DEFECT RELATION FOR RATIONAL FUNCTIONS AS TARGETS

KATSUTOSHI YAMANOI

ABSTRACT. The second main theorem in Nevanlinna theory is proved when targets are rational functions. We
use Ahlfors’ theory of covering surfaces for a proof.

1. INTRODUCTION

The purpose of this paper is to prove the following.

Theorem . Let f be a transcendental meromorphic function on the complex plane C. Let ai,--- ,aq be distinct
rational functions on C. Then there is a set E C Rso of finite linear measure such that

(¢=2)T(r, f) <Y _N(r,ai, f) + o(T(r, f)) for r—o0, r¢E.

=1

The notations T(r, f) and N(r,a;, f) are standard in Nevanlinna theory (cf.[H],[N2]) and also given in the
following section.

Our theorem gives a special case of so-called second main theorem for small functions, which was suggested
by R. Nevanlinna ([N1]) and improved by Ch. Osgood and N. Steinmetz ([O],[St]). In the forthcoming paper
[Y], we shall prove the general case of this problem.

We briefly mention our method of the proof.

We consider the complex projective line P! = C U {oo} equipped with the Riemannian metric coming from

the length element f lJlrlz"U‘lz , which is normalized such that the total area of P! is equal to 1. Since a; is rational

function, the value a;(c0) € P! is well defined.

As already pointed out by A. Sauer [Sa], when a;(c0) # a;(oc) for ¢ # j, our theorem follows from the
following argument.

For i = 1,...,q, take a small spherical disc E; in P! centred at a;(co) such that E; N E; = for i # j. Let
R(rg,r) be the ring domain {z € C; r¢ < |z| < r}. Apply Ahlfors’ theory of covering surfaces to the subcovering
f: R(ro,r) = P! to get

(1.1) anrd (g—2)S — hL.

Here S = S(r) is the mean sheet number, L is the length of the relative boundary and #; is the set of islands
over E; of the covering f : R(ro,r) — P!. By Rouché’s Theorem (cf. Lemma 3), we have

card(#;) < n(a;, f, R(ro,7)),

when r¢ >> 0. Hence using (1.1), we get non-integrated version

q

Zﬁ(ai,f, R(ro,r)) > (¢ —2)S — hL

i=1

of our theorem. Taking the integral [, "4t of the both hand side of this inequality, we get our theorem (cf.

J. Miles [M]).

The next simple case is that ai(00) = a2(00) and a;(o0) # a;(o0) for 2 < i # j <gq. Fori=2,...,q, take
a small spherical disc E; centred at a;(co) such that E; N E; = @ for i # j. Apply Ahlfors’ theory of covering
surfaces to the subcovering f : R(rg,r) — P! to get

(1.2) - Z p(H) - Z pt +anrd (g—3)S —hL.

HEH, PeP,

Here S, L and H; are the same as above and Ps is the set of peninsulas over E» of the covering f : R(ro,r) — PL.
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Next, what we have to do is to separate the functions a; and as. To do this, we consider the function
Aw) = 2= Let E] and E} be small spherical discs centred at 0 and 1, respectively. Assume that co ¢ EjUE)

ag—ai’

and E! N E} = (). Then we apply Ahlfors’ theory to the covering

f-—a -1 1
A(f) = : E P
(=22 (B >
to get the inequality
2
(1.3) Z p(H) + Z pt(P) + Z card(H;) > 8" — hL'.
HEH PEP, i=1

Here S’ = S'(r) is the mean sheet number, L' is the length of the relative boundary and #; is the set of islands
over E! of the covering A(f) : R(ro,7) — P'. Combining (1.2) and (1.3), we get

(1.4) Z card(H;) + i card(H;) > (¢ —3)S+S'—h(L+L').
i=1 =3

Here the cancellation of the term
(15) S oI+ Y )
HeHo PeP-

is very important in this paper. In Lemma 2, we study inequality of type (1.2) and (1.3) in general form.
By Rouché’s Theorem, we get

f—a

az — ay

card(’H'l) S n (0, 7R(T05 T‘)) = ﬁ(al; f’ R(’f’(), ’f‘))

and
f—a

az —ax

card(Hy) <7 (1, R(ro, r)) — Ti(az, £, R(ro,1))

for 7o > 0. Hence using (1.4), we get non-integrated version

iﬁ(aiafaR(,,b:r)) > (q - 3)S+SI - h(L+LI)

i=1

of our theorem. Taking the integral flr %, we obtain our theorem as before. Here, we also use the fact

/lr @dt = /lr @dt+0(logr),

which follows from the fact T'(r,a;) < O(logr).

To prove the general case of our theorem, we first construct a tree I' which has information to separate the
functions ay, ... ,a,. Then we apply Lemma 2 for adjacent vertices of I' to get analogous inequalities for (1.2)
and (1.3), and take summation for every edges of T' to get analogous inequality for (1.4). Here, as above, the
cancellation of the terms such as (1.5) is very important. Using Rouché’s Theorem, we obtain non-integrated
version of our theorem (Lemma 5). Taking the integral flT %, we obtain our theorem. Here we also need a
combinatorial lemma to estimate the right hand side of the integration of Lemma 5 (cf. Lemma 4).

The author is very grateful to Professors H. Fujimoto, A. Eremenko and J. Noguchi for interesting and
valuable comments.
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2. NOTATIONS

In this paper, all domains of a Riemann surface are taken such that whose boundaries, if exist, are piecewise
analytic. We also assume that all curves on a Riemann surface are piecewise analytic.

Let # be a Riemann surface. We say that F' is a finite domain of # when F' is a compactly contained,
connected domain of # and F' is bordered by a finite disjoint union of Jordan curves. Then F' is compact if
and only if .Z is compact and F = .%. We denote by F the closure of F' and by F the boundary of F.

Take a triangulation of F' by a finite number of triangles, where F may be a bordered surface. We define the
characteristic p(F) of F by

—[number of interior vertices] + [number of interior edges] — [number of triangles].

Then it is well known that this definition is independent of the choice of the triangulation. This characteristic
is normalized such that p(disc) = —1 as usual in Ahlfors’ theory. We also put p™ (F) = max{0, p(F)}.
Let Q be an open subset of #. Let f and a be meromorphic functions on .%#. Assume that f # a. Put
A(a, £,0) = card ({z € O £(2) = a(2)}).
We denote by wp: the Fubini-Study form on the projective line P!; i.e.,

1 v-=1
Wp1 = W?dw/\dw
Put
A(f,Q) = / Frwpt.
Q

Let v be a Jordan arc on .%#. We denote by

1(f,7)
the length of the curve f|, : v — P! with respect to the associated Kihler metric for wp1, whose length element
is
1 |dw|
2.1 =
21) VT l+|w|?

Let f be a meromorphic function on C. We use the following notations, which are standard in Nevanlinna
theory. For a meromorphic function a on C such that f # a, define the truncated counting function by

W= [ TL00)
1 t
where C(t) = {z € C; |2| < t}. We define the spherical characteristic function by
gy [ ALED),
1

Then by Shimizu-Ahlfors theorem, this function T'(r, f) is equal to the usual characteristic function up to
bounded term in r.

dt,

3. REVIEW OF AHLFORS’ THEORY

Let Fy be a finite domain of P!. Let % be a Riemann surface, F C % be a finite domain and { be a
non-constant meromorphic function on F. Assume that ((F) C Fy. Then we may consider ( : F — F, as a
covering surface in the sense of [N2, p.323].

We call (~1(Fy) N OF as relative boundary and

l(C; Cil (FO) N 6F)

as length of the relative boundary, which is often denoted by L.
Let 2 C Fy be an open subset which is bounded by a finite number of disjoint Jordan curves. We call

o _AGC@)
g = 2> Vo
fQ Wwp1
for the mean sheet number of ¢ over (2. We often write Sg, as S and call for the mean sheet number of (.
We apply Ahlfors’ theory to the above situation ¢ : F' — Fj.

Covering Theorem 1. ([N2, p.328]) There exists a positive constant h = h(Fp, ) > 0 which is independent
of F' and ( such that

(3.1) |S — Sa| < hL.

Main Theorem. ([N2, p.332]) There exists a positive constant h = h(Fp) > 0 which is independent of F' and
¢ such that

(3.2) p*(F) > p(Fy)S — hL.



4. TorPOLOGICAL LEMMA

Let .# be a Riemann surface. Let 2 and G be two open subsets in .#. We define two subsets Z (G, ), P (G, Q)
of the set of connected components of G N Q by the following manner. Let G' be a connected component of
G NQ, then G' is contained in 7 (G, Q) if and only if G’ is compactly contained in 2, otherwise G’ is contained
in P(G,Q). Then a connected component G' in Z (G, Q) is also a connected component of G.

Let F C Z be a finite domain and ¢ be a non-constant meromorphic function on F. Let E be a domain in
P!. We consider the following condition for ¢ and E;

(4.1) Let a € F be a branch point of (. Then ((a) & OE.

We will use this condition just for simplicity (see argument in [N2, p.342]).
The following lemma will be used in a proof of Lemma 2.

Lemma 1. Assume that a finite number of disjoint simple closed curvesy; (i = 1,---p) divide P! into connected
domains D1,--- ,Dpy1. Let ¢ be a non-constant meromorphic function on F, where F is a finite domain of
a Riemann surface F. Assume that the condition (4.1) is satisfied for ( and D; (1 < i < p+1). Put
A= T (¢CUDy), F), B=UM P (¢1(D:), F). Then we have

pH(F) > > p(A)+ D pH(B).

AcA BeB
Proof. Let 01, -+ ,05 be the curves on F' which lie over the curves «y; (i = 1, - - p). Here note that the curves
o1, ,0s are simple by the condition (4.1). Let ¢t be the number of curves o; (1 < j < s) which are not
closed. Assume that o1,...,0; are not closed, and o441, ... ,05 are closed. First, the cross-cuts {o;}!_; divide
F into domains Fj, ..., F},, where u <t + 1. Next, the loop-cuts {o;}7_,,, divide each domain F} (1 < j < u)
into domains Fj,... ,F}, . Then we have AU B = {F}/,,}1<j<u,1<w<w;. Note that if one of F},... , F},

is simply connected and also contained in B, then there are no loop-cuts {o;}{_,,, on F}, i.e., w; = 1 and
Fj = F};. In this case, Fj is also non-compact.

Let r be the number of connected components in B which are simply connected. Then by the above obser-
vation, we have r < u and

(4.2) r<t+1.

Ifr=t+1, then r =u =t+1, and every FJ' are simply connected and non-compact. Using

p(F)= " p(F))+t  (cf. [N2,p.323 (L1)])

1<j<u
and p(Fj) = —1, we get p(F) = —1.
Since we have equality
(4.3) p(F)= > p(B)+t,

BeAUB
we have the following inequality
p(F) = > p(A)+ > pH(B) +n
AcA BeB
where n =0if r <t and n=—1if r = ¢+ 1. But in the case n = —1, we have p(F) = —1. Hence we have

pr(F)> > p(A)+ ) pH(B).
AcA BeB
This proves our lemma. O

5. APPLICATION OF AHLFORS’ THEORY

The following lemma is a modification of Ahlfors’ second main theorem (see the remark below).

Lemma 2. Let E' be a Jordan domain in P! or P! itself. Let Ei,---,E,, Ex be Jordan domains in P.
Assume that the closures E of Ej’s (j =1,--- ,p,00) are mutually disjoint. Then there is a positive constant
h > 0 which only depends on E,--- , E,, Eo, with the following property: Let F' be a finite domain of a Riemann
surface F and v, ¢ be two non-constant meromorphic functions on F. Assume that

(5.1) C(vHPN\ENNT) C Ex
and that ¢ and Ej satisfy the condition (4.1) for j =1,---,p,00.
Put

H =1 (v Y(EN,F), #HY =P (v (B, F),
G =I(CHE),F), G =P (CHE;),F) forj=1,---,p,



and

Gl =T (' (Bx), Fnv ' (E")).
Let S be the mean sheet number and L be the length of the relative boundary with respect to the covering
¢ : F = P'. Then we have the following inequality.

14

(52) 9+ S pEHD+ Y prED =YY p@h
Gleg!

HIcH! HPeHP J=1

-3 3 r6hH - Y wGh) > (p-1)S — L,

j=1GPegf GL egl,
where ¥((,v) is the number of connected components H' in H' such that ((H') C Eo.

Remark. (1) In the case Ef = P!, the condition (5.1) is satisfied. Moreover if F is non-compact, then we
have HY = {F}, #! = 0 and 9({,v) = 0.

(2) Consider the case that Et = P! and F is a simply connected, non-compact domain. Using the facts that
pt(F) =0and p*(G}) > 0, we have

>3 G- > p(GL) > (p—1)S - hL.

i=1gleg! GLeEGL

In this case, for j = 1,...,p,00, the sets g} are the sets of islands over E; with respect to the covering
¢: F —P'. Using p(G}) > -1, we get

Z (number of islands over E; w.r.t. {) > (p—1)S — hL,
Jj=1,...,p,00
which is famous Ahlfors’ second main theorem.
(3) To get the inequality (1.3), we apply our lemma to v = f, { = X(f), E' = E», E; = E| and E, = Fj.
See a proof of Lemma, 5.

Proof of Lemma 2. Let v; (i =1,---,p,00) be the boundary of F;, which is a simple closed curve on P!.

We first consider the subcovering (; : Hf — P! (HT € H!) of the covering ¢ : F — P!. Since H' is compactly
contained in F, the boundary OH' of H! does not meet the boundary of F. Hence, by the assumption (5.1),
we have

(5.3) C(0H!) C E.
By this and the condition (4.1), we conclude that the curves o, - - - , ¢! lying over the curves v; (i = 1,--- ,p, 00)

are simple closed curves on H?. By this system of loop cuts (O'JI- ), H! is divided into four classes of connected
domains A;, Az, Az and As. A; is the set of connected components of C;I(El U---UE,). Put Ay =
I (¢ (Exo), HY) and A; = P (¢; ' (Exo), H). Let Q be the domain P*\ (U?_, E; U E) and let A4 be the set

of connected components of (;*(f2). Since the curves aJI. are closed, we have
(5.4) p(H') = > p(A)+ D plA)+ D p(As)+ D p(As).
AreA AzeAs Az€As As€Ay

The components in A, are covering surfaces of  and by (5.3), these covering surfaces do not have relative
boundaries. Hence by the Hurwitz formula, using p(Q) = p — 1, we have

D> p(Ag) > 51p(Q) = s1(p—1).
Ay€A,

Here s denotes the mean sheet number over the domain € of the covering surface (; : HY — P'. Using the
equality (5.4), we have

p(H') — Z p(Ay) — Z p(Az) — Z p(As) = Z p(Ag) > si(p—1).
A€A Ax€ Az A3€A3 Ay4eA,

If (;(H!) ¢ E, then components in A3 is not simply connected, so p(43) > 0. Hence

(5.5) p(H)Y = 37 p(A1) = D p(A2) > s1(p—1).
A1€eA Az€A2

On the other hand, if (;(H') C E,,, then we have

(5.6) L+ p(HD = > p(A)— ) p(As) > si(p—1).

AjeA Ax€A2



This is because A1 = Ay =0, p(H") > —1 and sy = 0. Here note that H" is non-compact in this case, because
¢ is non-constant. Using (5.5) and (5.6), we have

(5.7) IGo)+ Do pHD) = Y D pA) = Y D pA) 2 (1) Y sr

HIcH! HIeH! A1eA HIeH! A2€A HIcH!
Next we consider the subcovering (p : HY — P! of ( : F — P! for a component HY € HY. Let By, Bs,--- ,Bs
be as follows.

I(¢p! (Ui By, HY)  Bo =P (o' (UEL, Bi) , HY) ,Bs = T (¢ (Bw), HT)

By =P (CP(OO)a )a5: (CP(): );6: (CP()} P)'
By Lemma 1, we have
(5.8) pHHPY > Y B+ D> pT(B).
BeB1UB3UBs BeBaUB4UBg

Since components in By U Bg are covering surfaces of (2, using the Hurwitz formula and the main theorem (3.2),
there is a positive constant A’ which depend only on E;’s such that

Y oBs)+ Y pt(Bs) > sp(p—1)—h'Lp
B5€Bs Be€Bs

where sp is the mean sheet number over (2 for the covering surface (p : H P _ P! and Lp is the sum of the
lengths of the relative boundaries of Bs — Q over Bg € Bg. By summing up for H” € HF and from (5.8), we
have

59 > ptHDH- D> D> aB)- D Dt

HPeHP HPcHP BEB1UB3 HPcHP B'€B2
Z (p—].) Z Sp—hl Z Lp.
HPcHP HPcHP
Here we use the fact pt(By) > 0 for By € By.
Now consider the covering ¢ : F — P!. By the assumption (5.1), we have

U HT'U U HY onF.

HTecH! HPeHP
Hence we have
(5.10) > Lep<L
HFP eHP

(Recall that L is the length of the relative boundary for ¢ : F — P!.) Also using the covering theorem 1 (3.1),
we have

(5.11) So= Y si+ Y sp>S—h'L
HIcH! HPeHP

for some positive constant A’ which only depend on E;’s. Here Sq is the mean sheet number of the covering
(:F — P! over Q.
Again by the assumption (5.1), we have

CYE) C U H'U U HP for1<i<p onF.

HIeH! HPeHP
Hence we have U, <<, G = Ugrepr A1 UUgreyr Br and U<, 67 = Uyp cygr B2. These imply that
p
(5.12) Do pGH= D Y e+ Do Y p(BY)
i=1Gleg! HIcHT A1eA HPeHP B1€B;
and
P
an S Y seh- Y Y s
j=tGFegf HPcHP B2€B2

We also have GL, = |Upreqyr A2 UUgp eqgr B3, so we have
(5.14) SoopGhy= Y D pA)+ DY D p(Bs
GIL egl HIcHT AseAs HPcHP Bs€Bs
Summing (5.7),(5.9) and using (5.10), (5.11), (5.12), (5.13), (5.14), we obtain (5.2). O



6. ROUCHE’S THEOREM
We denote by dist(z,y) the distance of z,y € P! with respect to the Fubini-Study metric on P! (cf. (2.1)).

Lemma 3. Let E C P! be a Jordan domain such that b € E. Then there is a positive constant C = C(E, )
with the following property: Let F' be a finite domain in a Riemann surface F and let { be a meromorphic
function on F such that ((F) = E and ((OF) = OE. Then for a meromorphic function a on F such that
dist(a(z),b) < C for z € F, there is a point z € F with ((z) = a(z).

Proof. Using an isomorphism of P! which preserves the Fubini-Study metric, we may assume that oo ¢ E.
Put d = minyesp |w — b|. Let C = C(E,b) be a constant such that
{z € G dist(z,b) < C} C {z € C; |z — b| < d}.
By Cauchy’s residue theorem, we have

271'\]/—_]. oF C(Czl)(zjbdzZn(b:CaF)_n(ooacaF) :n(b7C;F) >0

and

1 ¢'(2) — /()
/T Jor C(2) = (z)d =n(0,{ —a, F) —n(c0,{ —a, F).
Here n(b,(, F) is the number of solutions of {(2) = b on F with counting multiplicities and similar for other
terms.
Hence it suffices to show that

1 n'(2)

— =)= az

OB . Since we have

where 7(z) =

n(z) — 1] = <1 for z€JF,

@

1 n'(2) 1
dz = — dargn(z) =0,
2nv/=1 Jar n(2) 27 Jor (=)

we have

which proves our lemma. O

7. CONSTRUCTION OF TREE

We start the proof of our theorem. To prove our theorem, using an automorphism of P!, we may assume
without loss of generality that a;(co0) # 0,00 for i = 1,...,q. Add the new function a,+1(2) = 0 to our rational
functions. In the following, we prove

q+1
(q_ ].)T(T,f) S ZN(raahf) +O(T(’f’,f)) when r — oo, T ¢E
i=1
for some set E C Ry of finite linear measure. This immediately implies our theorem because of the inequality
N(Ta aq+1; f) S T(ra f) + O(l)

Put (g+1) = {1,---,qg+ 1}. For a subset & C (¢ + 1), put Cs = {(i,5); i,j € Y, i # j}. In the case
card® > 2, we can take (s,t) € Cg such that
a; — aj

(7.1) (00) # o0 for all (i,5) € Cs.

ag — Q¢
To see this, for (k,l) € Cs, we define Cs(k,l) C Cs by
camn={64)e%;@:ﬁﬂw>=m}-
ap — aj
Then it is not difficult to see that Ce(k',l") C Cs(k,l) for (k',l') € Ca(k,l) and (K',l') & Cs(k',1"). Hence
Co(K', 1" g Co(k,l) for (k',1") € Co(k,1). Since Cg is a finite set, there exists (s,t) € Cqs such that Ce(s,t) = 0,
hence (7.1) holds.
Now we define the equivalence relation ~g on the set ¢ by
a; — aj

i (icd —0
irej (i.j €)= —— () =0,
and the function Ag(w) by
w — ag
2 _w-a
(72) Aaw) = =%

Remark. (1) If there is (k,1) € Cs such that ay(00) # ai(c0), then we have as(00) # a¢(00). Hence i ~g j for
i, € @ if and only if a;(c0) = a;(c0).



(2) For a meromorphic (resp. rational) function g on C, the function
9(2) — a(2)
A = ————-
s(0)(2) = L0

is meromorphic (resp. rational) on C.

Let S be the set of all subsets of (¢ + 1). Let & = &, U --- L &, be the classification of ¢ by the equivalence
relation ~g. Put w(®) = {P1,--- ,P,} which is a subset of S. Since as % ar, we have r > 2. We define the
sequence Vg, V1, ... of subsets of S by the following inductive rule. Put Vo = {(¢+ 1)}. Define V;4; from V; by

Vin= (J w(®).
deV;,card P>2

Then this sequence Vy, Vi, ..., V; is finite, i.e., card® = 1 for all & € Vj for some k > 0. Put V=V, U--- UV,
which is a disjoint union.

Next we define the graph I" by the following rule. The set of all vertices of I', denoted by vert(I"), is equal to
V. Two vertices v and v’ in vert(T') are adjacent if and only if v' € w(v) or v € w(v'). Then T is a tree, i.e., a
connected graph without cycles. We denote the vertex (¢ + 1) by v, and call the initial vertex. We call a vertex
v with cardv = 1 a terminal vertex. Then I' has ¢ + 1 terminal vertices {1},...,{q + 1}.

For a non-terminal vertex v, put II(v) = w(v) C vert(I'). For a non-initial vertex v, let v be the vertex such
that v € II(v"). Then v’ is uniquely determined by v. Let d, be the number of vertices v which are adjacent
to v. Put

vert(I)n.t. = {v € vert(T'); v is not terminal}.

Lemma 4. Zveverc(r)n,t_ (dy —2)=q—1.
Proof. We have
(number of terminal vertices of T') + Z dy, = 2 x (number of edges of I)
vevert(L)n.t.

and
(number of edges of T') = card(vert(T)) — 1.

Hence we get

g+1+ > dy=-2+ D 2=-2+42g+D+ > 2
vevert(L)n ¢. vevert(T) vevert(T)n.+.
which proves our lemma. O

8. NON-INTEGRATED VERSION OF THEOREM

For v € vert(T'),.+., put
G = Ay (f)

which is a meromorphic function on C. Here A, is defined by (7.2), putting ¢ = v.
We prove the following non-integrated version of Theorem.

Lemma 5. There are positive constants ro > 0 and h > 0 such that
> wlai £, Rro,m) > Y ((dy —2)A(Gos R(ro,7)) — By, OR(ro,7)))
1<i<q+1 vevert(Mn.¢.
forr > rg.
Proof. For v € vert(T'), we define «(v) € v C (g+ 1) by the following rule. If v € vert(T),.+., then put t(v) = ¢
where ¢ is defined by (7.1) putting @ = v. If v is terminal, then take ¢(v) such that v = {s(v)}.
Put
edge(T) = {(v,v'); v € vert(T')n..,v" € I(v)}.
For (v,v") € edge(T’), we define the following objects. Put
Oy vt = /\v(ab(v’))7
which is a rational function on C. Then by the definition of I', we have
Oy (00) # 00 (cf. (7.1)).
Let E., be a small spherical disc in P! centred at oo such that
0¢ Es and a,,(0) & By, forall (v,0') € edge(T).

We also assume that Fo, and ¢, satisfy the condition (4.1) for all v € vert(I')nt.. Let EY be a small spherical
disc in P! centred at a, , (00) such that



e EYNEY, =0 forv' #v" € II(v) (note that a, . (00) # v (00) by t(v') %4 t(v")),
e E,NEY =0 for all (v,v") € edge(T),
e EY, and (, satisfy the condition (4.1) for all (v,v") € edge(T’).
Put
edge(T)ns. = {(v,v') € edge(T); v' is not terminal}.
For (v,v') € edge(I)n.t., recall that we defined A\, and A, by

w — ag w — ay

A, = d Ay = — 2 (c£.(7.2)).

o —a O P— (cf.(7.2))
Put

Sy = 20
Qgr — Qg

which is a rational function. Then we have
(8.1) 8y,0(00) =00 (since s’ ~, t'),
and
(82) Ayt = 51},1}’ ()\v - av,v’)-

In the following, we put D(r) = {z € C; |z| > r}.
Claim 1: There is a positive constant r; > 0 such that
G (¢THPIN\EY) N D(ry)) C Ex
for all (v,v") € edge(T)n.t.-
Proof. By (8.2), we have
(8-3) Cv’ = 61},1}’ (Cv - av,v’)-

Since E?, is a neighborhood of a,,, (00), there are positive constant C' > 0 and r > 0 such that

G(¥) = v ()| > C on y e HPN\E) N D(ra)
for all (v,v') € edge(l)n.t.. Hence by (8.1) and (8.3), the image
G (G H(P\E}) N D(r))
is contained in arbitrary small neighborhood of co € P! when r — oo. This proves our claim. O
We take a positive constant rg such that
ro > T1,

dist(ay,v (2), @y, (00)) < C(EY, iy (00)) on z € D(rg) for all (v,v") € edge(T),

the rational functions ai,- - - , a, have no pole on z € D(ro),
ai(z) #a;(z) on z € D(rg) forall 1 <i#j<gqg+1.
Now for (v,v") € edge(T') and r > rg, we define the integer 7, (1) by

T (1) = — > pH(@) - > p(G)

GeP (¢ M (B2,),R(ro,r)) GEZ(¢r (EY,),R(ro,r))

when v' € vert(T'),.+., and by
o, (1) = — > p(G)
GeZ(¢5 ' (B2,),R(ro,r))
when ¢’ is terminal.

In the following claim, we formally put 7,5 , (r) = 0. (Note that v® is not defined.)
Claim 2: There is a positive constant h > 0 such that

IE®): = 7po(r) + D Towr(r) > (dv — 2) A (Go, R(ro,7)) — Al (Co, OR(ro, 7))
v’ €I1(v)

for all r > rg and v € vert(T)y 4.

Proof. We first consider the case v = v,. Then we have cardII(v,) = d,,. By the assumption made in the
beginning of Section 7, for i = 1,... , ¢, we have a;(00) # ag+1(00), s0 i %,, ¢+ 1. Hence the vertex {¢ + 1} in
T, denoted by @, is contained in II(v,). Apply Lemma 2 to the case

‘g. = (C7 F= R(’I"(),T'), CZU = Cvoa
E' =P, {E}_, = {E%}wenw\{s}» Fo = Ey.



Then we obtain

pH(Ro, )+ Y Twm - Y > pH(G)
v’ €11(v,) v'e,n(v,,)_\{zli} GEP(¢o, (B?),R(ro,r))
v :terminal
> (dv, —2) A (Cu,, R(ro,7)) — hy,1 (o, , OR(ro,7))

for some positive constant h,, independent of r. Here we note that by the fact f]pl wp1 = 1, the mean sheet
number of the covering (,, : R(ro,7) — P! is equal to A ((,,, R(ro,r)). Using the facts that pt(R(ro,7)) =0
and p*(G) > 0, we obtain our claim in this case.

Next we consider the case v # v,. Then we have cardII(v) = d, — 1. By Claim 1, we may apply Lemma 2
to the case that

Z =C, F:R(TU,T’), ¢ = Cus U:Cvl’a
b
ET = E’f)) ’ {Ei}le = {E:))’}’U’EH(’U); EOO = Eoo

Then we obtain

(84) ¢u(r) =T () + D Tow(r)— Y > pt(G)
v’ €ll(v) v €ll(v) \ GeP(¢r ' (EZ),R(ro,r))
v :terminal
> (dy — 2) A(Cy, R(ro,7)) — hyl (Cy, OR(7g, 7))
for some positive constant h, independent of r. Here ¢,(r) is defined by
$u(r) = 9(Go, () = > p(G).
GEL(¢TH (Boo ), R(ro,m )N (EL))
Subcaim: (1) 9(¢y, () = 0.
() = Xger(r (Bu) Riromine ey PLE) = 0-
Proof of Subclaim. We first prove (1). Take G € I(C;I(E}jb),R(ro,r)). Then by the definition of ry and
Lemma 3, there is a point z € G such that
Cor (2) = o (2) (F# 00).
Note that d,» , has no pole on R(rg,r). Hence by (8.3), we have (,(2) = 0 ¢ Ew. Hence (,(G) ¢ Ew. This
proves (1).
Next we prove (2). More precisely, we prove I = Z((, *(Ew), R(ro,) N C;I(E}jb)) =0.
Suppose there exists G € I. Then there is a point z € G such that {,(z) = oo (note that co € E). On the

other hand, we have (,»(z) # oo because oo ¢ E}jb. But these contradict to (8.3), because we take 7o such that
dyb » and a,» , have no pole in R(ro,r). Hence, I = (), which proves our subclaim. O
Using this subclaim and the fact p™(G) > 0 in (8.4), we also obatin our claim in the case v is not initial.
Putting h = max,cvert(T), .. fv, We conclude our proof of the claim. O
Now, summing up the inequalities IE(v) for all v € vert(I'),.¢., we get

(85) Z Tv",v(r) Z Z ((dv - 2) A (Cv; R(TOJ T)) —hl (Cv; aIz(r07 Ir))) -
v:terminal vevert(D)n ¢

Here we note that terms 7, (r) for (v,v") € edge(I')n.¢. appear in the inequality IE(v') with the coefficient —1,
and in the inequality IE(v) with the coefficient +1. Hence these terms are canceled, and we have

Z (left hand side of IE(v)) = —Tob o (r) + Z Typ o(T) = Z Tob o (T)-

vevert(T)p ¢, v:terminal v:terminal

By Lemma 3 and the definition of rg, for a terminal vertex v, we have
Tvb,v(’r) < card (I (C;I(E}jb),R(ro,r)))
STy 5 Gy, R(ro, 7))
(A (@u(v)); A (f), B(ro, 7))
=n(a,w), f, R(ro, 7))

Hence by (8.5) and the equality

q+1
Z ﬁ(aL(v)afaR(Tmr)) = Zﬁ(a’i:fa R(To,T)),
v:terminal i=1

10



we get our lemma. [

9. CONCLUSION OF PROOF OF THEOREM

Integrating the inequality of Lemma 5, we get

Z N(T, ai, f) + O(logr) > Z ((dy = 2)T(r, ) — hL(r,¢y)) -

1<i<q+1 vevert(I)p.¢.

Here, we put

L = [ 1620000,

By the proof of [M, Theorem]|, we have

L(Ta Cv) < O(T(T, Cv)) when r — oo, T g E,

for some set E, C Ry of finite linear measure. Since we have T'(r,a;) < O(logr) for i =1,... ,q+ 1, we have

Hence putting £ = |

T(r,f) <T(r,¢y) + O(logr) when r — oo.
vEvert(T)y ¢. E,, we have

Y -2 |TeH< S Naf)+oTf) when oo, r ¢E.
vevert(T)n.¢. 1<i<qg+1

logr

Here note that since f is transcendental, we have lim,_, Ty = 0. Using Lemma, 4, we obtain

(@-DT(r,f)< > N(raif)+o(T(r,f)) when r—oo, r¢E.
1<i<q+1

Since we have

N(r,ag41,f) = N(r,00, f) < T(r, f) + O(1) when r — oo,

we get our theorem.

EXoE

FW]

BZEE
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