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Introduction.

Let D b R3 be a domain with a connected C∞ smooth boundary Σ. For
ϕ ∈ C∞(Σ) we consider the double-layer potential

Wϕ(x) =
1
4π

∫∫
Σ

∂

∂ny

(
1

‖y − x‖
)

ϕ(y)dSy, x ∈ R
3,

where ny is the unit outer normal vector to Σ at y. Throughout this note we
set D+ = D and D− = R3 \ D, and given any object F defined R

3 \ Σ, we set
F (x) = F±(x) for x ∈ D±. Then W±ϕ is of class C∞ on D

±
, harmonic on

D±, and the discontinuity along Σ is of the following form:

W±ϕ = Wϕ ∓ 1
2
ϕ on Σ.

Given f ∈ C∞(Σ), if there exists ϕ ∈ C∞(Σ) satisfying the integral equation

ϕ = −2f + 2Wϕ on Σ, (1)

then W+ϕ is the solution of the Dirichlet problem for f on Σ. Given initial
data ϕ0 = f we recursively define

ϕn = −2f + 2Wϕn−1 (n = 1, 2, . . .) on Σ.

This yields the formal solution

ϕ = −2f − 22Wf − 23W(2)f − 24W(3)f − · · · on Σ, (2)

where W(n)f = W(W(n−1)f) (n = 2, 3, . . .).
In case the domain D is convex (C. Neumann (1887)), or in case D is diffeo-

morphic to the ball (H. Poincaré [3](1896)), the series (2) is convergent on Σ.
To be precise, there exists a unique constant C such that

ϕ̃ = −2(f − C) − 22W(f − C) − 23W(2)(f − C) − 24W(3)(f − C) − · · ·
is uniformly convergent on Σ. Thus, W+ϕ̃ + C is the solution for f on D.

Poincaré remarked in [3] that the same result should be true for any domain
D. Then E.R. Neumann, in his Jablonowski prize-winning paper (1905), showed
that, indeed, Poincaré’s conjecture is true for any domain D.

In the first Hayama symposium in 1995, U. Cegrell and the second author
introduced the notion of the equilibrium magnetic field (as a generalization of
the solenoid) and developed a natural algorithm for constructing it. In a similar
manner, in the Cω category, we will develop a modification of C. Neumann’s
algorithm from the viewpoint of static electromagnetism. Then we could clearly
understand why the algorithm are varid and what the algorithm means in the
electromagnetism.
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1 Magnetic field induced by surface current.

We shortly give the preliminaries of the static electromagnetism (see [5]).
For ρ ∈ C∞

0 (R3) we consider the single-layer potential

U(x) = Nρ(x) =
1
4π

∫∫∫
R3

1
‖y − x‖ρ(y)dvy , x ∈ R

3,

E(x) = −∇U(x), x ∈ R
3.

We call ρdvx, U and E an (electric) volume charge , the scalar potential induced
by ρdvx, and the electric field induced by ρdvx.

For J = (f1, f2, f3) ∈ V ∞
0 (R3) with divJ = 0 in R

3 we consider the single-
layer potentials

A(x) = NJ(x) =
1
4π

∫∫∫
R3

1
‖y − x‖J(y)dvy, x ∈ R

3,

B(x) = rotA(x), x ∈ R
3.

We call J dvx, A and B an (electric) volume current, the vector potential in-
duced by J dvx, and the magnetic field induced by J dvx.

Causality theorem: divE = ρ and rotB = J hold (Maxwell).
We call dν a signed measure in R

3 a generalized (electric) charge, and

U(x) = Ndν(x) =
1
4π

∫∫∫
R3

1
‖y − x‖dν(y), x ∈ R

3 \ K,

E(x) = −∇U(x), x ∈ R
3 \ K̃,

where K and K̃ are some subsets in R
3 in which U(x) and E(x) are defined,

the scalar potential and the electric field induced by dν.
Let dν = (dν1, dν2, dν3) a triple of signed measures in R

3. If there exists a
sequence of volume current densities {Jn dvx}n such that Jn dvx → dν (n → ∞)
in the sense of distribution (componentwise), we call dν a generalized (electric)
current, and

A(x) = Ndµ(x) =
1
4π

∫∫∫
R3

1
‖y − x‖dµ(y), x ∈ R

3 \ K,

B(x) = rotA(x), x ∈ R
3 \ K̃,

the vector potential and the magnetic firld induced by dµ.
Causality theorem: divE = dν and rotB = dµ hold in the sense of distribu-

tion.
We consider the following special generalized current. Let D b R

3 be a
domain bounded by a connected C∞ smooth boundary Σ. Let J = (f1, f2, f3)
be a vector-valued function of class C∞ on Σ. We write it by J ∈ V ∞(Σ). If
J dSx on Σ (where dSx is a surface element of Σ at x) is a generalized current,
then we call J dSx a surface current on Σ. We write the vector potential and
the magnetic field induced by J dSx by AJ and BJ . Then B±

J is extended of
class C∞ on D

±
and have the following discontinuity form:

B+
J (ζ) − B−

J (ζ) = nζ × J(ζ) for ζ ∈ Σ.
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Proposition 1.1. (see [1]) Let f = (f1, f2, f3) ∈ V ∞(Σ) and put

g = f × nx = (g1, g2, g3) on Σ,

σ = g1dx + g2dy + g3dz (= g • dx) on Σ.

Then fdSx on Σ is surface current on Σ, if and only if f is tangential on Σ
and σ is closed 1-form on Σ.

If a surface current JdSx on Σ induces a magnetic field BJ which is identi-
cally 0 in D−, then we say in [5] that JdSx is an equilibrium surface current on
Σ and BJ is the equilibrium magnetic field for JdSx. In this case B+

J becomes
tangential on Σ. We then had the following theorem.

Theorem 1.1. (cf. Main Theorem in [5]) Let {γ}j=1,...,q be a 1-dimensional
homology base of D. Then, for any fixed i (i = 1, . . . , q), there exists a unique
equilibrium surface current JidSx on Σ which induces a magnetic field Bi such
that

∫
γj

Bi • dx = δij (j = 1, . . . , q), where δij is Kronecker’s delta.

We put χD = 1 on D+ and = 0 on D−. The following lemma is a general-
ization of the classical Helmholtz theorem.

Lemma 1.1. (Electromagnetic orthogonal decompsition)(cf. U. Cegrell
& H. Yamaguchi [1] and P. Sagré & V. P. Khavin [4])

χDf = E +̇ B on R
3 \ Σ,

where E is the electric field induced by charge dν and B is the magnetic field
induced by current dµ such that

dν =
{

(div f)dvx, x ∈ D,
(f • nx)dSx, x ∈ Σ,

dν =
{

(rot f)dvx, x ∈ D,
(f × nx)dSx, x ∈ Σx.

The following lemma shows the electromagnetic meaning of the double-layer
potential Wf mentionned in Introduction.

Lemma 1.2. (see [1]) Let f ∈ C∞(Σ) and define J = (∇ f) × nx on Σ.
Then J dSx is a surface current on Σ whose magnetic field BJ is identical with
∇Wf in R

3 \ Σ, that is,

∇Wf(x) = rot
1
4π

∫
Σ

J(y)
‖y − x‖ dSy on R

3 \ Σ.

From now on we assume Σ(= ∂D) is a connected Cω smooth closed surface
and denote by H(D) the class of all harmonic functions on D. For u ∈ H(D)
we simply write pu by the single-layer potentila for ∂u/nx on Σ and qu by the
double-layer potential for u on Σ. It is well-known that

χDu(x) = pu(x) − qu(x) on R
3 \ Σ.

We consider the following seven norms: e0(u) = ‖∇ u‖D and

e1(u) ∼ e6(u) = {‖∇pu‖R3\Σ, ‖∇qu‖R3\Σ, ‖∇pu‖D± , ‖∇qu‖D±}.
We then showed the following equivalence condition.
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Lemma 1.3. (see [1]) There exists a constant M > 1 and 1 > k > 0 such
that

ei(u)/M ≤ ej(u) ≤ Mei(u) (i, j = 0, 1, . . . , 6),
ei(u) ≤ ke0(u) (i = 1, 2, . . . , 6)

Combining these three lemmas we have

Proposition 1.2. Let u ∈ H(D) and consider the electromagnetic orthogonal
decomposition of χD∇u:

χD∇u = Eu +̇ Bu on R
3 \ Σ.

Then
Eu = −∇pu, Bu = ∇qu,

and the corresponding inequalities among seven norms: {‖∇u‖D, ‖Eu‖R3\Σ ∼
‖Bu‖D±} hold as in Lemma 1.3.

From this proposition we have the following important remark.

Remark 1.1. We use the same notations in Proposition 1.2. Then

1. The tangential component of E+
u on Σ is determined by the tangential

component of the initial data ∇u on Σ (since so is B+
u ).

2. The normal component of B+
1 on Σ is determined by the normal compo-

nent of ∇u on Σ (since so is E+
1 ).

Let u ∈ H(D) and consider the electromagnetic orthogonal decomposition
of χDu:

χD∇u = E1 +̇ B1 on R
3 \ Σ.

We define recursively

χDE+
1 = Ẽ2 +̇ B̃2 on R

3 \ Σ,

χDB+
1 = Ê2 +̇ B̂2 on R

3 \ Σ,

and, for n = 2, 3, . . .

χDẼ+
n = Ẽn+1 +̇ B̃n+1 on R

3 \ Σ,

χDB̂+
n = Ên+1 +̇ B̂n+1 on R

3 \ Σ.

So, we have the following formal summations in which the first is the summation
of electric charges induced by surface charges on Σ and the second is that of
magnetic fields induced by surface currents on Σ:

χD∇u = E1 + Ê2 + Ê3 + · · · on D+, (3)

χD∇u = B1 + B̃2 + B̃3 + · · · on D+. (4)

Theorem 1.2. Both formal summations (3) and (4) are strongly convergent
in D+(= D) (i.e., convergent in L2(D)).
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[Proof] Proposition 1.2 and Lemma 1.3 imply that

‖χD∇u − (E1 + Ê2 + Ê3 + · · · + Ên)‖D+ = ‖B̃n‖D+ ≤ kn‖∇u‖D,

and

‖χD∇u − (B1 + B̃2 + B̃3 + · · · + B̃n)‖D+ = ‖Ẽn‖D+ ≤ kn‖∇u‖D.

It follows from 0 < k < 1 that both sumations (3) and (4) are strongly conver-
gent in D. �

2 Algorithm of surface current.

Let Σ be Cω smooth and let f be a Cω tangential vector field on Σ. Our
problem is to verify the existence and describe the construction of an algorithm
for the surface current J dSx on Σ which induces the magnetic field B such that
the tangential component of B+ on Σ (precisely, the continuously extension of
B+ to Σ) is equal to f .

Theorem 2.1. The necessary and suffcient conditions for f of the existence
of such surface current J dSx on Σ are

1. f • dx is closed on Σ, and

2.
∫

γ
f • dx = 0 for any 1-cycle γ with γ ∼ 0 on D.

[Proof] Assume that for a given f ∈ V ω(Σ) there exists such surface current
J dSx on Σ. Then it induces the magnetic field B such that B+ = f on Σ. Since
B+ is closed 1-form on D+, it follows that f satisfies 1 and 2.

Conversely, assume that f ∈ V ω(Σ) satisfies 1 and 2. By Theorem 1.1 there
exists an equilibrium surface current JdSx which induces the magnetic field B
on R

3 \Σ such that B+ • dx on Σ has the same period as f • dx for any 1-cycle
γ on Σ with γ 6∼ 0 on D. Note that B+ is tangential on Σ. We can thus
find a function h ∈ Cω(Σ) such that dh = (f − B+) • dx on Σ. We extend h

on Σ to a Cω function h̃ in a neighborhood of Σ in R
3 so that the tangential

component of ∇h̃ on Σ is f − B+ on Σ. We then construct a double-layer
potntial Wϕ on R

3 \ Σ such that the boundary value of Wϕ on Σ from D+ is
identical with h on Σ. By Lemma 1.2, H := ∇Wϕ is the magnetic field induced
by surface current JϕdSx := (∇ϕ × nx)dSx on Σ. Since h̃ = h = Wϕ on Σ, it
follows that the tangential component of H+ on Σ is equal to f − B+. Hence,
J dSxΣ := JdSx + JϕdSx is a desired surface current on Σ. �

We shall show the algorithm for constructing J dSx and B for a given tan-
gential vector f on Σ which satisfies 1 and 2.

1st step. Let J(x)dSx = (f × nx) dSx on Σ; this is a surface current on
Σ by Proposition 1.1. It thus induces a magnetic field B0 on R

3 \ Σ.
2nd step. Let J1(x)dSx = (J(x)−B+

0 (x)×nx)dSx on Σ; this is a surface
current on Σ by Proposition 1.1. It thus induces a magnetic field B1 on R

3 \Σ.
3rd step. If a surface current Jν(x)dSx on Σ and its induced magnetic

field Bν in R
3 \ Σ are defined for ν ≥ 1, then we set

Jν+1(x)dSx = (Jν(x) − B+
ν (x) × nx) dSx, x ∈ Σ.
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This is a surface current density on Σ which induces a magnetic field Bν+1 in
R3 \ Σ.

4th step. We have inductively defined a sequence {Jν dSx}ν of surface
current densities on Σ and a sequence {Bν}ν of magnetic fields on R3 \ Σ.

Then

lim
ν→∞(J + J1 + . . . + Jν) dSx = J dSx (as distributions),

lim
ν→∞ ‖(B0 + B1 + . . . + Bν) − B‖R3\Σ = 0.

[Proof] We have the following sequence of electromagnetic orthogonal de-
compositions:

χDB = E1 +̇ B1 on D+ ∪ D−,

χDE1 = E2 +̇ B2 on D+ ∪ D−,

χDE2 = E3 +̇ B3 on D+ ∪ D−,

...
...

...

We thus have

Bm + Bm+1 · · · + Bm+p = χDEm − Em+p on D+,

so that Proposition 1.2 and Lemma 1.3 imply

‖Bm + Bm+1 · · · + Bm+p‖D+ ≤ ‖χDEm‖D+ + ‖Em+p‖D+ ≤ 2km‖B‖D+.

It follows that B =
∑∞

ν=1 Bν is convergent in L2(D+), and hence, in L2(R3) by
Proposition 1.2 and Lemma 1.3.

By causality theorem we have JνdSx = rotBν on Σ in the sense of distri-
ibution. It follows that J dSx = (J +

∑∞
ν=1 Jν)dSx converges in the sense of

distribution. �

Remark 2.1. Let F ∈ Cω(Σ) and let u be the solution oF the Dirichlet problem
for f on D. If we let f denote the tangential component of ∇F on Σ, then
B+ = ∇u in D and J = ∇ϕ on Σ where ϕ is the solution of equation (1).
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