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§0. Introduction.

It is well-known that Roth’s theorem and Nevanlinna’s second main theorem
are strikingly similar. It is therefore very important to construct the geometry
unifying Diophantos/Nevanlinna theories, which fully explains this similarity. The
difficulty in the attempt of constructing the unifying geometry is that Nevanlinna
theory is based on the calculus for functions on the complex plane while Diophan-
tine approximation is the theory on the ring of integers and therefore the concept
of the derivative is intrinsic in Nevanlinna theory while it is not defined in Dio-
phantine approximation. Related to this difference between these theories is the
absence of the ramification counting function (counting zeros of the ”derivative”)
in Roth’s theorem. It is then natural for us to expect that the geometric framework
which somehow “recovers” the Diophantine analogue of the ramification counting
function (which is “lost” in Roth’s theorem) occupies an essential part of the uni-
fying geometry under question. The purpose of my lecture is to introduce a new
Diophantos/Nevanlinna analogue which emerges from the attempt of constructing
such geometric framework. For this purpose we begin with the basic nature which
is common to both Diophantos/Nevanlinna theories. Namely both theories consists
of the inequalities which measure the difference of the two states, i.e., the “exact
states” and the “approximation states”:
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§1. Approximation States v.s. Exact States.

The Nevanlinna-Cartan second main theorem is the following:

Theorem 1. Let D = {D1, . . . , Dq} be a collection of hyperplanes in general posi-
tion in Pn(C). Then there exists a finite number of hyperplanes ZD depending only
on D such that the following statement holds: Let f : C → Pn(C) be a holomorphic
curve such that f(C) 6⊂ D. Assume that the image of f is not contained in ZD.
Let W (f) = f (1) ∧ f (2) ∧ · · · ∧ f (n) be the Wronskian of f defined in terms of affine
coordinates of Pn(C). Then

(∗)
q∑

i=1

mf,Di
(r) + Tf,KPn(C)(r) ≤ Sf (r)// .

Under the stronger assumption that f is linearly non-degenerate, then we have a
stronger inequality

(1)
q∑

i=1

mf,Di
(r) + Tf,KPn(C)(r) + NW (f),0(r) ≤ Sf (r)// .

(∗) should be improved into a form involving some ramification counting function.
However, such a stronger version (i.e., the second main theorem with a ramification
counting function such that the ”exceptional subspaces” ZD is a proper algebraic
subset) presently unavailable.

We interpret Theorem 1 by comparing two states: the “exact” and the “approx-
imation” states. Given holomorphic curve f : C → Pn(C), we say that f is in the
exact state (resp. the approximation state) if f(C) ⊂ D (resp. f(C) 6⊂ D) holds.
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Cartan’s proof of Theorem 1 consists of three steps.
The first step is the characterization of the exact state. Given holomorphic curve

f being in the exact state w.r.to any linear divisor if and only if

(2) W (f) ≡ 0 .

In this stage we cannot distinguish the linear divisor D under under question.
The second step is to measure how given f in the approximation state deviates

from being in the exact state w.r.to the particular linear divisor D. This is done
by Nevanlinna’s lemma on logarithmic derivative:

(3) mf,D(r) ≤ mW (f),0(r) .

The inequality (3) is the approximation counterpart of the characterization (1) of
the exact state.

The third step is to incorporate the geometry of the space where the Wronskian
W (f) lives (indeed, W (f) takes values in the total space of the anticanonical bundle
K−1

Pn(C) → P
n(C)) into the inequality (3). We then end up with the inequality in

Theorem 1.

The Diophantine analogue of Theorem 1 is Roth-Schmidt’s SST (subspace the-
orem). Let k be a number field and S a finite set of places of k including all
Archimedean ones.

Theorem 2. Let D = {D1, . . . , Dq} be a collection of hyperplanes in general po-
sition in Pn(k) and ε any positive number. Then there exists a finite number of
proper linear subspaces Z such that the set of the solutions outside of Z for the
Diophantine inequality

(4) mS(x, D) + htKPn (x) > εhtO(1)(x)

for points of Pn(k) − D is finite.

Clearly, the “exact state” (resp. “the approximation state”) in Theorem 2 is to
consider rational points in D (resp. those outside of D). In [V, Theorem 6.4.3],
Vojta defined the Diophantine analogue x 7→ x′ (defined in On+1

k,S ) of the derivative
of a holomorphic curve (lifted to Cn+1 − {0}) using the geometry of numbers on
adèles. Vojta used Ahlfors’ variant of the Lemma on logarithmic derivative as
a geometric model for the choice of the length function1. The point is that the
Diophantine analogue x 7→ x′ of the derivative is a relative notion which makes no
sense without the approximation target D. In [V, Chapt. 6], Vojta incorporated the
role of the Diophantine analogue of the derivative into Schmidt’s proof of Theorem
2. However, the 3-steps structure characterizing Nevanlinna-Cartan theory is not
so recognizable. It is then natural to try to identify the 3-steps structure in the
proof of Theorem 2.

We note that the ramification counting function NW (f),0(r) exists in (1) and no
Diophantine counterpart exists in (4). Although Vojta proposed of the Diophantine
analogue [V, Theorem 6.4.3] of the derivative, we cannot recover the Diophantine
counter part of the ramification counting function from its proof. The next section
is an attempt toward recovering it.

1 In fact, he used the Diophantine analogue of Ahlfors’ variant of the Lemma on logarithmic

derivative as the “defining equation” of x′.



4 RYOICHI KOBAYASHI

§2. Truncated Counting Function and Its Diophantine Analogue.
Throughout this section, we let P

n and D be as in Theorem 1 or 2. Vojta’s
definition of the Diophantine analogue x 7→ x′ of the derivative depends essentially
on the target D. This motivates the following consideration. Let f : C → Pn(C)
be a holomorphic curve s.t. f(C) 6⊂ D. Although counting zeros of f ′ (which has
nothing to do with the target D) has no Diophantine analogue, counting those of f ′

only at z ∈ C s.t. f(z) ∈ D does. Indeed, this is just to associate to each x the set
of finite places on which the Zariski closures (over the ring of intergers Ok) of x and
D intersect. Let Nn

f,D(r) be defined by replacing degz(f
∗D) in the usual counting

function by max{degz(f∗D)−n, 0} (we note that the difference Nf,D(r)−Nn
f,D(r)

is the usual notion of the level n truncated counting function). Since D is linear
and W (f) is defined w.r.to affine coordinates, the condition degz(f∗D) ≥ n implies
degz(f

∗D)−n ≤ degz W (f) (where the equality holds “generically”). This implies

Nn
f,D(r) ≤ NW (f),0(r) .

We can now define the Diophantine analogue of Nn
f,D(r) (via Vojta’s dictionary).

This consists of the association x 7→ Sn
x , Sn

x being the set of all finite places where
the Zariski closures of x and D intersect with multiplicity ≥ n, together with the
“counting function” Nn(x, D) which counts the intersection of the Zariski closures
of x and D over the places in Sn

x with the multiplicity degv(x
∗D) (in the usual

counting function) replaced by max{degv(x∗D) − n, 0} (∀v ∈ Sn
x ).

In contrast to working with a fixed set S of places (as in Theorem 2), we cannot
fix the set of finite places if we try to define the the Diophantine analogue of the
truncated counting function.

The conclusion of this lecture is the following conjectural analogue of the Lemma
on logarithmic derivative in the setting of varying S = S(x) where S(x) = S∞∪Sn

x

(S∞ being the set of all Archimedean places).

Conjecture 3. Let F0, . . . , Fq be a set of linear forms in kn+1 in general position
and ε any positive number. Then there exists a finite set S of proper linear subspaces
of kn+1 with the following property. If x ∈ kn+1 is not a vector in the union of the
linear subspaces in S, then we can inductively construct a sequence x(1), . . . , x(n) ∈
On+1

k of vectors with the following properties:
(i) x, x(1), . . . , x(n) are linearly independent:

x ∧ x(1) ∧ · · · ∧ x(n) 6= 0 .

(ii) ordv(x(t) · Fi) decreases 1 as t increases 1, i.e., if ordv(x · Fi) ≥ n, we have

ordv(x(t) · Fi) ≥ ordv(x · Fi) − t

for ∀t = 1, 2, . . . , n.
(iii) If we set x≤p−1 = x ∧ x(1) ∧ · · · ∧ x(p−1) and Fi,p = Fi ∧ Fn−p+2 ∧ · · · ∧ Fn for
p = 1, . . . , n, we have the following inequality: after suitably re-ordering the F ’s for
each v ∈ S(x) (according to the v-adic approximation of x to D), we have

(5)
∑

v∈S(x)

log
||(x≤p−1 ∧ (x≤p−2 ∧ x(p))) · Fi,p||v
||x≤p−1||v||x≤p−1 · Fi,p||modified

v

< εht(x)
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for ∀i = 0, 1, . . . , q and ∀x such that x≤p−1 · Fi,p 6= 0. If x≤p−1 · Fi,p = 0 then
(x≤p−2∧x(p))·Fi,p = 0. Here, ||x≤p−1 ·Fi,p||modified

v means that if v ∈ Sn
x we replace

ordv(x≤p−1 · Fi,p) in the original definition by max{ordv(x≤p−1 · Fi,p) − 1, 0}, and
if v ∈ S∞, we need no modification.

To prove Conjecture 3, we must incorporate the association x 7→ Sn
x into Vojta’s

interpretation [V, Chapt. 6] of Schmidt’s proof of SST (Theorem 2). The point
of the proof in this direction is the choice of the length function (which reflects on
the left hand side of (5)) used in the successive minima. The inequality (5) implies
that we may replace the inequality in the condition ordv(x(t) ·Fi) ≥ ordv(x ·Fi)− t
by the equality.

We can put the inequality (5) in more geometric form.

Conjecture 4. Let D be a linear divisor of Pn(k) in general position. Let D(p)

denote the union of the p-th jet space of all irreducible components of D. Then
there exists a finite union S of proper linear subspaces of Pn(k) such that, if x 6∈ S,
then there exist x(1), . . . , x(n) ∈ T[x]P

n(Ok) which satisfy the inequalities

mS∞(x, D) ≤ mS∞(x(p), D(p)) + εht(x)

mS∞(x(p),∞) ≤ εht(x)

and the condition

ordv(x(t) · Fi) = ordv(x · Fi) − t ∀v ∈ Sx

for ∀p = 1, 2, . . . , n (up to uniform error). Here, S(x) is the finite set of places of
k defined by S(x) = S∞ ∪ Sn

x where Sn
x is the set of non-Archimedean places of k

over which the section x : Spec(Ok) → Pn(Ok) and the linear divisor D in Pn(Ok)
intersect with multiplicity m ≥ n.

We have an equivalence Conjecture 3 ⇔ Conjecture 4. The following is the direct
consequence of Conjecture 4:

Corollary 5. Suppose that Conjecture 3 is true. We then have

Nn(x, D) ≤ NS∞(x, D)(x(1) ∧ · · · ∧ x(n), 0) − NS(x)(x(1) ∧ · · · ∧ x(n), 0) + εht(x)

outside a finite union S of proper linear subspaces of Pn(k), where the counting
functions measure the v-adic approximation of x(1) ∧ · · · ∧ x(n) to 0 for appropriate
finite places (NS measures the v-adic approximation for v outside of S) in the total
space of the anticanonical bundle of Pn(k).

The “exact state” in the Diophantine setting is characterized by

x(1) ∧ · · · ∧ x(n) = 0 in K−1
Pn(k) .

This is reasonable, because if we perform the successive minima restricted to a
hyperplane, the sequence of linearly independent vectors x, x(1), . . . , x(t) ends at
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t = n − 1 and therefore x(1) ∧ · · · ∧ x(n−1) ∧ x(n) = 0. It follows from Conjecture 4
and Corollary 5 that the corresponding “approximation state” is

mS∞(x, D) + Nn(x, D)

≤ mS∞(x(1) ∧ · · · ∧ x(n), 0) + NS∞(x(1) ∧ · · · ∧ x(n), 0)

− NS(x)(x(1) ∧ · · · ∧ x(n), 0) + εht(x) .

(6)

The right hand side of (6) is bounded above by

−htKPn (x) + mS∞(x(1) ∧ · · · ∧ x(n),∞) + εht(x) .

Using Conjecture 4 again, we conclude that this is bounded above by

−htKPn (x) + εht(x) .

Therefore Conjecture 4 impplies Schmidt’s Subspace Theorem with truncated count-
ing functions:

Corollary 6. Suppose that Conjecture 3 is true. Then the following improvement
of Schmidt’s SST is true: Let D = {D1, . . . , Dq} be a collection of hyperplanes in
general position in Pn(k) and ε any positive number. Then there exists a finite
number of proper linear subspaces Z such that the set of the solutions outside of Z
for the Diophantine inequality

mS(x, D) + Nn(x, D) + htKPn (x) > εhtO(1)(x)

for points of Pn(k) − D is finite.
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