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1. Introduction

Let Ω be a domain in Cn and A2(Ω) the Bergman space of Ω, that is, the Hilbert

space of the L2-holomorphic functions on Ω. The Bergman kernel B(z) of Ω (on the

diagonal) is defined by

B(z) =
∑

α

|ϕα(z)|2,

where {ϕα}α is a complete orthonormal basis of A2(Ω). Throughout this article, we

assume that the boundary ∂Ω of Ω is always C∞-smooth. For a boundary point p,

the number

g(p) = sup
{
s > 0 ; lim z→p

z∈Λ
B(z) · |z − p|s = ∞

}
is called the growth exponent of the Bergman kernel at p, where Λ is a nontangential

cone with apex at p.

As is well known, the singularities of the Bergman kernel contain a lot of important

geometrical information of the respective domains. Let us consider a fundamental

question:

What kinds of geometrical characteristics of domains

determine the boundary behavior of the Bergman kernel ?

There are many interesting results giving partial answers to this question. For the

moment, we restrict our attention to studies about the situation for the growth of

the Bergman kernel at the boundary. In the case of strongly pseudoconvex domains,

the dimension appears in the growth exponent of the Bergman kernel in [24], [7],

[8]. In the general pseudoconvex case, it is known in [30],[12] that the boundary

behavior of the Bergman kernel can be estimated by using the rank of the Levi form.

More precisely, Diederich and Herbort [10] showed that Catlin’s multitype completely

determines the growth exponent in the case of semiregular domains (which are also

called h-extendible domains). Boas, Straube and Yu [2] refined their result and

obtained a detailed result about the boundary limit in this case (see also [11]).

Although this multitype is an important invariant for the study of the Bergman
1
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kernel, some specific domains of finite type in C3 in [22],[9] show that it is not

sufficient for the analysis of its singularities. Indeed Herbort [22] found a domain

whose Bergman kernel has logarithmic growth and Diederich and Herbort [9] gave

some class of domains with parameters to show that the growth exponent is not

always determined by the multitype.

Now let us look at further essential geometrical characteristics of domains to

determine the singularities of the Bergman kernel for a more general class of pseu-

doconvex domains containing the above examples. For this purpose, we introduce

some concept of the theory of singularities into the analysis of the Bergman kernel.

By doing so, we succeed to compute its asymptotic expansion. ¿From our result, it

becomes clear, that the principal term of the asymptotic expansion of the Bergman

kernel is determined completely by the geometry of the Newton polyhedron associ-

ated with the defining functions of the domains and the theory of toric varieties

plays important roles in the computation of its asymptotic expansion.

2. Main results

2.1. Newton polyhedra. Let us introduce some concepts of the theory of singular-

ities into the analysis of the Bergman kernel (see [34],[1],[31] for precise definitions).

Let Z+ and R+ be the sets of non-negative integers and real numbers, respectively.

First let us recall the definition of the Newton polyhedra of functions in the real

space. Let f be a real valued C∞-smooth function in a neighborhood in Rn of the

origin with f(0) = 0. Let∑
α∈Zn

+

cαx
α =

∑
α∈Zn

+

cα1,... ,αnx
α1
1 · · ·xαn

n

be the Taylor expansion of f at the origin. Then the support of f is the set:

Sf = {α ∈ Z
n
+; cα 6= 0},

and the Newton polyhedron of f is the integral polyhedron:

Γ+(f) = the convex hull of the set
⋃

{α + R
n
+;α ∈ Sf} in Rn

+.

The Newton diagram Γ(f) of f is the union of the compact faces of the Newton

polyhedron Γ+(f). The Newton principal part of f is

f0(x) =
∑

α∈Γ(f)

cαx
α.

Now we suppose that there exists a point at which the line {(d, . . . , d); d > 0}
intersects the Newton diagram Γ(f) and we denote this point by Q0 = (df , . . . , df).
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Then we call the value of df as the distance of Γ(f). Let m̂f be the number of the

(n − 1)-dimensional faces on Γ(f) containing Q0. Then define mf = min{m̂f , n},
which we call the multiplicity of Γ(f).

We generalize these concepts to the case of the functions in the complex space.

Let F be a real valued C∞-smooth function in a neighborhood in Cn of the origin

with F (0) = 0. Let∑
α,β∈Zn

+

Cαβz
αz̄β =

∑
α,β∈Zn

+

Cα1,... ,αn,β1,... ,βnz
α1
1 · · · zαn

n z̄β1

1 · · · z̄βn
n

be the Taylor series of F at the origin. Then the support of F is the set:

SF = {α + β ∈ Z
n
+;Cα,β 6= 0},

and the Newton polyhedron of F is the integral polyhedron:

Γ̃+(F ) = the convex hull of the set
⋃

{α+ β + R
n
+;α + β ∈ SF} in Rn

+.

The Newton diagram Γ̃(F ) of F is the union of the compact faces of the Newton

polyhedron Γ̃+(F ). The Newton principal part of F is

F0(z) =
∑

α+β∈Γ̃(F )

Cαβz
αz̄β .

Now we suppose that there exists a point at which the line {(d, . . . , d); d > 0}
intersects the Newton diagram Γ̃(F ) and we denote this point by Q0 = (dF , . . . , dF ).

Then we call the value of dF as the distance of Γ̃(F ). Let m̂F be the number of the

(n − 1)-dimensional faces on Γ̃(F ) containing Q0. Then define mF = min{m̂F , n},
which we call the multiplicity of Γ̃(F ).

2.2. Main results. Our results are concerned with the structure of singularities of

the Bergman kernel for some class of pseudoconvex domains of finite type from the

viewpoint of the theory of singularities.

Let F be a C∞-smooth plurisubharmonic function on Cn satisfying that F (0) =

∇F (0) = 0. We consider the domain:

ΩF = {(z0, z) = (z0, z1, . . . , zn) ∈ C × C
n;=(z0) > F (z1, . . . , zn)}.

We give the following assumptions on ΩF .

(1) 0 ∈ ∂ΩF is a point of finite type (in the sense of D’Angelo [6]).

(2) F (eiθ1z1, . . . , e
iθnzn) = F (z1, . . . , zn) for any θj ∈ R.

(3) There are some small positive numbers c and ε such that F (z) ≥ c|z|ε for

sufficiently large |z| := (
∑n

j=1 |zj|2)1/2.
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The last assumption implies that the dimension of the Bergman space A2(ΩF ) is

infinity.

Now let us mention our main results about the Bergman kernel B(z0, z) of ΩF .

First if we restrict the Bergman kernel on the vertical set to z-plane through the

origin, then its singularity can be expressed as follows.

Theorem 2.1. The Bergman kernel of the domain ΩF has the form:

B(z0, 0) =

∫ ∞

0

e−ρτK(τ)τdτ,(2.1)

where ρ is the imaginary part of 2z0 and K(τ)−1 has an asymptotic expansion of τ :

1

K(τ)
∼

∞∑
j=0

mj−1∑
k=0

aj,kτ
−pj (log τ)k as τ → ∞,(2.2)

where the coefficients aj,k are real numbers. Here there exists a method of calculation

of the powers pj and mj on the basis of the theory of toric varieties. Actually, pj

belong to finitely many arithmetic progressions constructed from positive rational

numbers with p0 < p1 < p2 < · · · and mj belong to the set {1, . . . , n}. Moreover the

principal term of the asymptotic expansion (2.2) takes the form:

a(F0)τ
−2/dF (log τ)mF −1,

where dF is the distance of Γ̃(F ) and mF is the multiplicity of Γ̃(F ) as in Section

2.1 and a(F0) is a positive number depending only on the Newton principal part of

F .

Remark 2.2. Since the condition of finite type implies the Newton diagram of F

intersects all the coordinate axes, there exists the point Q0 in Section 2.1 and the

values of dF and mF can be defined.

Remark 2.3. Since the powers pj in Theorem 2.1 belong to finitely many arithmetic

progressions constructed from rational numbers, there exists a natural number m

such that all the pj belong to the set {k/m; k ∈ N}. Actually there exists a method

to give the exact value of m.

Remark 2.4. In order to correspond the well-known strongly pseudoconvex case, let

us recall the result of Boutet de Monvel and Sjöstrand [3]. They computed the

asymptotic expansion of the Bergman kernel for bounded strongly pseudoconvex

domains Ω ⊂ Cn+1 by using Fourier integral operators with complex phase. Now

we rewrite their result in our style. The Bergman kernel B(z) has the form near the
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boundary:

B(z) =

∫ ∞

0

e−ρτK(z; τ)τdτ (z ∈ C
n+1),

where ρ is a defining function of Ω and K(z; τ) has an asymptotic expansion of τ :

K(z; τ) ∼ τn
∞∑

j=0

aj(z)τ
−j as τ → ∞,

where aj ∈ C∞(Ω̄) and a0 is positive at the boundary.

Next, in order to see the asymptotic expansion of the Bergman kernel directly,

we introduce some polar coordinates. For a small R > 0, a nontangential cone

Λ is defined by Λ = {(z0, z); |z| < Rρ} with ρ = 2=(z0) and set U(R) = {w ∈
Cn; |w| < R}. We define the mapping h from U(R) × (0, ρ0] to the cone Λ ⊂ Cn+1

by h(w, ρ) = (ρ, ρw1, . . . , ρwn) = (ρ, ρw) ∈ Λ, where ρ0 is a sufficiently small positive

number such that the image of h is contained in ΩF .

The following theorem shows that the singularity of the Bergman kernel can be

expressed by a sum of combinations of ρ1/m and log(1/ρ) as follows:

Theorem 2.5. The Bergman kernel of ΩF can be written near the origin on a

nontangential cone Λ as:

B(h(w, ρ)) =
Φ(w, ρ)

ρ2+2/dF (log(1/ρ))mF−1
.(2.3)

Here Φ admits the following asymptotic expansion:

Φ(w, ρ) ∼
∞∑

j=0

∞∑
k=aj

Cj,k(w)ρj/m(log(1/ρ))−k as ρ→ 0(2.4)

for w ∈ U(R) where aj are integers with a0 = 0 and the coefficients Cj,k(w) are

polynomials of |w1|2, . . . , |wn|2, C0,0(w) is a positive constant depending only on the

Newton principal part of F and m is a natural number as in Remark 2.3.

Remark 2.6. ¿From arguments in the proof of Theorem 2.5, more detailed structure

of the asymptotic expansion (2.4) can be seen as follows. Φ(w, ρ) can be expressed

as

Φ(w, ρ) = Φ(1)(w, ρ) + Φ(2)(w, ρ) log ρ,
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where Φ(1) and Φ(2) admit the following asymptotic expansions:

Φ(1)(w, ρ) ∼
∞∑

j=0

∞∑
k=(mF−n)j

C
(1)
j,k (w)ρj/m(log(1/ρ))−k as ρ→ 0,

Φ(2)(w, ρ) ∼
∞∑

j=m(2+2/dF )

∞∑
k=(mF−n)j

C
(2)
j,k (w)ρj/m(log(1/ρ))−k as ρ→ 0,

where the coefficients C
(1)
j,k (w), C

(2)
j,k (w) are polynomials of |w1|2, . . . , |wn|2 and C

(2)
j,k (w)

= 0 if j 6= m(2 + 2/dF + l) (l ∈ N).

Let us consider the particular case that the Newton diagram of F has only one

face. This means that the principal part of F is quasihomogeneous and, moreover,

the origin on ∂ΩF is of semiregular.

Theorem 2.7. If the Newton diagram of F has only one face and the multitype of

the origin is (1, 2m1, . . . , 2mn), then the Bergman kernel of ΩF can be written near

the origin on a nontangential cone Λ as:

B(h(w, ρ)) =
Φ̃(w, ρ)

ρ2+
∑n

j=1 1/mj
+ ˜̃Φ(w, ρ) log ρ.

Here Φ̃ and ˜̃Φ admit asymptotic expansions on Λ:

Φ̃(w, ρ) ∼
∞∑

j=0

C̃j(w)ρj/m, ˜̃Φ(w, ρ) ∼
∞∑

j=0

˜̃Cj(w)ρj as ρ→ 0,

for all w ∈ U(R) where m is the least common multiple of m1, . . . , mn and the

coefficients C̃j(w), ˜̃Cj(w) are polynomials of |w1|2, . . . , |wn|2 and C̃0(w) is a positive

constant depending only on the Newton principal part of F .

Remark 2.8. Analogous results to the above theorems can be obtained in the case

of the Szegö kernel.

3. Proofs of main theorems

In the argument below, the lemmas concerning asymptotic expansion of some

integral are very important. But we omit their proofs (see [26]).

3.1. Some integral formula. For a = (a1, . . . , an) ∈ Rn
+, let |a| = a1 + · · · + an.

Let F be a C∞-smooth plurisubharmonic function on Cn. The weighted Hilbert

space Hτ (C
n) (τ > 0) consists of all entire functions ψ : Cn → C such that∫

Cn

|ψ(z)|2e−2τF (z)dV (z) <∞,
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where dV denotes the Lebesgue measure. If F satisfies the assumption (3) in Section

2.2, then Hτ (C
n) contains zα for all α ∈ Zn

+. The reproducing kernel (on the

diagonal) ofHτ (C
n) is denoted byK(z; τ). We remark that the function τ 7→ K(z; τ)

is continuous for fixed z from the result in [13]. Haslinger [20],[21] obtained an

interesting relation between K(z; τ) and the Bergman kernel B(z0, z) of the domain

ΩF = {(z0, z) ∈ Cn+1;=(z0) > F (z)} as follows:

B(z0, z) =
1

2π

∫ ∞

0

e−ρτK(z; τ)τdτ,(3.1)

where ρ is the imaginary part of 2z0.

3.2. Proof of Theorem 2.1. Now we add a strong assumption (2) to the condition

of F (z): F (eiθ1z1, . . . , e
iθnzn) = F (z1, . . . , zn) for any θj ∈ R. Then we can take a

complete orthonormal system for Hτ (C
n) as{

zα

cα(τ)
; α ∈ Z

n
+

}
, with cα(τ)2 =

∫
Cn

|z|2αe−2τF (z)dV (z)

(|z|2α := |z1|2α1 · · · |zn|2αn). Thus K(z; τ) takes the form:

K(z; τ) =
∑
α∈Zn

+

|z|2α

cα(τ)2
.

¿From the above representation, the behavior of K(z; τ) as τ → ∞ is determined

by properties of cα(τ)2.

The following is the main lemma for our theorems, which is concerned with the

behavior of cα(τ)2 at infinity. Our proof of the lemma needs the theory of toric

varieties.

Lemma 3.1. If F satisfies the conditions (1)–(3) in Section 2.2, then cα(τ)2 has

an asymptotic expansion for α ∈ Zn
+ :

cα(τ)2 ∼
∞∑

j=0

mj−1∑
k=0

a
(α)
j,k τ

−pj (log τ)k as τ → ∞,(3.2)

where the coefficients a
(α)
j,k are real numbers. Here there exists a method of calculation

of the powers pj and mj on the basis of the theory of toric varieties. Actually pj

belong to finitely many arithmetic progressions constructed from positive rational

numbers with p0 < p1 < p2 < · · · and mj belong to the set {1, . . . , n}.
Moreover the principal term of the above asymptotic expansion takes the form:

aα(F0)τ
−βα(log τ)mα−1,
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where aα(F0) is a positive number depending only on α ∈ Zn
+ and the Newton prin-

cipal part F0 of F and the values of βα and mα can be determined as follows: Let

Q = (q1, . . . , qn) be the point of the intersection of the Newton diagram Γ̃(F ) with

the line joining the origin and the point (2α1 + 2, . . . , 2αn + 2). Then we have

βα = 2(|α| + n)/|q| (|q| := q1 + · · · + qn) and mα = min{m̂α, n}, where m̂α is the

number of the (n − 1)-dimensional faces on Γ̃(F ) containing the point Q. In par-

ticular, we have β0 = 2/dF and m0 = mF , where dF and mF are as in Section

2.1.

Remark 3.2. ¿From the same reason as in Remark 2.2, the values of βα and mα can

be defined.

Now if we restrict the Bergman kernel on the set {(z0, z); z = 0} ∩ ΩF , then

B(z0, 0) =
1

2π

∫ ∞

0

e−ρτK(0; τ)τdτ.

Since K(0; τ) = c0(τ)
−2, we can obtain Theorem 2.1 by considering the special case

α = 0 in the above lemma.

3.3. Proof of Theorem 2.5. Before computing asymptotic expansion, let us con-

sider the boundary limit of the Bergman kernel in the sense in [24].

For w ∈ U(R), τ > 0, ρ ∈ (0, ρ0), we have

K(ρw; τ) = K(ρw1, . . . , ρwn; τ) =
∑
α∈Zn

+

|w|2α

cα(τ)2
ρ2|α|.

Substituting the above sum into (3.1) and changing the integral and the sum for-

mally, we can obtain a formal sum as follows:

B(h(w, ρ)) =

∫ ∞

0

e−ρτK(ρw; τ)τdτ =
∑
α∈Zn

+

Bα(ρ)|w|2α,(3.3)

where

Bα(ρ) = ρ2|α|
∫ ∞

0

e−ρτ 1

cα(τ)2
τdτ.(3.4)

The sum in (3.3) is denoted by B̂(w, ρ). It is easy to see that the sum B̂(w, ρ)

uniformly converges on the set U(R) × [ε, ρ0] for any ε ∈ (0, ρ0].

¿From Lemma 3.1, we have

1

cα(τ)2
=

τβα

(log τ)mα−1
{aα(F0) + ε(τ)},(3.5)
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where ε(τ) → 0 as τ → ∞. Substituting (3.5) into (3.4), then we have

ρ−2|α|+βα+2(log(1/ρ))mα−1 · Bα(ρ)

= ρβα+2(log(1/ρ))mα−1

∫ ∞

0

e−ρτ τ 1+βα

(log τ)mα−1
{aα(F0) + ε(τ)}dτ

=

∫ ∞

0

e−s

(
log(1/ρ)

log(s/ρ)

)mα−1

s1+βα{aα(F0) + ε(s/ρ)}ds

−→ aα(F0)

∫ ∞

0

e−ss1+βαds = Γ(βα + 2)aα(F0) =: Cα(F0) > 0 as ρ→ 0.

(3.6)

Since the value of βα is given as in Lemma 3.1, we have

2|α| − βα − 2 = 2|α| − 2(|α| + n)/|q| − 2 = 2|α|(1 − 1/|q|) − 2(n/|q| + 1).

Here the above value is denoted by σ(α, |q|). Note that |q| depends on α. Since

the Newton diagram Γ(f) intersects all the coordinates axes, the value of |α| has

the minimum and the maximum for α ∈ Γ(F ), which are denoted by q∗ and q∗∗,
respectively. Moreover we have |q| ≥ 2 from the conditions of pseudoconvexity and

of finite type.

If α 6= 0, then B̃α(ρ) = Bα(ρ)/B0(ρ) tends to 0 as ρ → 0. For sufficiently small

ρ > 0, we have
∑
α∈Zn

+

B̃α(ρ)|w|2α ≤
∑
α∈Zn

+

B̃α(ρ0)|w|2α for w ∈ U(R).

Thus Lebesgue’s convergence theorem implies that

lim
ρ→0

∑
α∈Zn

+

B̃α(ρ)|w|2α =
∑
α∈Zn

+

(
lim
ρ→0

B̃α(ρ)

)
|w|2α = 1.(3.7)

¿From (3.6),(3.7), we have

lim
ρ→0

ρ2+2/dF (log(1/ρ))mF−1B̂(w, ρ)

= lim
ρ→0

ρ2+2/dF (log(1/ρ))mF−1B0(ρ)
∑
α∈Zn

+

B̃α(ρ)|w|2α = C0(F0) · 1.

Now let us compute the asymptotic expansion of the Bergman kernel in the the-

orem. For sufficiently large integer N , we define

RN(w, ρ) =
∑
|α|≥N

Bα(ρ)|w|2α.
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Then we can write B̂(w, ρ) as follows:

B̂(w, ρ) =
∑
|α|<N

Bα(ρ)|w|2α +RN (w, ρ).(3.8)

¿From (3.6), if |α| ≥ N + 1, then limρ→0 ρ
σ(α,q∗)Bα(ρ) = 0. In a similar fashion to

(3.7), we have

lim
ρ→0

ρσ(α,q∗)
∑

|α|≥N+1

Bα(ρ)|w|2α =
∑

|α|≥N+1

(lim
ρ→0

ρσ(α,q∗)Bα(ρ))|w|2α = 0

For each α with |α| = N , there exists a positive constant Cα such that

|ρσ(α,q∗)Bα(ρ)| ≤ Cα

for ρ ∈ [0, ρ0]. Thus there exist positive constants C̃N , CN such that

ρσ(α,q∗)RN(w, ρ) =
∑
|α|≥N

(ρσ(α,q∗)Bα(ρ))|w|2α

≤
∑
|α|=N

Cα|w|2α + C̃N ≤ CNR
2N

(3.9)

for ρ ∈ [0, ρ0]. ¿From this estimate, the remainder RN becomes asymptotically

smaller as N → ∞ with respect to the variable ρ. Therefore the equation (3.8) can

be regarded as an asymptotic expansion as ρ→ 0.

Finally we can compute the asymptotic expansion in the theorem by putting (3.8),

(3.9) and the following lemma together.

Lemma 3.3. Bα(ρ) takes the form:

Bα(ρ) =
ρ2|α|−βα−2

(log(1/ρ))mα−1
[B(1)

α (ρ) +B(2)
α (ρ) log(1/ρ)] +B(3)

α (ρ),

where B
(3)
α ∈ C∞([0, ε)) and B

(1)
α and B

(2)
α admit the following asymptotic expan-

sions:

B(1)
α (ρ) ∼

∞∑
j=0

∞∑
k=(mα−n)j

B
(α)
j,k ρ

j/m(log(1/ρ))−k as ρ→ 0,

B(2)
α (ρ) ∼

∞∑
j=m(βα+2)

∞∑
k=(mα−n)j

B̃
(α)
j,k ρ

j/m(log(1/ρ))−k as ρ→ 0,

where B
(α)
j,k and B̃

(α)
j,k are real numbers and, in particular, B

(α)
0,0 is a positive number

and B̃
(α)
j,k = 0 if j 6= m(βα + 2 + l) (l ∈ Z+).
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Proof. By using the following lemma, the above asymptotic expansion can be ob-

tained through standard asymptotic analysis (cf. [16]).

Lemma 3.4. For α ∈ Zn
+, there exist real numbers b

(α)
j,k with a positive number

b
(α)
0,0 = aα(F0)

−1 such that

1

cα(τ)2
∼ τβα

(log τ)mα−1

∞∑
j=0

∞∑
k=(mα−n)j

b
(α)
j,k τ

−j/m(log τ)−k as τ → ∞.

If mα = 1, then b
(α)
j,k = 0 for k > 0.

Proof. A computation implies the above expansion from (3.2) in Lemma 3.1.

3.4. Proof of Theorem 2.9. This theorem can be proved from the following lemma

in the same fashion as in the previous section.

Lemma 3.5. If F satisfies the conditions (1)–(3) in Section 2.2 and the Newton

diagram of F has only one face, then cα(τ)2 has the asymptotic expansion:

cα(τ)2 ∼ τ−
∑n

j=1(αj+1)/mj

∞∑
j=0

a
(α)
j τ−j/m as τ → ∞,(3.10)

where the coefficients a
(α)
j are real numbers with a

(α)
0 > 0 and m1, . . . , mn, m are as

in Theorem 2.7.

3.5. Asymptotic expansion of the weighted Bergman kernel. Let us con-

sider the behavior of the reproducing kernel K(z; τ) of the weighted Bergman space

Hτ (C
n) when the parameter τ tends to infinity. ¿From arguments in the proof of

main theorems, we can obtain the following result. Analogous results have been

obtained in [36],[5],[14],[15] in the strongly pseudoconvex case.

Theorem 3.6. Suppose that F satisfies the conditions (1)–(3) in Section 2.2. Then

there is a small neighborhood U of the origin such that the weighted Bergman kernel

K(z; τ) has an asymptotic expansion:

K(z; τ) ∼ τ 2/dF

(log τ)mF−1

∞∑
j=0

∞∑
k=(mF−n)j

bj,k(z)τ
−j/m(log τ)−k as τ → ∞,

for all z ∈ U where the coefficients bj,k(z) are polynomials of |z1|2, . . . , |zn|2, b0,0 is a

positive constant depending only on the principal part of F and m is as in Theorem

2.5. Moreover, if the Newton diagram of F has only one face, then

K(z; τ) ∼ τ
∑n

j=1 1/mj

∞∑
j=0

bj(z)τ
−j/m as τ → ∞,
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for all z ∈ U where m,m1, . . . , mn are natural numbers as in Theorem 2.7, the

coefficients bj(z) are polynomials of |z1|2, . . . , |zn|2 and b0 is a positive constant

depending only on the principal part of F .
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