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Introduction.

Let D € R? be a domain with a connected C>° smooth boundary X. For
p € C*°(X) we consider the double-layer potential
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where m, is the unit outer normal vector to X at y. Throughout this note we
set DT = D and D~ = R3\ D, and given any object F' defined R? \ ¥, we set

F(z) = F*(z) for x € D*. Then W¥¢ is of class C* on Ei, harmonic on
D¥, and the discontinuity along ¥ is of the following form:

1
WEe=Wp F 3¢ on X.
Given f € C™(X), if there exists ¢ € C*°(X) satisfying the integral equation

p==2f4+2W¢p on X, (1)

then Wty is the solution of the Dirichlet problem for f on X. Given initial
data @9 = f we recursively define

on==2f+2Wp,1 (n=1,2,...) on X.
This yields the formal solution
o=—2f —22Wf-2WDf WO _... on %, (2)

where W f = WW=D ) (n =2,3,...).
In case the domain D is convex (C. Neumann (1887)), or in case D is diffeo-

morphic to the ball (H. Poincaré [3](1896)), the series (2) is convergent on X.
To be precise, there exists a unique constant C such that

F= =2 =)= 2W(f = C) = 2WE(f = C) = 2WO(f = C) = - -

is uniformly convergent on . Thus, W+¢ + C is the solution for f on D.

Poincaré remarked in [3] that the same result should be true for any domain
D. Then E.R. Neumann, in his Jablonowski prize-winning paper (1905), showed
that, indeed, Poincaré’s conjecture is true for any domain D.

In the first Hayama symposium in 1995, U. Cegrell and the second author
introduced the notion of the equilibrium magnetic field (as a generalization of
the solenoid) and developed a natural algorithm for constructing it. In a similar
manner, in the C* category, we will develop a modification of C. Neumann’s
algorithm from the viewpoint of static electromagnetism. Then we could clearly
understand why the algorithm are varid and what the algorithm means in the
electromagnetism.



1 Magnetic field induced by surface current.

We shortly give the preliminaries of the static electromagnetism (see [5]).
For p € C§°(R?) we consider the single-layer potential

y)dvy,, x € R3,
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E(x) = -VU(x), =cR3.
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We call pdv,, U and E an (electric) volume charge , the scalar potential induced
by pdv,, and the electric field induced by pdv,.
For J = (f1, f2, f3) € V§&°(R3) with divJ = 0 in R? we consider the single-

layer potentials
(y)dv,, xcR3,
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B(x) = rotA(x), x= <R3
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We call Jdv,, A and B an (electric) volume current, the vector potential in-
duced by J dv;, and the magnetic field induced by J dv,,.

Causality theorem: divE = p and rotB = J hold (Maxwell).

We call dv a signed measure in R® a generalized (electric) charge, and

_ T 3
V(@) = Nuf= 4m/]4ww—wn v, =eRAK
E) = -VU(z), zeR®\K,

where K and K are some subsets in R3 in which U(x) and E(z) are defined,
the scalar potential and the electric field induced by dv.

Let dv = (dvi,dvs,dvs) a triple of signed measures in R3. If there exists a
sequence of volume current densities {.J,, dv, },, such that J, dv, — dv (n — o0)
in the sense of distribution (componentwise), we call dv a generalized (electric)

current, and
Nap( / / / , TeR\K,
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B(x) = rotA(z), zeR3\K,
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the vector potential and the magnetic firld induced by du.

Causality theorem: divE = dv and rotB = du hold in the sense of distribu-
tion.

We consider the following special generalized current. Let D € R® be a
domain bounded by a connected C>° smooth boundary . Let J = (f1, f2, f3)
be a vector-valued function of class C*° on X. We write it by J € V=°(%). If
J dS,; on ¥ (where dS, is a surface element of ¥ at x) is a generalized current,
then we call JdS, a surface current on . We write the vector potential and
the magnetic field induced by JdS, by A; and Bjy. Then Bf is extended of

class C® on D" and have the following discontinuity form:

BY(¢) = B7(¢) =mn¢ x J(¢) for ¢ €.



Proposition 1.1. (see [1]) Let f = (f1, f2, f3) € V=(X) and put

g = fxnx:(gla.QQag:i) on Za
o = qudx+ gody + gsdz (=gedx) on X.

Then fdS, on % is surface current on %, if and only if f is tangential on X
and o is closed 1-form on X.

If a surface current JdS, on ¥ induces a magnetic field B; which is identi-
cally 0 in D, then we say in [5] that JdS, is an equilibrium surface current on
¥ and By is the equilibrium magnetic field for JdS,. In this case B} becomes
tangential on ¥. We then had the following theorem.

Theorem 1.1. (cf. Main Theorem in [5]) Let {y};=1,..,4 be a 1-dimensional
homology base of D. Then, for any fized i (i = 1,...,q), there exists a unique
equilibrium surface current J;dS, on X which induces a magnetic field B; such
that fw Biedxr =40, (j=1,...,q), where §;; is Kronecker’s delta.

We put xp = 1 on DV and = 0 on D~. The following lemma is a general-
ization of the classical Helmholtz theorem.

Lemma 1.1. (Electromagnetic orthogonal decompsition)(cf. U. Cegrell
& H. Yamaguchi [1] and P. Sagré & V. P. Khavin [4])

xpf=E+ B on R¥\X,

where E is the electric field induced by charge dv and B is the magnetic field
induced by current du such that

dy — (div f)dv,, x €D, dy — (rot f)dvy, x €D,
YT (fenu)dS., zex, YT (f xn.)dSe,  a € T,

The following lemma shows the electromagnetic meaning of the double-layer
potential W f mentionned in Introduction.

Lemma 1.2. (see [1]) Let f € C®(X) and define J = (V f) x n, on X.
Then J dS, is a surface current on 3 whose magnetic field By is identical with
VW in R3\ %, that is,

_ 1 J(y) 3
VWf(x) =rot 47/2 X dSy on R\ X.
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From now on we assume (= dD) is a connected C* smooth closed surface
and denote by H(D) the class of all harmonic functions on D. For u € H(D)
we simply write p, by the single-layer potentila for du/n, on ¥ and ¢, by the
double-layer potential for v on X. It is well-known that

xpu(x) = pu(z) — qu(x) on R*\X.
We consider the following seven norms: eg(u) = ||V u||p and
ei(u) ~ es(u) = {[[Vpulles\s, [IVaullrs\s, [[VPullp=, [[Vaulpe}-

We then showed the following equivalence condition.



Lemma 1.3. (see [l]) There exists a constant M > 1 and 1 > k > 0 such
that

Combining these three lemmas we have

Proposition 1.2. Let uw € H(D) and consider the electromagnetic orthogonal
decomposition of xpVu:

xpVu=E, + B, on R?’\E.

Then
E, = —Vp,, B, = Vaqu.,
and the corresponding inequalities among seven norms: {||Vullp, [|Eullrs\s ~
|Bullp+} hold as in Lemma 1.3.
From this proposition we have the following important remark.

Remark 1.1. We use the same notations in Proposition 1.2. Then

1. The tangential component of E} on % is determined by the tangential
component of the initial data Vu on X (since so is By ).

2. The normal component of Bfr on Y is determined by the normal compo-
nent of Vu on X (since so is E;" ).

Let w € H(D) and consider the electromagnetic orthogonal decomposition
of xpu:

xpVu = E; +B; on R? \ 2.
We define recursively
XDEfr = Eg + Eg on R? \ 3,
XDBi|r = Eg + §2 on R? \ 3,
and, forn =23, ...
XDE',J{ = E‘n_H + §n+1 on R? \ %,
XDEI = Enﬂ + §n+1 on R3 \ 2.

So, we have the following formal summations in which the first is the summation
of electric charges induced by surface charges on ¥ and the second is that of
magnetic fields induced by surface currents on X:

XDVUZEl—f—EQ—f—Eg—f— on l)—i_7 (3)
XDV’LL:Bl+.§2+.§3+"' on DT. (4)

Theorem 1.2.  Both formal summations (3) and (4) are strongly convergent
in DY (= D) (i.e., convergent in L*(D)).



[Proof] Proposition 1.2 and Lemma 1.3 imply that
IxpVu — (E1 + Ey+FEs+ -+ En)HD+ = ||Bullp+ < K"||Vullp,
and
IxpVu — (B + By+By+ -+ En)”D+ = HEnHD+ < k"||Vu| p.

It follows from 0 < k < 1 that both sumations (3) and (4) are strongly conver-
gent in D. 0O

2 Algorithm of surface current.

Let ¥ be C¥ smooth and let f be a C“ tangential vector field on . Our
problem is to verify the existence and describe the construction of an algorithm
for the surface current J dS, on X which induces the magnetic field B such that
the tangential component of B¥ on X (precisely, the continuously extension of
BT to X)) is equal to f.

Theorem 2.1. The necessary and suffcient conditions for f of the existence
of such surface current JdS, on X are

1. fedx is closed on X, and
2. f7 fedx =0 for any 1-cycle v with v ~0 on D.

[Proof] Assume that for a given f € V¥ (X) there exists such surface current
JdS, on ¥. Then it induces the magnetic field B such that BT = f on X. Since
Bt is closed 1-form on D+, it follows that f satisfies 1 and 2.

Conversely, assume that f € V¥ (X) satisfies 1 and 2. By Theorem 1.1 there
exists an equilibrium surface current JdS, which induces the magnetic field B
on R?\ ¥ such that B+ e dzx on ¥ has the same period as f e dx for any 1-cycle
v on ¥ with v # 0 on D. Note that BT is tangential on ¥. We can thus
find a function h € C¥(X) such that dh = (f — B*1) e dx on X. We extend h
on ¥ to a C¥ function hin a neighborhood of ¥ in R? so that the tangential
component of Vh on ¥ is f — B" on ¥. We then construct a double-layer
potntial Wy on R? \ ¥ such that the boundary value of Wi on ¥ from DV is
identical with h on ¥. By Lemma 1.2, H := VW is the magnetic field induced
by surface current J,dS, := (V¢ x n,)dS, on X. Since h = h = Wy on %, it
follows that the tangential component of H' on ¥ is equal to f — B™". Hence,
JdS.Y = JdS, + J,dS; is a desired surface current on X. O

We shall show the algorithm for constructing JdS, and B for a given tan-
gential vector f on X which satisfies 1 and 2.

15¢ step.  Let J(x)dS; = (f x ny;)dS, on ¥; this is a surface current on
¥ by Proposition 1.1. It thus induces a magnetic field By on R3 \ X.

2" step.  Let Ji(x)dS, = (J(x) — By (x) x n,)dS, on ¥; this is a surface
current on ¥ by Proposition 1.1. It thus induces a magnetic field By on R?\ ¥.

374 step.  If a surface current J,(x)dS, on ¥ and its induced magnetic
field B, in R3\ X are defined for v > 1, then we set

o1 (@)dS, = (J(@) — Bf (x) x ny)dS,, @ e X



This is a surface current density on ¥ which induces a magnetic field B, 11 in
R3\ %
4t step.  We have inductively defined a sequence {.J, dS,}, of surface
current densities on 3 and a sequence {B,}, of magnetic fields on R?\ X.
Then
lim (J+ J1 + ...+ J,)dSy; = J dS; (as distributions),

V—00

Jim [|(Bo + B1 + ...+ B,) = Bllrs\s = 0.

[Proof] We have the following sequence of electromagnetic orthogonal de-
compositions:

XDB = E1 —|—Bl on D+UD_,
XDEI = E2 —|— BQ on D+UD_,
xpFs = E3+ Bz onDtuUD™,

We thus have
By 4+ Byt1 4+ Bpyp = XpEm — Engp  on D+,
so that Proposition 1.2 and Lemma 1.3 imply
[Bm + Bm+1++ + Bmapllp+ < [XpEmllp+ + [[Emtpllp+ < 25™ Bl p+-

It follows that B =Y, B, is convergent in L?(D"), and hence, in L?(R?) by
Proposition 1.2 and Lemma 1.3.

By causality theorem we have J,dS, = rot B, on X in the sense of distri-
ibution. It follows that JdS, = (J 4+ >_.—, J,)dS, converges in the sense of
distribution. (]

Remark 2.1. Let F € C¥(X) and let u be the solution oF the Dirichlet problem
for f on D. If we let f denote the tangential component of V F on %, then
BT =Vuin D and J = Vo on X where @ is the solution of equation (1).
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