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§0 Introduction : Foliations and Contact structures

In the present article, two features concerning the title are treated. The first half is
to review how foliation, or more specifically, Anosov foliations appeared in 3-dimensional
contact topology and 4-dimensional symplectic geometry. Globally convex symplectic 4-
manifolds are constructed from Anosov flows on 3-manifolds which exhibits some differece
between strict pseudo convexity in complex geometry and symplectic convexity.

The second is to propose further possibilities of applying the relations between Anosov
foliations and contact structures to 3-dimensional contact topology.

Foliations and contact structures are very far away as geometric structures, and have
been playing totally different roles in dynamical systems. In higher dimensions, as hyper-
plane distributions there exist steps of differences in integrability between them. How-
ever, in the 3-dimensional case, they are next to each other and from purely geometric
points of view they have so many similarities which came to be recognized recently.

In mid 90’s, Eliashberg-Thurston and the author realized that a pair of contact struc-
tures is naturaly associated with an Anosov flow on a 3-manifold. This phenomenon was
generarized to the notion of projectively Anosov flows. In these cases contact structures
approximate foliations.

Eliashberg-Thurston extends this idea ultimately and proved that every foliation but
one is approximated both by positive and negative contact structures.

In this paper do not go into this general situation. Rather we still stick to a very
special case given by (algebraic) Anosov flows.

§1 Anosov flows and non-Stein symplectic 4-manifolds

The story goes back to the following question by Calabi;

Question 1.1 Does there exist a (globally) convex symplectic manifold with discon-
nected ends?

Let us begin with explaining this question. In the case of complex manifolds with
pseudo convex boundary (i.e., a Grauert domain) the boundary is connected. In the
world of symplectic geometry, we have corresponding notions. Let us think of Stein
manifolds. A Stein manifold is a complex manifold which admits a proper strictly pruli-
subharmonic function φ bounded below. Then, thanks to the strict pruli-subharmonicity,
g(·, ·) = −dJ∗dφ(·, J(·)) gives a Riemannian metric and ω(·, ·) = −dJ∗dφ(·, ·) defines a
symplectic strucutre on the manifold. Let Z be the gradient vector field of φ w.r.t. this
Riemannian metric.

1.2 Then we have the following properties.
1) LZω = ω .
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2) Putting λ = ιZω, then dλ = ω .
3) On the preimage of a regular value of φ, Z is outward normal.

Definition 1.3 1) An open symplectic manifold (Ω, ω) which admits a vector field
Z satisfying 1) is called a globally convex symplectic manifold (Eliashberg-Gromov [EG]).
2) If a compact symplectic manifold (W, ω) with boundary admits such a vector field
Z only around the boundary and Z is outward normal on the boundary, then W is said
to have a contact type (symplectically convex) boundary (Weinstein [W]). Then, λ|∂W

defines a positive contact structure on ∂W .
Conversely, if a contact manifold (with a contact 1-form) bounds such a symplectic

manifold, the contact manifold is said to be strongly fillable and the symplectic manifold
is called a strong filling of the contact manifold. The notion of fillability is, in dimension
3, weakened much more ([G]) and now plays very impotant rolles in symplectic and
contact topology.

From the Morse theory of φ and L, it is easy to see that a Stein manifold has a homotopy
type of at most half of its dimension. Especially, the boundary is connected and it is
still true for general Grauert domains. Therefor it is natural to ask if there exists some
difference between complex geometry and symplectic geometry in the topology of such
convex manifolds. In the case of compact manifolds, we also knew that there exists a lot
of examples of non-Kähler symplectic manifolds.

A counter example was first constructed by D. McDuff [Mc]. Her construction looked
unnecessarily complicated. So that her construction was modified, simplified in terms
of the Lie algebra sl(2; R) by E. Ghys and by the author, and related to Anosov flows,
e.g., the geodesic flow of hyperbolic surfaces [Mi1]. Constructions are made on simple
4-manifolds, i.e., W = [−1, 1] × M3. For this porpose, we should know two contact
structures on a single manifold M with opposite orientations, because as the boundary
of W , two boundary components are in different orientaions.

Example 1.4 Let us review two standard families of contact structures, one is related
to the classical mechanics and the other is to the quantum mechanics. Take a Riemannian

surface Σ and take the geodesic flow φt on the unit tangent bundle S1TΣ. Let ξ0 = φ̇t
⊥

be the perpendicular distribution to the flow. ξ0 is tangent to the fibres. This is the
Liouville contact structure. For surfaces of constant curvature, the Liouville contact
structure is described in terms of the 3-dimensional Lie groups. For Σ = S2, T 2, or
hyperbolic surfaces Σg≥2, we take SO(3), Euc(R2), or PSL(2; R) respectively. In each
case, the manifold S1TΣ is taken as the quotient of these Lie groups by a co-compact
lattice, and the contact structure xi0 is defined as a left invariant plane field.

In non-flat case, on the same 3-manifolds, we can associate contact structures of
different nature. If an S1-bundle admits an S1-connection with nowhere vanishing cur-
vature, then, the connection form defines a conntact structure ξ1 i.e., the horizontal
distribution is a contact structure. ξ1 is transverse to the fibres. These structure are
offten called prequantum bundles. Again, these structures are also described as a left
invariant plane field in the case of unit tangent bundle S1TΣ of Σ = S2 or hyperbolic
surfaces Σg≥2.
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For S2, two examples are more or less the same, i.e., they coinsides up to isotopy.
However, for Σg≥2 the classical mechanical ones and the quantum ones have different
orientations. These are the contact structures which were used in McDuff’s construction.

McDuff’s construction was simplified in the following way. Take two contact forms α±
on S1TΣ = Γ \ PSL(2; R) as left invariant 1-forms ∈ psl(2; R)∗ , which define the
classical mechanical contact structure (i.e., the Liouville structure) and the quantum
mechanical one as described above. Then connect them in psl(2; R)∗ by the segment
αt = 1

2
{(1− t)α− +(1+ t)α+}. Then regard λ = {αt} as a 1-form on W = [−1, +1]×M

or on Ω = R × M , and let ω = dλ. Then the vector field Z which is determined by
ιZω = λ gives rise to a global convex structure on (Ω, ω). Evidently, Ω has the same
homotopy type as that of M .

This construction is possible in psl(2; R)∗ , because the quadratic form ν on psl(2; R)∗

defined by ν(α) = α ∧ dα ∈ ∧3 psl(2; R)∗ ∼= R is not semi-definite, i.e., ν takes both
positive and negative values. In other words, there exist both positive and negative
left invariant contact structures. This happens, among unimodular 3-dimensional Lie
algebra, also for solv and never for others. Here Solv is the 3-dimensional Lie group
which is associated to the suspension of a hyperbolic automorhism of T 2 and solv is its
Lie algebra. Aaccordingly, the above construction holds for Solv.

These are also only Lie algebras which admits algebraic Anosov flows (i.e., left invari-
ant Anosov flows) on their quotient by cocompact lattice. Once this fact is recognized,
it is natural to realize the simple geometric idea in the Proposition below which is one
of the key observations.

Definition 1.5 A non singular smooth flow φt on M3 is an Anosov flow if there
exists a φt-invariant C0-decomposition of the tangent bundle TM =Tφ⊕Euu ⊕Ess into
three line bundles which satisfies the following for some (and eventually any) Riemannian
metric: For some c > 0,

∀v ∈ Euu, ∀t > 0, ‖(φt)∗v‖ ≥ exp(ct)‖v‖,
∀v ∈ Ess, ∀t < 0, ‖(φt)∗v‖ ≥ exp(ct)‖v‖.

Es =Tφ ⊕ Ess と Eu =Tφ ⊕ Euu defines (un)stable Ansov foliations Fu and F s.

Figure 1.6
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Proposition 1.7 ([Mi1], [ET]) Let φt be an Anosov flow on a 3-manifold M , and Fu

and F s be its (un)stable foliations. As in the Figure 1.6, we take two plane field ξ and
η which are tangent to the flow and make an angle of π/4 between Fu and F s . Then ξ
and η are positive and negative contact structures respectively.

We call a taransverse pair of contact structures with opposite orientations a bi-
contact structure.

In general Fu and F s have only the smoothness of class C1. Therefore, if ξ and η exactly
keep an angle of π/4 between Fu and F s, then they have the same smoothness. To obtain
smooth ones, it is enough to take approximations by smooth plane fields tangent to φ
in the C1-topology. Then the construction of the convex symplectic structures out of
algebraic Anosov flows works for any Anosov flows.

Theorem 1.8 ([Mi1]) Let φ be an Anosov flow on a closed 3-manifold M . Then
R × M admits a globally convex symplectic structure, while it has a homotopy type of
dimension 3.

§2 Asymptotic Linking Pairing

In the rest of this paper we propose an approach to 3-dimensional contact topology
from foliated cohomology through asymptotic linking pairing.

§2.1 Asymptotic Linking and Foliations · Contact Structures

Definition 2.9 Let B2 be the space of exact 2-forms on a closed oriented 3-mailfold
M . Then,

lk(dα, dβ) =

∫
M

α ∧ dβ , dα, dβ ∈ B2

defines a symmetric non-degenerate bilinear pairing on B2, which is called the asymp-
totic linking pairing.

Trying to define the signature (∞−∞ even if possible) of the linking pairing lk is one
of the motivation for what follows. Thus it seduces us to look for large positive (or
negative) definite subspaces or null subspaces.

Proposition 2.10 Let ξ = ker α and η = ker β be positive and negative contact
structures, and F = kerω be a foliation on M . Then, as a subspace of (B2, lk)

1) Pξ = {d(fα); f ∈ C∞(M)} = {dα′; α′|ξ = 0} is positive definite.
2) Qη = {d(fβ); f ∈ C∞(M)} = {dβ ′; β ′|η = 0} is negative definite.
3) NF = {d(fω); f ∈ C∞(M)} = {dω′; ω′|TF = 0} is a null subspace.

The follwoing remark suggests to investigate N⊥
F /NF .

Remark 2.11 Let λ be a symmetric non-degenerate bilinear pairing on a finite di-
mensional vector space V and N be a null subspace. Then λ is naturally induced on
N⊥/N wchich is denoted by λN and has the same signature as λ, i.e.,

sgnλN = sgnλ .
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§2.2 Contact Invariant via Linking Pairing

Definition 2.12 For a contact structure ξ, a contact embedding from (T 2× [0, nπ], ξ0 =
ker[cos zdx − sin zdy]) is called a torsion embedding of length n and the torsion in-
variant of (M, ξ) is defined to be Tor(M, ξ) = sup{n; (M, ξ) admits a torsion embedding
of length n }.

Remark 2.13 Eliashberg’s classifying theorem [E] implies that if ξ is over twisted
then Tor(M, |xi) = ∞.

Proposition 2.14 If a positive contact structure ξ admits a torsion embedding φ of
length n, then there exists a subspace Pφ of B2 with the following properties.

1) dimPφ = n, 2) Pφ is positive definite, 3) Pφ ⊥ Pξ w.r.t. lk.

Definition 2.15 Hence, we define the analytic torsion invariant ATor(ξ) to be
ATor(ξ) = sup{dim P ; P is positive definite, P ⊥ Pξ} .

Under this definition, the above Proposition is nothing but “ Tor(ξ) ≤ ATor(ξ) ” . If we
can show the finiteness of the torsion or the analytic torsion invariant for some contact
structure, then it implies its tightness.

§3 Foliatted Cohomology and Linking Pairing

§3.1 Foliated Cohomology
Let us review what is the foliated cohomology. Let F be a smooth codimension 1
foliation on a manifold M which is transversely oriented and is defined by a 1-form ω,
i.e., TF = ker ω.

Definition 3.16 First Definition of Foliated de Rham Complex Ω∗(F)
Foliated(leafwise) de Rham complex is a de Rham theory along leaves with transverse

smoothness. Thus it is defined as follows.

Ωk(F) = C∞(M ;
∧k T ∗F) = { smooth family of k-forms on each leaves }

dF : Ωk(F) → Ωk+1(F) : the exterior differential along the leaves .

Then we obtain the foliated (leafwise) de Rham complex (Ω∗(F), dF) and its cohomology
theory H∗(F) which is called the foliated (or leafwise cohomology).

Second Definition of Foliated de Rham Complex Ω∗(F) (equivalent to the first)

Ik(F) = { k-forms on M which vanish on each leaves }
I∗(F) =

⊕
k Ik(F)(= the differential ideal generated by ω in Ω∗(M) )

In other words, let r = rF be the dual of the natural inclusion ι = ιF : TF � TM .
Then, we get naturally the following short exact sequence.

0 −→ I∗(F)
i−→ Ω∗(M)

r−→ Ω∗(F) −→ 0

i.e., Ω∗(F) is defioned as the quotient Ω∗(M)/I∗(F).
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From the second definition, we get the following long exact sequence:

· · · −→ H1(I∗(F))
i−→ H1(M)

r−→ H1(F)
d−→ H2(I∗(F)) −→ · · ·

This gives rise to the following construction of the characteristic pairing CJ , which
generalizes a framework of defining exotic characteristic classes ([AD]).

Definition 3.17 The exterior product Ω1(F) ⊗ I2(F)
∧−→ Ω3(M) which is well-

defined and the connecting homomorphism in the long exact sequence are composed
to define the characteristic pairing CJ : H1(F) ⊗ H1(F) −→ R as

H1(F) ⊗ H1(F)
Id⊗d−→ H1(F) ⊗ H2(I∗(F))

∧−→ H3(M) ∼= R,

which is a symmetric and bilinear.

Example 3.18 (Reeb class, Godbillon-Vey class) The Frobenius integrability im-
plies that there exists a 1-form η satisfying dω = ω ∧ η. η restricts to leaves to define
a foliated cohomology class [η](= [r(η)]) ∈ H1(F) which is called the Reeb class,
which measures the distorsion of the transverse distance by holonomy transformation.
gv(F) = [η ∧ dη] ∈ H3(M) is the Godbillon-Vey invariant, which is also formulated
in our context as CJ([η], [η]).

§3.2 Foliated Cohomology and Asymptotic Linking
Now let us formulate the relation between the foliated cohomology and the asymptotic

linking pairing.

Theorem 3.19 There exists a natural surjective homomorphism

Φ : H1(F) � N(F)⊥lk/N(F)

which is given by the composition of a lift Z1(F) → Ω1(M) and the exterior differential
on the manifold and satisfies the following.

CJ = Φ∗lk i.e., [α], [β] ∈ H1(F), CJ([α], [β]) = lk(Φ([α]), Φ([β])) = lk(dα, dβ) .

§3.3 1st Foliated Cohomology of Algebraic Anosov Foliations
A priori, we can not expect foliated cohomology to be finite dimensional nor to be

separable (i.e., Hausdorff), because leafwise exterior differential dF has only a partial
ellipticity. However, sometimes it happens and the 1st cohomology of Algebraic Anosov
foliations is the case.

Theorem 3.20 ([MM]) The 1st cohomology of algebraic Anosov foliation is spanned
by H1(M) and the Reeb class [η]. More precisely,

1) The case of ˜PSL(2; R) : H1(Fu) ∼= H1(F s) ∼= H1(M) ⊕ R[η] ,

2) The case of Solv : H1(Fu) ∼= H1(F s) ∼= H1(M) = R[η] .
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Let us explain very briefly how it is computed in the case of Solv, while we still do

not know the real reason why it is thus computed in the case of ˜PSL(2; R).

It is easy to see that the Mayer-Vietoris arguments also works i n the foliated coho-
mology. In the Solv-case, the foliation is a suspension of an irrational linear foliation on
T 2 over S1. Therefore by the Wang sequence, the problem reduces to compute H1(Fa)
for the irrational linear foliation on T 2 with slope a. This is again, a foliated bundle over
S1 so that everything reduces to the following well-known problem.

Q : For a given smooth function on S1 = R/Z, does there exist a smooth function
g(x) ∈ C∞(S1) which satisfies the coboundary equation f(x) = g(x + a) − g(x) ?

The answer depends on whether the slope a is a Liouville number or no. Anyway the
integral

∫
S1 f(x)dx is an obvious obstruction to the solution, but if a is not of Liou-

ville, there is no further obstruction (i.e., the problem of ‘small denominator’) in finding
a smooth solution g by Fourier expansion. In our case, the slope a is the tangent of
an eigen direction of a hyperbolic automorphism of T 2 (i.e., an element of SL(2; Z)),
that means it is an algebraic number so that it is not of Liouville. Hence we obtain
H1(Fu) ∼= H1(Fa) ∼= R.

§4 Concluding Remarks

The following is a direct corollary to Theorem 3.19 and Theorem 3.20.

Theorem 4.21 NF satisfies the following properties both for F = Fu and F s of
Algebraic Anosov flows.

1) The case of ˜PSL(2; R) : N⊥
F /NF = R[dη] , lkNF is not trivial(Godbillon-Vey).

2) The case of Solv : N⊥
F /NF = 0 .

In these cases, NF is a maximal nullsubspace，and in 1) we have N⊥
F = NF ⊕ R[dη] ，

and in 2) N⊥
F = NF .

Now let us consider the Solv case, for simplicity, and thin about what the following
computation implies for the associated bi-contact structure (ξ, η). (Here, η denotes the
negative contact structure. Please forgive the author for bad use of η. Traditions did
not take care of ... .)

(Pξ ⊕ Qη)
⊥ = (NFu ⊕ NFs)⊥ = N⊥

Fu ∩ N⊥
Fs = NFu ∩ NFs = 0 .

If we ook at this result without remembering topology, infinite dimensionality and non-
definiteness, it seems to suggested that

ATor(ξ) = ATor(η) = 0

because it seems very dificult to find a room to put Pφ into B2. IF the argument could
be true, then the tightness of ξ and η follows immediately, as well as，Tor = 0 for the
standard contact structure on S3.

Problem Find an analytic framework which justifies this arugument.
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