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§1. Introduction.

The complex structure we consider on the tangent bundle of a real-analytic

Riemannian manifold M is the unique complex structure which turns every Rie-

mannian foliation into a holomorphic curve. We call this complex structure the

adapted complex structure. This structure might only be defined on a proper subset

of the tangent bundle; it could be defined on the whole tangent bundle only if all

sectional curvatures of M are everywhere positive. It was shown by S. Halverscheid

that the converse does not hold. The example he considered is the ellipsoid in R
3

with the induced metric.

The subject we are interested in is the disk bundle T rX = {(x, v) : x ∈ X, v ∈
TxX, |v| < r} endowed with the adapted complex structure. We call T rM a Grauert

tube of radius r over the Riemannian manifold M .

When M is compact, there exists a maximal radius rmax(M) > 0 such that

the adapted complex structure exists in T rM for all r < rmax(M), but not for

any r ≥ rmax(M). There is a strictly plurisubharmonic exhaustion function for the

Grauert tube T rM , hence T rM is a complete hyperbolic Stein manifold. Burns-

Hind have shown the rigidity, i.e. Aut(T rM) = Isom(M), holds for all compact

M for any r ≤ rmax. So, we will only deal with the non-compact cases. We will

assume from now on that that M is non-compact.

In the non-compact cases, the rmax(M) could be zero and there is no guarantee

on the complete hyperbolicity of such T rM . However, when M is homogeneous then

rmax(M) > 0 and we claimed in [K] the complete hyperbolicity and the rigidity for

Grauert tube over Riemannian homogeneous spaces. The techniques there heavily
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depend on the homogeneity of the center manifold M . In this note, we will claim

a “loose” rigidity version of Grauert tubes over general non-compact Riemannian

manifolds such that rmax(M) > 0. We prove the following two theorems in this

article.

Theorem 1. Let M be a real-analytic Riemannian manifold such that T rM is not

covered by the ball. Then Aut0(T rM) = Isom0(M) for any r < rmax.

Theorem 2. Let X be a real-analytic Riemannian manifold such that X/Isom(X)

is compact. Then for any r < rmax, T rX is complete hyperbolic.

§2. Proof of Theorem 1.

Before we start, let’s quote some results from [K] that we are going to use for

the proof of Theorem 1.

Theorem 3.1 of [K]. Let M be a domain in a complex manifold M̂ . Suppose

that there exist a point p ∈ M and a sequence of automorphisms {fj} ⊂ Aut(M )

such that fj(p) → q ∈ ∂M , a C2-smooth strictly pseudoconvex point. Then M is

biholomorphic to the unit ball.

Theorem 4.1 of [K]. Let f ∈ Aut(T rX), r ≤ rmax. Then f = du for some

u ∈ Isom(X) if and only if f(X) = X.

We also make the following observation that in each Grauert tube T rM , the

length square function ρ(x, v) := |v|2 is strictly plurisubharmonic. Then by the

Theorem 3 of [S], T rM is hyperbolic at every point p ∈ T rM and hence is hyper-

bolic. Therefore, the automorphism group of T rM is a Lie group.

Let σ be the anti-holomorphic involution

σ : T rX → T rX, (x, v) → (x,−v),

and T r
p M := {(p, v) : v ∈ TpM, |v| < r} be the fiber though p ∈ M . Let I denote

the isometry group of M and G be the automorphism group of T rM . Then the

group

Ĝ := G ∪ σ · G

is again a Lie group. Let Ĝ be the Lie algebra of Ĝ; each element of Ĝ could be

viewed as a vector field in T rM .
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Lemma 1. For each ξ ∈ Ĝ, there is an η ∈ Ĝ corresponding to ξ such that exp tη :

T r
p M → T r

p M, ∀p ∈ M .

Proof. Let p ∈ M , define η ∈ Ĝ as

η = ξ − d

dt
|t=0(σ · (exptξ)).

In local coordinates centered at p, σ(z) = z̄. Then

η(iy) = 2i Im ξ(iy).

It follows that η is tangent to the fiber T r
p X and the result follows. �

Fix a point p ∈ M and take U being a small neighborhood of p in M . Let V

be the domain T rU ⊂ T rM . The domain V is equipped with the metric d induced

from the Kobayashi metric dK of T rM , i.e., d(z, w) := dK(z, w), ∀z, w ∈ V.

Consider the restriction of the mappings exp(tη) to V , which are continuous

mappings from V to T rM . Denote

F = {exp(tη)|V ; t ∈ R} ⊂ C(V, T rM).

Lemma 2. Suppose T rM is not biholomorphic to the ball, then F is a compact

subset of C(V, T rM).

Proof. It is clear that F is closed in C(V, T rM). As dK is an invariant metric and

exp(tη) ∈ Aut(T rM), ∀t ∈ R,

d(exp(tη)(z), exp(tη)(w)) = dK(exp(tη)(z), exp(tη)(w)) = dK(z, w) = d(z, w).

This shows that F is equicontinuous. We then claim that for every z = (p, v) ∈
V , the set F(z) := {exp(tη)(z) : t ∈ R, z ∈ V } is relatively compact in T rM .

Suppose not, exp(tη)(z) approach to the boundary of T r
p M which is a smooth

strictly pseudoconvex point. By Theorem 3.1 of [K], this forces T rM to be the ball

which is a contradiction. Therefore F(z) is a relative compact subset of T rM . By

the Ascoli theorem (c. f. [W]), F is compact in C(V, T rM). �

Lemma 3. For each ξ ∈ Ĝ, the vector field ξ is tangent to T rM .

Proof. By Lemma 1 and 2, we have a compact subfamily F of C(V, T rM). Each

element of F is of the form exp(tη) for some real number t. If η is not identically
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zero then F is isomorphic to R which is non-compact. Therefore, η is identically

zero. By the construction of η in Lemma 1, this implies that

ξ =
d

dt
|t=0(σ · (exptξ)).

Hence the imaginary part of ξ(p) is zero for all p ∈ M . Therefore the tangent vector

ξ is tangent to M . �

Proof of Theorem 1. Applying Theorems 3.1 and 4.1 of [K], an immediate corollary

of Lemma 3 is that G0 ⊂ Ĝ0 ⊂ I0, the identity component of the isometry group of

X . But, I0 ⊂ G0 from the construction of Grauert tubes. Therefore G0 = I0. �

§3. Proof of Theorem 2.

In general, it is difficult to see whether a hyperbolic manifold Ω is complete or

not. Fornaess and Sibony proved in [F-S] that if the quotient Ω/Aut(Ω) is compact

then Ω is complete hyperbolic.

When the center is co-compact, the Grauert tube is complete hyperbolic since it

is the universal covering of a complete hyperbolic manifold. In [K], we also proved

that T rM is complete hyperbolic provided that M is homogeneous. Inspired from

Fornaess-Sibony’s work, we will prove in this section that the Grauert tube T rM

is complete hyperbolic when M/I is compact where I is the isometry group of M .

Let dK be the Kobayashi metric on the hyperbolic manifold T rM and d be the

restriction of dK to M . Notice that I is a subgroup of the automorphism group of

T rM and hence any h ∈ I is an isometry for the metric d.

Proof of Theorem 2. We would prove the theorem in three steps.

(I). d is a complete metric in M . In general the convergence of any Cauchy

sequence does not necessarily imply the completeness of the metric. However, this

does work for the Kobayashi metric and hence it works for the induced metric

d as well. It is therefore sufficient to show that every Cauchy sequence actually

converges.

Since M/I is compact, there is a compact set K such that for any point p ∈ M

there exists a g ∈ I such that g(p) ∈ K. Let {pn} ⊂ M be a Cauchy sequence

in M with respect to the metric d. That is, there exists a large m such that

d(pk, pl) < ε, ∀k, l ≥ m. Let g ∈ I such that g(pm) ∈ K. Then

d(g(pn), g(pm)) = dK(g(pn), g(pm)) = dK(pn, pm) = d(pn, pm) ≤ ε, ∀n > m.
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Following the same argument in [F-S], the Cauchy sequence {g(pn)} converges and

therefore {pn} converges.

(II). Let q = (x, v), |v| = r. Then the local estimate of the Kobayashi metric

near a smooth strictly pseudoconvex boundary point as we did in [K] shows that

dK(z, q) = ∞ for any z ∈ T rM .

(III). Fix z = (p1, v1) ∈ T rM and let w = (p2, v2) varies in T rM . Let h ∈ I such

that h(p2) ∈ K, then dK((p2, 0), (p2, v2)) = dK((h(p2), 0), (h(p2), h∗(v2)) is finite.

Similarly, dK((p1, 0), (p1, v1)) is finite as well. Now,

dK(z, w) ≥ dK((p1, 0), ((p2, v2)) − dK((p1, 0), ((p1, v1))

≥ dK((p1, 0), ((p2, 0)) − dK((p2, 0), ((p2, v2)) − dK((p1, 0), ((p1, v1)).

The last two terms are finite for any z and w. As p2 approaches to the infinity,

dK(z, w) goes to infinity.

(II) and (III) show that dK is complete. �

§4. Grauert tubes of product manifolds.

Let M and N be two real-analytic Riemannian manifolds such that the Grauert

tubes T rM and T rN exist for some r > 0. Let H be the product manifold of M and

N with the product metric. Then both M and N are totally geodesic submanifolds

of H and hence both T rM and T rN are complex submanifolds of T rH where

T rH = ∪r≥δ≥0T
r−δM × T δN ⊂ T rM × T rN.

If both T rM and T rN are complete hyperbolic, so is T rM × T rN. In this

case, T rH is complete hyperbolic as well since T rH is a closed submanifold of

T rM × T rN. Therefore, when H is the product of a homogeneous manifold and a

compact manifold then the complete hyperbolicity of T rH is guaranteed.

The above could also be concluded as an immediate corollary of Theorem 2 since

M × N/Isom(M × N) is compact when M is homogeneous and N is compact.
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