Weighted Homogeneous Polynomial CR Manifolds and Tanaka-Hodge Numbers

Mitsuhiro Itoh

Institute of Mathematics, University of Tsukuba

1. Let M be a compact Sasakian (i.e., normal strongly pseudo-convex CR) $(2 n+1)$-manifold, $n \geq 2$. An explicit formula for Tanaka-Hodge number $h^{p, q}$ of a Sasakian manifold M which is defined as the zero locus of a weighted homogeneous polynomial f is represented in terms of the graded Milnor algebra associated to f.
2. A complex polynomial f in $n+2$-complex variables, $n \geq 2$

$$
f=f\left(z_{1}, z_{2}, \cdots, z_{n+2}\right)=\sum c_{a_{1} \cdots a_{n+2}} z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{n+2}^{a_{n+2}}
$$

is called weighted homogeneous, of degree d and with weight $\mathrm{w}=\left(w_{1}, w_{2}, \cdots, w_{n+2}\right) \in \mathbb{N} \times \cdots \times \mathbb{N}(n+2$ times $)$, if it satisfies

$$
w_{1} a_{1}+\cdots+w_{n+2} a_{n+2}=d
$$

for each monomial $z_{1}^{a_{1}} z_{2}^{a_{2}} \cdots z_{n+2}^{a_{n+2}}$ appearing in f
Example (Brieskorn-Pham polynomial)

$$
f(z)=z_{1}^{a_{1}}+z_{2}^{a_{2}} \cdots+z_{n+2}^{a_{n+2}}
$$

Its degree is $d=a_{1} a_{2} \cdots a_{n+2}$ and weights are $w_{i}=\frac{d}{a_{i}}, 1 \leq i \leq n+2$.
3. The zero locus of $f=f(z)$

$$
V_{f}=\left\{z \in \mathbb{C}^{n+2} \mid f(z)=0\right\}, \quad n \geq 2
$$

is a hypersurface of \mathbb{C}^{n+2} and admits in general the origin as a singularity.
Assume that the origin is an isolated singularity.
Intersection of V_{f} with an ε-hypersphere $S_{\varepsilon}^{2 n+3}=\left\{z \in \mathbb{C}^{n+2}| | z \mid=\varepsilon\right\}$ centered at 0 yields a smooth $(2 n+1)$-manifold $M\left(=K_{f}\right)=V_{f} \cap S_{\varepsilon}^{2 n+3}$, called a link of the singularity.

Proposition. The link K_{f} carries an S^{1}-action and is equipped with a Sasakian structure (η, ξ, φ, g) or equivalently a normal strongly pseudo convex CR structure. The Sasakian structure on K_{f} is almost regular in the sense of C. B. Thomas[17].

In fact, let $\mathbb{C}^{\times} \times \mathbb{C}^{n+2} \longrightarrow \mathbb{C}^{n+2}$,

$$
(t, z) \mapsto t \cdot z=\left(t^{w_{1}} z_{1}, \cdots, t^{w_{n+2}} z_{n+2}\right)
$$

be the weighted \mathbb{C}^{\times}-action of \mathbb{C}^{n+2}. Then f satisfies

$$
f(t \cdot z)=t^{d} f(z)
$$

so that V_{f} is \mathbb{C}^{\times}-invariant. Further K_{f} is invariant under the action of $S^{1}=\left\{e^{i s} \in \mathbb{C}^{\times} \mid s \in \mathbb{R}\right\}$.

Assume that $\operatorname{GCD}\left\{w_{1}, \cdots, w_{n+2}\right\}=1$. This guarantees effectiveness of the \mathbb{C}^{\times}-action.

To define a Sasakian structure on K_{f} we notice K_{f} is a real hypersurface of a smooth $n+1$-dimensional complex manifold $V_{f} \backslash\{0\}$ around K_{f}. We set ξ, η, φ as

$$
\begin{aligned}
\xi & =J \nu \\
J X & =\varphi(X)-\eta(X) \nu, \quad X \in T_{z} K_{f}
\end{aligned}
$$

where ν is the unit normal vector field along K_{f}, obtained by taking the tangent vector of the real orbit of the \mathbb{C}^{\times}-action and $\varphi(X)$ is tangential part of $J X$. Note ξ coincides with the infinitesimal vector field of the S^{1}-action. The metric g is induced from the Euclidean metric of \mathbb{C}^{n+2}. So, (η, ξ, φ, g) yields a Sasakian structure on K_{f} admitting isometric S^{1}-action[2].

Since the isotropy group $G_{z}, z \in K_{f}$ is

$$
G_{z}=\left\{\zeta \in S^{1} \mid \zeta^{w(z)}=1\right\},
$$

where $w(z)=\operatorname{GCD}\left\{w_{i} \mid z_{i} \neq 0\right\}$ for $z=\left(z_{1}, \cdots, z_{n+2}\right)$. So this action has no fixed points and admits additionally finitely many distinct isotropy groups contained in some common finite subgroup Γ of S^{1}. By Theorem 1 in [17] this implies that the Sasakian structure is almost regular. Notice that the set of points of free S^{1}-action is open dense in K_{f}.

Remark that a regular Sasakian manifold is an S^{1}-fiber bundle over a Hodge complex manifold([3],[5]).
4. The harmonic theory of a Sasakian manifold. The tangent bundle $T M$ of a Sasakian manifold M splits as $T M=D \oplus \mathbb{R} \xi$, where $D=\operatorname{Ker} \eta=\xi^{\perp}$ is a rank $2 n$ real subbundle, called the contact bundle. It admits the almost complex structure $\left.\varphi\right|_{D}$ and also the $\left.\varphi\right|_{D}$-hermitian metric $\left.g\right|_{D} E$. Then $D \otimes \mathbb{C}=D^{(1,0)} \oplus D^{(0,1)}$ relative to $\left.\varphi\right|_{D}$ and it holds for the space $\Gamma\left(D^{(0,1)}\right)$ of smooth sections in $D^{(0,1)}$

$$
\begin{gather*}
{\left[\Gamma\left(D^{(0,1)}\right), \Gamma\left(D^{(0,1)}\right)\right] \subset \Gamma\left(D^{(0,1)}\right) \text { (integrability of the CR structure) }} \tag{1}\\
{\left[\xi, \Gamma\left(D^{(0,1)}\right)\right] \subset \Gamma\left(D^{(0,1)}\right) \text { (normality of the CR structure) }} \tag{2}
\end{gather*}
$$

so that ($D^{(0,1)}, \xi, d \eta$) yields on M a normal strongly pseudo convex CR strucure.

REmark. It is not difficult to see that a normal strongly pseudo convex CR structure induces conversely a Sasakian structure so that a Sasakian structure is a synonym with a normal strongly pseudo convex CR structure([9]).
Theorem $([15])$ Let $(M,(\eta, \xi, \varphi, g))$ be a compact Sasakian $(2 n+1)$-manifold M. Then a harmonic k-form θ on $M, k \leq n$, satisfies

$$
\begin{aligned}
i(\xi) \theta & =0 \\
\Lambda \theta & =0
\end{aligned}
$$

where $\Lambda: \Lambda^{k+2}(M) \longrightarrow \Lambda^{k}(M)$ is the adjoint of $L=e(d \eta)$, the exterior product of $d \eta$.

From this theorem any harmonic k-form θ is in $\Gamma\left(M, \Lambda^{k}\left(D^{*}\right)\right)$ for $k \leq n$. By splitting $\Lambda^{k}\left(D^{*} \otimes \mathbb{C}\right)$ into $\otimes_{p+q=k} \Lambda^{p, q}\left(D^{*}\right)$, one has $\theta=\sum_{p+q=k} \theta^{p, q}$ for which each $\theta^{p, q}$ is $\bar{\partial}_{D}$-harmonic, where $\bar{\partial}_{D}$ is the operator : $\Gamma\left(M, \Lambda^{p, q}\left(D^{*}\right)\right) \longrightarrow$ $\Gamma\left(M, \Lambda^{p, q+1}\left(D^{*}\right)\right)$, defined in $[16]$ so that on a compact Sasakian manifold one has the Hodge decomposition, like on a Kähler manifold. Namely, denote by $\mathbb{H}^{k}(M)$ and $\mathbb{H}^{p, q}(M)$ the space of harmonic forms and the space of $\bar{\partial}_{D^{-}}$ harmonic (p, q)-forms on M, respectively and set $h^{p, q}(M)=\operatorname{dim}_{\mathbb{C}} \mathbb{H}^{p, q}(M)$, which we call Tanaka-Hodge number. Then

Theorem $([16])$. Let $(M,(\eta, \xi, \varphi, g))$ be a compact Sasakian $(2 n+1)$-manifold, $n \geq 2$. For $k \leq n$

$$
\begin{aligned}
\mathbb{H}^{k}(M) & =\oplus_{p+q=k} \mathbb{H}^{p, q}(M), \quad k \leq n, \\
\overline{\mathbb{H}}^{q, p}(M) & =\mathbb{H}^{p, q}(M) .
\end{aligned}
$$

5. Milnor fibration. Milnor showed that by using the Milnor fibration the link K_{f} associated to a weighted homogeneous polynomial f is $(n-1)$ connected so that non-trivial Betti numbers of K_{f} are only $b_{n}=b_{n+1}$ (Theorem $5.2,[10]$). These can be computed as ([11],[12])

$$
b_{n}\left(K_{f}\right)=\sum_{s=0}^{n+2} \sum_{I}(-1)^{n-s} \frac{q_{i_{1}} \cdots q_{i_{s}}}{\left[u_{i_{1}}, \cdots, u_{i_{s}}\right]}
$$

Here $I=\left(i_{1}, \cdots, i_{s}\right)$ is an s-tuple of indices $1 \leq i_{1}<\cdots<i_{s} \leq n+2$ and $\left[u_{i_{1}}, \cdots, u_{i_{s}}\right.$] is the LCM of integers $u_{i_{1}}, \cdots, u_{i_{s}}$ (where $q_{i}=d / w_{i}=$ $\left.u_{i} / v_{i}, \quad\left(u_{i}, v_{i}\right)=1, \quad i=1, \cdots, n+2\right)$.
6. Define a graded algebra $\mathbb{M}_{f}=\mathbb{C}\left(z_{1}, \cdots, z_{n+2}\right) /\left(\frac{\partial f}{\partial z_{1}}, \cdots, \frac{\partial f}{\partial z_{n+2}}\right)$, called the Milnor algebra where each z_{i} has degree w_{i}. Then

Theorem $1([9]) . h^{p, q}$ of the link K_{f} is given for $p+q=n$

$$
h^{p, q}\left(K_{f}\right)=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{M}_{f}\right)_{\ell}
$$

Here $\left(\mathbb{M}_{f}\right)_{\ell}$ is the linear subspace of \mathbb{M}_{f} consisting of degree ℓ elements, where $\ell=(p+1) d-|\mathrm{w}| .\left(|\mathrm{w}|=w_{1}+\cdots+w_{n+2}\right.$ is the total sum of all the weights $)$.

Corollary. The Betti number b_{n} of the link K_{f} is given in two ways, one in an arithmetical way and another in an algebraic way:

$$
\begin{align*}
b_{n}\left(K_{f}\right) & =\sum_{s=0}^{n+2} \sum_{I}(-1)^{n-s} \frac{q_{i_{1}} \cdots q_{i_{s}}}{\left[u_{i_{1}}, \cdots, u_{u_{s}}\right]} \tag{3}\\
& =\sum_{k=0}^{n} \operatorname{dim}_{\mathbb{C}}\left(\mathbb{M}_{f}\right)_{(k+1) d-|w|} \tag{4}
\end{align*}
$$

We can pose the following problem. Does $h^{p, q}\left(K_{f}\right)$ depend only on the degree and the weights?
7. Sketch of a proof of Theorem. The Sasakian contact structure of K_{f} is almost regular so that one has the double fibration([17]), first by dividing by the common finite subgroup Γ of S^{1} and then by S^{1} / Γ :

$$
K_{f} \xrightarrow{\pi_{1}} K_{f} / \Gamma \xrightarrow{\pi_{2}} K_{f} / S^{1}=(V \backslash\{0\}) / \mathbb{C}^{\times}
$$

where π_{1} is a branched covering, π_{2} is a projection by a free $S^{1} / \Gamma\left(\cong S^{1}\right)$ action, and $(V \backslash\{0\}) / \mathbb{C}^{\times}$, which we denote by V_{f}^{*}, is a hypersurface in the $(n+1)$-dim weighted projective space $\mathbb{P}^{n+1}(\mathrm{w})$.

The space K_{f} / Γ is a finite quotient of a smooth manifold. So its cohomology group $H^{n}\left(K_{f} / \Gamma, \mathbb{R}\right)$ is isomorphic to $\mathbb{H}^{n}\left(K_{f}\right)$ through π_{1}, since $H^{n}\left(K_{f} / \Gamma, \mathbb{R}\right) \cong \mathbb{H}^{n}\left(K_{f}\right)^{\Gamma}$, the space of Γ-invariant harmonic n-forms on K_{f}, and the S^{1}-action is isometric so a harmonic form on K_{f} is Γ-invariant.

Apply the Gysin exact sequence to the $S^{1}\left(\cong S^{1} / \Gamma\right)$-fibration $\pi_{2}: K_{f} / \Gamma \longrightarrow$ $K_{f} / S^{1}=V_{f}^{*}$ to have

where the map $b:[\alpha] \mapsto[\alpha] \wedge[\Omega]\left([\Omega]=\iota^{*}[\omega] \in H^{2}\left(V_{f}^{*}\right)\right)$ is induced by the embedding $\iota: V_{f}^{*} \longrightarrow \mathbb{P}^{n+1}(\mathrm{w})(\omega$ denotes the curvature form representing the fibration π_{2}, namely the Kähler form of $\left.\mathbb{P}^{n+1}(\mathrm{w})\right)$. The map \int is integration along fibres. Remark that \int reduces to zero map, since harmonic forms in K_{f} / Γ have no fibre directional part. Then b is injective and one has

$$
\begin{equation*}
H^{n}\left(V_{f}^{*}\right)=H_{0}^{n}\left(V_{f}^{*}\right) \oplus H^{n-2}\left(V_{f}^{*}\right) \tag{5}
\end{equation*}
$$

where $H_{0}^{n}\left(V_{f}^{*}\right)$ is called the primitive cohomology group of V_{f}^{*}, isomorphic to $H^{n}\left(V_{f}^{*}\right) / \operatorname{Im} b$. So the Gysin sequence yields an isomorphism

$$
\pi_{2}^{*}: H_{0}^{n}\left(V_{f}^{*}\right) \xrightarrow{\cong} H^{n}\left(K_{f} / \Gamma\right)\left(\cong \mathbb{H}^{n}\left(K_{f}\right)\right)
$$

Moreover, V_{f}^{*} is a V-manifold so the Hodge-de Rham-Kodaira harmonic thoery is applicable $([1])$. So $H_{0}^{n}\left(V_{f}^{*}\right)$ splits into $\oplus_{p+q=n} \mathbb{H}_{0}^{p, q}\left(V_{f}^{*}\right)$, where $\mathbb{H}_{0}^{p, q}\left(V_{f}^{*}\right)$ is the space of $\bar{\partial}$-harmonic (p, q)-forms $\psi^{p, q}$ on V_{f}^{*} satisfying the primitive condition $\Lambda_{\omega} \psi^{p, q}=0$.

Claim. For $p, q, p+q=n$

$$
\mathbb{H}_{0}^{p, q}\left(V_{f}^{*}\right) \cong \mathbb{H}^{p, q}\left(K_{f}\right)
$$

In fact, let ψ be a primitive harmonic n-form of V_{f}^{*}. Then $\psi=\sum_{p+q=n} \psi^{p, q}$, $\psi^{p, q} \in \mathbb{H}_{0}^{p, q}\left(V_{f}^{*}\right)$. So $\left(\pi_{2} \circ \pi_{1}\right)^{*}(\psi)=\sum_{p+q=n}\left(\pi_{2} \circ \pi_{1}\right)^{*}\left(\psi^{p, q}\right)$. Here $\left(\pi_{2} \circ\right.$ $\left.\pi_{1}\right)^{*}\left(\psi^{p, q}\right)$ is a (p, q)-forms on K_{f}. On the other hand, by Tanaka's Hodge decomposition on a Sasakian manifold, we have $\left(\pi_{2} \circ \pi_{1}\right)^{*}(\psi)=\sum_{p+q=n} \varphi^{p, q}$ in terms of harmonic (p, q)-forms on K_{f}. Therefore $\left(\pi_{2} \circ \pi_{1}\right)^{*}\left(\psi^{p, q}\right)=\varphi^{p, q}$, for each p, q so that $h_{0}^{p, q}\left(V_{f}^{*}\right) \leq h^{p, q}\left(K_{f}\right)$. However, from the above argument one has $\operatorname{dim} H_{0}^{n}\left(V_{f}^{*}\right)=\operatorname{dim} H^{n}\left(K_{f}\right)$. So $h_{0}^{p, q}\left(V_{f}^{*}\right)=h^{p, q}\left(K_{f}\right)$, from which the claim follows.
$\operatorname{ThEOREm}([13],[14])$. The primitive Hodge number $h_{0}^{p, q}\left(V_{f}^{*}\right)=\operatorname{dim}_{\mathbb{C}} \mathbb{H}_{0}^{p, q}\left(V_{f}^{*}\right)$ is

$$
h_{0}^{p, q}\left(V_{f}^{*}=\operatorname{dim}_{\mathbb{C}}\left(\mathbb{M}_{f}\right)_{\ell}\right.
$$

See also Appendix B. 34 in [4] .
Applying these results, our Theorem is obtained.

8. Example

Let f be a polynomial of Brieskorn-Pham type:

$$
f=z_{1}^{2}+z_{2}^{3}+z_{3}^{3}+z_{4}^{4}+z_{5}^{6}
$$

f has degree $d=12$ and weights $\mathrm{w}=(6,4,4,3,2)$.
The link of the singularity K_{f} is 7 -dimensional and $b_{3}\left(K_{f}\right)=2$ and $h^{3,0}\left(K_{f}\right)=0$ and $h^{2,1}\left(K_{f}\right)=1$.

In fact, to compute the Betti number b_{3} we have $\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=$ $(2,3,3,4,6)$ and $q_{i}=u_{i}, i=1, \cdots, 5$. So, from the formula of Milnor-Orlik, Orlik

$$
b_{3}=-\sum_{s=0}^{5} \sum_{i_{1}<\cdots<i_{s}} \frac{q_{i_{1}} \times \cdots \times q_{i_{s}}}{\left[q_{i_{1}}, \cdots, q_{i_{s}}\right]}
$$

whose value is $-\{1-5+19-47+66-36\}=2$.
On the other hand,

$$
\left(\frac{\partial f}{\partial z_{i}}\right)=\left(2 z_{1}, 3 z_{2}^{2}, 3 z_{3}^{2}, 4 z_{4}^{3}, 6 z_{5}^{5}\right)
$$

so that \mathbb{M}_{f} is the algebra generated by $z_{2}, z_{3}, z_{4}, z_{5}$ with degrees $\operatorname{deg}\left(z_{2}\right)=$ $\operatorname{deg}\left(z_{3}\right)=4, \operatorname{deg}\left(z_{4}\right)=3, \operatorname{deg}\left(z_{5}\right)=2$. Then \mathbb{M}_{f} is spanned by monimials

$$
z_{2}^{b_{2}} z_{3}^{b_{3}} z_{4}^{b_{4}} z_{5}^{b_{5}}
$$

$0 \leq b_{2}, b_{3} \leq 1,0 \leq b_{4} \leq 2,0 \leq b_{5} \leq 4$. From our Theorem $h^{3,0}=\operatorname{dim}\left(\mathbb{M}_{f}\right)_{\ell}$, where $\ell=29$. But $\left(\mathbb{M}_{f}\right)_{29}=\{0\}$ since the highest degree element in the algebra is $z_{2} z_{3} z_{4}^{2} z_{5}^{4}$ whose degree is 22 and so $h^{3,0}=0$. For $h^{2,1}$ we compute $\operatorname{dim}\left(\mathbb{M}_{f}\right)_{\ell}, \ell=(2+1) d-|\mathrm{w}|=17$ and $\left(\mathbb{M}_{f}\right)_{17}=\mathbb{C} z_{2} z_{3} z_{4} z_{5}^{3}$ so $h^{2,1}=1$. It holds $b_{3}=2\left(h^{3,0}+h^{2,1}\right)$.

9. Sasakian 5-manifolds

Now assume that a compact Sasakian manifold M is 5 -dimensional. Then the contact bundle D is equipped with the Hodge star operator \star so that D splits into $D_{+} \oplus D_{-}$in terms of self-dual and anti-self-dual subbundles. From theorems of Tachibana and Tanaka each harmonic 2 -form α splits as self-dual and anti-self-dual harmonic forms as $\alpha=\alpha^{+}+\alpha^{-}$so that $b_{2}(M)=$ $b^{+}(M)+b^{-}(M)$ and $b^{+}(M)=2 h^{2,0}(M)$ and $b^{-}(M)=h^{1,1}(M)([6])$.

Further the Riemannian curvature tensor R satisfies $i(\xi) R=0$. This means that the curvature operator R maps $\Lambda^{2} D^{*}$ into itself. Now representing R as $W+S+\frac{\rho}{12} \cdot i d$ in terms of Weyl curvature, Ricci curvature and scalar curvature, one has the Block decomposition of the Weyl curvature.

$$
W=\left(\begin{array}{cc}
W^{+} & * \\
* & W^{-}
\end{array}\right)
$$

Definition([6]). A Sasakian 5-manifold is self-dual (anti-self-dual) if $W^{-}=0\left(\right.$ respectively $\left.W^{+}=0\right)$.
Theorem 2. Let ($M,(\eta, \xi, \phi, g)$) be a compact Sasakian 5 -manifold of positive scalar curvature $\rho>0$. If M is self-dual, then $b^{-}(M)=0$.

Another phenomena similar to self-dual 4-manifolds is the following which concerns with twistor space. On a Sasakian 5-manifold one can define a twistor space Z over M as the unit sphere bundle of the anti-self-dual 2-form bundle $\Lambda_{-}^{2}\left(D^{*}\right)$, which admits canonical almost CR structure.

Theorem $3([7],[8])$. Let $(M,(\eta, \xi, \phi, g))$ be a Sasakian 5 -manifold. If it is self-dual, then the almost CR structure of the twistor space Z is integrable.

Typical example of CR twistor space Z over 5 -sphere S^{5} is given, explicitly represented, as $Z=\left\{(z,[w]) \in S^{5} \times \mathbb{C} P^{2} \mid \sum_{i} z_{i} w_{i}=0\right\}$, which is also a $\mathbb{C} P^{1}$ fibration over the flag manifold F, twistor space, of self-dual 4-manifold $\mathbb{C} P^{2}$.

Acknowledgement. The author expresses thanks to the organizers, especially to Professor K. Miyajima for giving him the opportunity of talking at Hayama Symposium 2002.

References

[1] W. L. Baily, The decomposition theorem for V-manifolds, Amer. J. Math., 76(1965), 862-888.
[2] D. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976.
[3] W. M. Boothby, H. C. Wang, On contact manifolds, Ann. Math., 68(1958), 721-734.
[4] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer-Verlag, 1992.
[5] Y. Hatakeyama, Some notes on differentiable manifolds with contact structures, Tôhoku Math. J., 15(1963), 176-181.
[6] M. Itoh, Global Geometry of Sasakian Manifolds, Proc. Fourth Intern. Workshop on Differen. Geom., 4(2000), 1-7.
[7] M. Itoh, Contact metric 5-manifolds, CR twistor spaces and Integrability, J. Math. Phys., 43(2002), 3783-3797.
[8] M. Itoh, Erratum, Contact metric 5-manifolds, CR twistor spaces and Integrability, ibid, 2002.
[9] M. Itoh, Sasakian manifolds, Hodge decomposition and Milnor algebras, in preparation, 2003.
[10] J. Milnor, Singular Points of Complex Hypersurfaces, Annals Math. Studies 61, Princeton Univ. Press, 1968.
[11] J. Milnor, P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology, 9(1970), 385-393.
[12] P. Orlik, On the homology of weighted homogeneous manifolds, Lecture Notes 298, 260-269, Springer, 1972.
[13] J. Steenbrink, Intersection form for quasi-homogeneous singularities, Compositio Math., 34(1977), 211-223.
[14] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure Math., 40(1983), Part 2, 513-536,
[15] S. Tachibana, On harmonic tensors in compact Sasakian spaces, Tôhoku Math. J., 17(1965), 271-284.
[16] N. Tanaka, A Differential Geometric Study on Strongly Pseudo-Convex Manifolds, 9, Lectures in Math., Kinokuniya, 1975.
[17] C. B. Thomas, Almost regular contact manifolds, J. Differ. Geom., 11(1976), 521-533.
e-mail address: itohm@sakura.cc.tsukuba.ac.jp

