not\in E.$$

Since we have

$$\overline{N}(r, a_{q+1}, f) = \overline{N}(r, \infty, f) \le T(r, f) + O(1)$$
 when $r \to \infty$,

we get our theorem.

References

- [A] L. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157-194.
- [C] C.T. Chuang, Une généralisation d'une inégalité de Nevanlinna, Sci. Sinica 13 (1964), 887-895.
- [D] D. Drasin, Meromorphic Functions: Progress and Problems, Proceedings of the International Congress of Mathematics, Zürich, 1994, Birkhäuser Verlag, Basel, 1995, 825-835.
- [FW] G. Frank and G. Weissenborn, On the zeros of linear differential polynomials of meromorphic functions, Complex Variables Theory Appl. 12 (1989), 77-81.
- [H] W.K. Hayman, Meromorphic Functions, Oxford University Press, 1964.
- [M] J. Miles, A note on Ahlfors' theory of covering surfaces, Proc. Amer. Math. Soc. 21 (1969), 30-32.
- [N1] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
- [N2] R. Nevanlinna, Analytic Functions, Die Grundlehren der mathematischen Wissenschaften 162, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- [O] Ch. Osgood, Sometimes effective Thue-Siegel-Roth-Nevanlinna bounds, or better, J. Number Theory 21 (1985), 347-399.
- [Sa] A. Sauer, Deficient rational functions and Ahlfors's theory of covering surfaces, Ark. Mat. 39 (2001), 151-155.
- [St] N. Steinmetz, Eine Varallgemeinerung des zweiten Nevanlinnaschen Hauptsatzes, J. Rein Angew. Math. 368 (1986), 131-141.
- [Y] K. Yamanoi, A proof of the defect relation for small functions, preprint.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOTO UNIVERSITY, OIWAKE-CHO, SAKYO-KU, KYOTO, 606-8502, JAPAN E-mail address: ya@kurims.kyoto-u.ac.jp