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In this paper we complete the proof of the following.

Main Theorem. Let π : X → ∆ be a smooth and projective morphism from a complex
manifold X to the unit disc ∆. Suppose for any t ∈ ∆ − {0}, the fiber Xt := π−1(t) is
biholomorphic to a rational homogeneous space S of Picard number 1. Then the central fiber
X0 is also biholomorphic to S.

A rational homogeneous space S of Picard number 1 can be written as S = G/P for a
complex simple Lie group G and a maximal parabolic subgroup P . There are examples of
homogeneous spaces G/P of a complex simple Lie group G with a non-maximal parabolic
subgroup P such that the analogue of Main Theorem forG/P does not hold. For example, the
tangent bundle TP2m+1 of an odd-dimensional projective space is a non-trivial extension of a
line bundle L by the null-correlation bundle D and the rational homogenous space P(TP2m+1)
can be deformed to P(D⊕L). Thus the condition on the Picard number in the statement of
the Main Theorem is necessary.

For the background and the history of the Main Theorem, we refer the readers to the
introduction in [HM2] and the references therein. In [HM2] the authors established the case of
irreducible Hermitian symmetric spaces. Our method consisted of studying the deformation of
minimal rational curves and their associated varieties of minimal rational tangents (VMRTs).
We developed a method for proving the integrability of distributions spanned by minimal
rational tangents using projective-geometric properties of the VMRTs, and used this to prove
the linear non-degeneracy of VMRTs at general points of the central fiber, in order to recover
on it the structure of the Hermitian symmetric space S on the central fiber. Along this line
of approach [Hw1] established the case of contact homogeneous spaces of Picard number 1,
and [HM5] established the same for non-symmetric and non-contact rational homogeneous
spaces S of Picard number 1, provided that S is associated to a long simple root. A feature
common to all the rational homogeneous spaces S = G/P treated in [HM2,5] and [Hw1] is the
fact VMRTs span the minimal G-invariant holomorphic distribution, a feature which allows
us to study distributions in the central fiber from the full space of minimal rational curves
on it. The analogue is not true for S associated to a short simple root. Discounting those
that are isomorphic to one defined by a long root in a different way (e.g. the underlying
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complex structure of (G2, α2), in standard notations, is isomorphic to the 5-dimensional
hyperquadric), S is one of the following (see (3.1), (4.1) and (7.1) below for the definitions of
these homogeneous spaces).

(1) symplectic Grassmannians
(2) homogeneous space of type (F4, α1)
(3) homogeneous space of type (F4, α2).

Among these, (3) can still be treated by modifying the above method ([HM6]). The method
fails drastically for the cases (1) and (2). In this article we develop a new method, by
studying the structure of limiting holomorphic vector fields on the central fiber, and settles
the remaining two cases, thereby completing the proof of Main Theorem.

Of independent interest are our results on the vanishing order of holomorphic vector
fields at a given general point on some Fano manifolds of Picard number 1 (Theorem 1.3.1,
Theorem 1.3.2). For Fano manifolds X of Picard number 1, the first author considers in
[Hw2] the question of bounding at a general point x ∈ X the vanishing order ordx(Z) of
any nonzero holomorphic vector field Z. In this case he showed that ordx(Z) ≤ n := dimX ,
yielding thus a bound on the dimension d of the automorphism group of the order nn. On
the other hand, for p = 0 he showed that ordx(Z) ≤ 0, thus yielding d ≤ n, with equality
if and only if X is almost homogeneous. For p ≥ 1 we expect that the projective geometry
of the variety of minimal rational tangents Cx imposes serious constraints on holomorphic
vector fields vanishing at x. In general, we have the following conjecture.

Conjecture 1. Let X be a Fano manifold of Picard number 1. Then, at a general point x
on X, there does not exist any nonzero holomorphic vector field vanishing at x to the order
≥ 3.

Conjecture 1 yields the bound on d of the order n3 by counting the number of coefficients
of Taylor expansions of holomorphic vector fields at x. There are many examples where p > 0
and the bound ordx(Z) ≤ 2 is realized. In fact, this is the case for any rational homogeneous
space S of Picard number 1. On the other hand in those cases the dimensions of automorphism
groups are usually much smaller than those given by a simple counting of Taylor coefficients.
This can be explained in part on a common basis, as follows. Let dk(x) denote the dimension
of holomorphic vector fields vanishing at x to the order ≥ k. Then, d2(x) ≤ n for any x on
the n-dimensional rational homogeneous space S. Furthermore, this bound is sharp, and is
realized if and only if S is Hermitian symmetric. Consideration of these examples leads to
the following conjecture on dimensions of automorphism groups.

Conjecture 2. Let X be an n-dimensional Fano manifold of Picard number 1. Then,
dim(Aut(X)) ≤ n2 + 2n, with equality if and only if X is biholomorphic to the projective
space Pn.

We prove Conjecture 1 in the present article under the assumption that the VMRT at
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a general point is nonsingular, irreducible and linearly non-degenerate, assumptions which
are always satisfied whenever the positive generator of the Picard group of X is very ample,
provided that c1(X) > n+2

2
. Furthermore we prove Conjecture 2 under the additional as-

sumption that Cx is linearly normal. Under such assumptions, we establish a bound on the
dimension d2(x) of holomorphic vector fields vanishing to the order ≥ 2 at a given general
point x, which gives the sharp bound d2(x) ≤ n.

Our approach for bounds on vanishing orders consists of studying induced families of
holomorphic vector fields on the VMRT Cx with extra symmetry properties. We consider
then the orbits on Cx under the flow defined by some of these vector fields, and proved for
instance that the existence of a single nonzero holomorphic vector field vanishing at x to the
order ≥ 3 implies that Cx is uniruled by lines. This leads to a contradiction by an inductive
argument consisting of passing to the VMRT C′

[α] at a general point [α] on Cx. A crucial
ingredient for the inductive argument is a proof of the linear non-degeneracy of C′

[α], which is
obtained from a projective-geometric criterion on the integrability of distributions spanned
by VMRTs developed in [HM2].

The result on the vanishing order of vector fields is interwoven with another result of
ours on the prolongation of infinitesimal linear automorphisms of projective varieties. By
the above argument, we will show that the Lie algebra of a smooth linearly non-degenerate
subvariety of the projective space has no second order prolongation unless it is the whole
projective space (Theorem 1.1.2). Moreover, to have first order prolongation, the projective
subvariety must satisfy very special geometric conditions (Theorem 1.1.3). As a by-product,
we get a new geometric proof of the classification of irreducible linear Lie algebras of infinite
type over C (Corollary 1.1.4). This classification was first stated with a sketch of proof by
E. Cartan ([Ca]). Complete proofs appeared half a century later by the theory of filtered
Lie algebras ([SS], [KN2], [GQS], see also [De] for a survey). All these works are essentially
algebraic. Our proof is completely different from these and more geometric.

In [HM2,5] and [Hw1], using results on the theory of geometric structures due to Ochiai
[Oc] and Yamaguchi [Ya] the problem on deformation rigidity is essentially solved whenever
the VMRT at a general point of the central fiber is shown to be isomorphic as a projective
subvariety to that of the model space S. For the deformation of symplectic Grassmannians
or the homogeneous space of type (F4, α1), the latter fact can likewise be established. Here
the problem on deformation rigidity is however much deeper, since there is an additional
property, viz. the non-degeneracy of the Frobenius form on the minimal distributionD, which
determines the complex structure of the homogenous space. We overcome the difficulty by
studying the structure of the Lie algebra of limiting holomorphic vector fields on the central
fiber, by using our results on prolongations and vanishing orders of vector fields. Since the
VMRT at a general point of the central fiber is isomorphic to that of the model, we know
enough about the Lie algebra of limiting holomorphic vector fields to recover C∗-actions on

3



the central fiber. On the central fiber one can define a meromorphic distribution D0 which
is the limit of the minimal invariant holomorphic distributions of general fibers. For the
deformation of symplectic Grassmannians, when the Frobenius form on D0 fails to be non-
degenerate at general points, using C∗-actions we can recover on some smooth modification
µ : X̃0 → X0 the structure of a holomorphic fiber bundle whose fiber is a Grassmannian and
whose base is a symplectic Grassmannian. For the deformation of the homogeneous space of
type (F4, α1), we can recover the structure of a holomorphic fiber bundle whose fiber is 8-
dimensional hyperquadric and whose base is a 7-dimensional hyperquadric. This description
of the central fiber leads to extra symmetry on the central fiber which gives a contradiction
when one considers the isotropy representation at a distinguished point on X0 associated to
the modification µ.

There are three chapters. In the first chapter we prove results on prolongations of
infinitesimal linear automorphisms of projective varieties and holomorphic vector fields for
a general uniruled projective manifold admitting nonsingular, irreducible and linearly non-
degenerate VMRTs. The second chapter is the proof of the rigidity for symplectic Grassman-
nians. In the third section we examine the structure of VMRTs on symplectic Grassmannians
and prove that the VMRT at a general point of the central fiber is isomorphic to that of the
model space as projective subvarieties. In the fourth section, we recall several geometric facts
about the Lie algebra of holomorphic vector fields on symplectic Grassmannians. In the fifth
section, we apply our general results on holomorphic vector fields to the central fiber X0.
Using the explicit structure of VMRTs on X0, we obtain sharp bounds on d2(x) at a general
point x of the central fiber which goes beyond the general result in the first section. This
allows us to prove the existence of standard vector fields on the central fiber whose integrals
give C∗-actions. In the sixth section, we consider the meromorphic distribution D on the cen-
tral fiber which is the limit of minimal invariant distributions on general fibers. We prove that
degeneracy of the Frobenius form of D at general points leads to a contradiction by studying
the structure of X0 arising from the C∗-actions and completes the proof of the rigidity of
symplectic Grassmannians under Kähler deformation. The third chapter, consisting of the
seventh and the eighth sections, is the proof of the rigidity for the homogeneous space of type
(F4, α1). The proof is quite parallel to that of chapter two and in many places the arguments
in chapter 2 work verbatim.

Table of Contents

Chapter I. Prolongation of infinitesimal linear automorphisms of projective varieties

§1 Prolongation of infinitesimal linear automorphisms of projective varieties and vector
fields on uniruled manifolds

§2 Proofs of Theorem 1.1.2 and Theorem 1.1.3
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Chapter I. Prolongation of infinitesimal linear automorphisms of projective varieties

§1 Prolongation of infinitesimal linear automorphisms of projective varieties and

vector fields on uniruled manifolds

(1.1) Let V be a complex vector space of dimension n. Given a Lie subalgebra g ⊂ End(V ),
let g(k) be the space of symmetric multi-linear mappings σ : Sk+1V → V such that for any
fixed v1, . . . , vk ∈ V , the endomorphism

v ∈ V 7→ σ(v, v1, . . . , vk) ∈ V

belongs to g. The space g(k) is called the k-th prolongation of g. The following properties
are immediate.

(i) g(0) = g.
(ii) If g(k) = 0 for some k ≥ 0, then g(k+1) = 0.
(iii) If h ⊂ g ⊂ End(V ) is a Lie subalgebra, then h(k) ⊂ g(k) for each k ≥ 0.

Let Y ⊂ PV be a projective subvariety. Denote by Ỹ ⊂ V the affine cone of Y . By a
slight abuse of terminology, the space of endomorphisms

aut(Ỹ ) := {g ∈ End(V ) : exp(tg)(Ỹ ) ⊂ Ỹ , t ∈ C}

where exp(tg) denotes the 1-parameter group of linear automorphisms of V , will be called
the Lie algebra of infinitesimal linear automorphisms of Ỹ . This is an algebraic Lie
subalgebra of End(V ) in the sense that it is the tangent algebra of an algebraic subgroup of
GL(V ) (cf. [OV] p.123). Elements of aut(Ỹ ) induces vector fields on Y . In this regard, the
following elementary fact will be used frequently.

Lemma 1.1.1. For A ∈ End(V ) and a subvariety Y ⊂ PV , A ∈ aut(Ỹ ) if and only if at
every smooth point y ∈ Y the vector A(y) is contained in the affine tangent space T̃y(Ỹ ).

The main results of Chapter I are the following two theorems. Recall that Y ⊂ PV is
non-degenerate if it is not contained in any hyperplane and is linearly normal ifH0(Y,O(1)) =
V ∗ where O(1) is the hyperplane line bundle.
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Theorem 1.1.2. Let Y ⊂ PV be an irreducible, smooth, non-degenerate subvariety. Then
aut(Ỹ )(2) = 0, unless Y = PV .

Theorem 1.1.3. Let Y ⊂ PV be an irreducible, smooth, non-degenerate, and linearly normal
subvariety different from PV . Then the following holds.

(i) There exists a natural injection aut(Ỹ )(1) ⊂ V ∗, implying dim aut(Ỹ )(1) ≤ n = dimV.

(ii) If aut(Ỹ )(1) 6= 0, then there exists a point yo ∈ Y such that Y is covered by conics
passing through yo.

(iii) Suppose g ⊂ aut(Ỹ ) is an algebraic subalgebra with g(1) 6= 0. Then for a general
point y ∈ Y , there exists an element Ey ∈ g which generates a C∗-action on Y with an
isolated fixed point at y such that the isotropy action on Ty(Y ) is the scalar multiplication by
C∗.

The proofs of Theorem 1.1.2 and Theorem 1.1.3 will be given in Section 2. Let us state
two immediate corollaries. The first one is the classification of irreducible linear Lie algebras
of infinite type over C ([Ca], [De], [GQS], [KN2], [SS]).

Corollary 1.1.4. Let g ⊂ gl(n) be a Lie subalgebra which acts irreducibly on Cn. Then
g(2) = 0 unless g acts transitively on Pn−1, i.e., unless g = gl(n), sl(n), csp(m) or sp(m),
where in the last two cases n = 2m.

Proof. In this case, g is reductive. Let Y ⊂ Pn−1 be the highest weight variety of the
irreducible representation. Then g acts transitively on Y and g ⊂ aut(Ỹ ). If g(2) 6= 0, then
aut(Ỹ )(2) 6= 0. Thus by Theorem 1.1.2, Y = Pn−1 and g acts transitively on Pn−1. It is
well-known that only the four listed Lie algebras act transitively on Pn−1. �

The next corollary is a weak form of a result of S. Kobayashi and T. Nagano ([KN1]).

Corollary 1.1.5. Let g ⊂ gl(n) be a Lie subalgebra which acts irreducibly on Cn. Suppose
g(2) = 0. Then g(1) = 0 unless the image of g in sl(n) is isomorphic to the semi-simple part
of the isotropy representation of an irreducible Hermitian symmetric space of compact type
of rank ≥ 2.

Proof. As in Corollary 1.1.4, g is reductive and g ⊂ aut(Ỹ ) for the highest weight
variety Y . Moreover, g is an algebraic Lie subalgebra. The highest weight variety Y ⊂
Pn−1 is a homogeneous variety satisfying the assumptions in Theorem 1.1.3. By Theorem
1.1.3 (iii), Y is a symmetric complex manifold in the sense of A. Borel ([Bo1]). Thus Y
is a Hermitian symmetric space because a homogeneous symmetric complex manifold is a
Hermitian symmetric space ([Bo1] Theorem 2.4.). By Theorem 1.1.3 (ii), Y must be either a
Hermitian symmetric space of rank 2 or a second Veronese embedding of the projective space.
By the polydisc theorem as in Section 3 of [HM1], this implies that Y is the highest weight
variety associated with the isotropy representation of an irreducible Hermitian symmetric
space of rank ≥ 2. Since exp(g) contains all the symmetric involutions of the Hermitian
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symmetric space Y by Theorem 1.1.3 (iii), the image of g in sl(n) agrees with the image of
the full Lie algebra aut(Ỹ ) in sl(n), which is exactly the semi-simple part of the isotropy
representation associated to an irreducible Hermitian symmetric space of rank ≥ 2. �

(1.2) Now let us see how prolongations of infinitesimal linear automorphisms of projective
varieties arise in geometric problems. Let X be an n-dimensional complex manifold and
C ⊂ PT (X) be a subvariety in the projectivized tangent space of X which is projective and
flat over X . For a point x ∈ X , let Cx be the fiber of C over x. For simplicity, let us assume
that Cx is irreducible and reduced. Let f be the Lie algebra of all germs of holomorphic
vector fields at x which preserves C in the sense that the germ of the 1-parameter subgroup of
biholomorphisms at x generated by an element of f preserves C. The Lie algebra f is naturally
filtered by the vanishing orders of vector fields at x. More precisely, let fl be the subspace
of f consisting of vector fields which vanishes at x to the order ≥ l + 1 where l is an integer
≥ −1. Then fl is a Lie subalgebra of f and [fl, fm] ⊂ fl+m. By definition, f−1 = f.

Proposition 1.2.1. For each k ≥ 0, regard the quotient space fk/fk+1 as a subspace of
Sk+1T ∗

x (X) ⊗ Tx(X) = Hom(Sk+1Tx(X), Tx(X)) by taking the leading terms of the Taylor
expansion of the vector fields at x. Then

fk/fk+1 ⊂ aut(C̃x)(k),

the k-th prolongation of the Lie algebra of infinitesimal linear automorphisms of the affine
cone of the projective variety Cx.

Proof. For a vector field Z on X vanishing to order ≥ k + 1 at x, its (k + 1)-jet
defines an element jk+1

x (Z) of Sk+1T ∗
x (X) ⊗ Tx(X). This defines the inclusion fk/fk+1 ⊂

Sk+1T ∗
x (X) ⊗ Tx(X). For v1, . . . , vk ∈ Tx(X), the endomorphism

v ∈ Tx(X) → jk+1
x (Z)(v, v1, . . . , vk) ∈ Tx(X)

can be defined using the lift of Z to PT (X) as follows. The vector field Z ∈ fk induces a
vector field Z ′ on PT (X) which vanishes along PTx(X) to the order ≥ k. The k-th order
term of the Taylor expansion of Z ′ at a point α of PTx(X) defines jk

α(Z ′), the k-jet of Z ′ at
α, which is an element of

SkT ∗
α(PT (X)) ⊗ Tα(PT (X)).

Since Z ′ vanishes to the order ≥ k along PTx(X), the k-jet jk
α(Z ′) belongs to

SkN∗
α(PTx(X) ⊂ PT (X)) ⊗ Tα(PT (X))

where N∗(PTx(X) ⊂ PT (X)) denotes the conormal bundle of PTx(X) in PT (X). Under the
projection π : PT (X) → X , any fiber of this conormal bundle can be canonically identified
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with T ∗
x (X). Note that jk

α(Z ′) is sent to zero when composed with the natural projection
dπ : Tα(PT (X)) → Tx(X) because it comes from Z which vanishes to the order ≥ k+ 1 at x.
Thus the k-jet jk(Z ′) of Z ′ along PTx(X) defines an element of

H0(PTx(X), Skπ∗T ∗
x (X) ⊗ T (PTx(X))) = SkT ∗

x (X) ⊗ End(Tx(X)).

By a direct calculation, one can check that for v1, . . . , vk ∈ Tx(X),

jk+1
x (Z)(v, v1, . . . , vk) = jk(Z ′)(v1, . . . , vk)(v) ∈ Tx(X).

Now by the assumption that Z preserves C, the induced vector field Z ′ on PT (X) must be
tangent to C. Thus jk(Z ′) restricted to Cx defines an element of H0(Cx, S

kπ∗T ∗
x (X)⊗T (Cx)).

It follows that

jk(Z ′)(v1, . . . , vk)(v) ∈ T̃v(C̃x) for v ∈ C̃x

which implies jk+1
x (Z) ∈ aut(C̃x)(k). �

(1.3) An important example of the subvariety C ⊂ PT (X) in Proposition 1.2.1 arises in
the study of rational curves on uniruled varieties in the following manner. Let X be an
n-dimensional uniruled projective manifold. Let K be an irreducible component of the nor-
malized Chow space of minimal rational curves with respect to a choice of polarization on
X , in the sense of [HM3]. We call K a minimal rational component. A general element
[C] ∈ K corresponds to an immersed standard minimal rational curve, i.e., for the normal-
ization f : P1 → C we have f∗TX

∼= O(2)⊕O(1)p ⊕Oq , 1+p+ q = n for some 0 ≤ p ≤ n−1.
For a general point x ∈ X , the normalized Chow space Kx of members of K passing through
x is a smooth projective variety. Let τx : Kx 99K PTx(X) be the rational map sending a
member of Kx to its tangent direction at x. This rational map is in fact a finite morphism
([Ke, Theorem 3.4]) over its image Cx. We call τx the tangent morphism at x and Cx the
variety of minimal rational tangents ([HM3]). Consider the variety C ⊂ PT (X) obtained
by taking the union of Cx’s. Then any vector field on X must preserve C. Thus by Proposition
1.2.1, Theorem 1.1.2 immediately gives the following result.

Theorem 1.3.1. Let X be an n-dimensional uniruled projective manifold admitting a min-
imal rational component whose associated variety of minimal rational tangents Cx ⊂ PTx(X)
at a general point x is p-dimensional; 0 < p < n − 1; irreducible, nonsingular and non-
degenerate. Then, there does not exist any nonzero holomorphic vector field vanishing at the
general point x to the order ≥ 3.

This is a special case of Conjecture 1 in the introduction. The next Theorem is a special
case of Conjecture 2.
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Theorem 1.3.2. If in Theorem 1.3.1 we impose the further hypothesis that Cx ⊂ PTx(X) is
linearly normal, then dim(Aut(X)) < n2 + 2n.

Proof. Since Cx 6= PTx(X) by p < n− 1, dim(aut(C̃x)) < n2. Thus

dim(Aut(X)) ≤ dim(X) + dim(aut(C̃x)) + dim(aut(C̃x)(1)) < n2 + 2n

where we used dim(aut(C̃x)(1)) ≤ n in Theorem 1.1.3. �
Theorems 1.3.1 and 1.3.2 are meant to give an indication that the geometry of the variety

of minimal rational tangents at a general point is relevant to the Conjectures 1 and 2. Their
statements and proofs are formulated with the aim to have an immediate link to the question
of deformation rigidity on symplectic Grassmannians and the homogeneous space of type
(F4, α1) to be explained in Section 5 and Section 8. There are nonetheless interesting classes
of Fano manifolds of Picard number 1 satisfying the hypothesis of the theorems, leading to

Corollary 1.3.3. Let X be an n-dimensional Fano manifold of Picard number 1, and denote
by O(1) the positive generator of the Picard group. Suppose O(1) is very ample and c1(X) >
n+2

2 . Then, at a general point of X there does not exist any holomorphic vector field vanishing
to the order ≥ 3. When the assumption on the first Chern class is strengthened to c1(X) >
2(n+2)

3 , then we have dim(Aut(X)) ≤ n2 +2n, with equality if and only if X is biholomorphic
to the projective space Pn.

Proof. If X is biholomorphic to the projective space Pn, then any holomorphic vector field
Z vanishing at some point x ∈ X to the order ≥ 3 must vanish identically on any line
passing through x, i.e., Z must vanish identically. Furthermore, we have dim(Aut(Pn)) =
dim(sl(n + 1)) = n2 + 2n. It suffices therefore to consider X with c1(X) < n + 1. There
exists a minimal rational component K whose members [C] satisfy K−1

X ·C ≤ n+ 1 ([HM3]).
Identify X as a projective submanifold by means of the projective embedding defined by
O(1). Whenever c1(X) > n+1

2 , C is of degree 1 and hence a line. At a general point x ∈ X ,
any line passing through x is standard, and since a line through x is completely determined
by its tangent at x, the tangent morphism τx : Kx → Cx ⊂ PTx at x is an embedding.
We have p := dim(Cx) = c1(X) − 2 > n−3

2
. Any two irreducible components of Cx must

intersect whenever 2p ≥ dimPTx = n− 1. This is the case if we impose the slightly stronger
hypothesis that c1(X) > n+2

2 , as we do in the first half of Corollary 1.3.3, so that p > n−2
2

and 2p ≥ n−1. From the smoothness of Cx it follows that Cx is irreducible. By [HM3, 1.3.2],
Cx ⊂ PTx must be linearly non-degenerate, otherwise the meromorphic distribution W on X
spanned at general points of X must be integrable, contradicting with the assumption that
X is of Picard number 1. Thus, the hypothesis of Theorem 1.3.1 is satisfied and we conclude
the first half of Corollary 1.3.3.

For the second half under the stronger hypothesis c1(X) > 2(n+2)
3 , we have p = dim(Cx) >

2(n−1)
3 . By Zak’s solution to the Hartshorne Conjecture on linear normality [Za, Corollary
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2.17, p.48], Cx ⊂ PTx is linearly normal, so that dim(Aut(X)) < n2 + 2n, by Theorem 1.3.2,
as desired. �

Before stating next Corollary, let us recall a few facts. A rational curve C on a projective
manifold Y is said to be free if the restriction of the tangent bundle T (Y ) to C is semi-positive.
For any family of rational curves sweeping out an open subset of Y , a general member of
the family is a free rational curve. Deformations of a free rational curve C cover an open
neighborhood of C. Here and throughout the paper, an open set refers to the complex
topology, unless mentioned otherwise.

Associated with a minimal rational component K, we have the universal family mor-
phisms ρ : U → K and µ : U → X . A ruling on X by members of K is a subvariety K′

of dimension n − 1 in K with the associated universal family morphisms ρ′ : U ′ → K′ and
µ′ : U ′ → X , such that µ′ is birational.

Lemma 1.3.4. If there exists a ruling on X by members of K, then Cx at a general point x
is irreducible.

Proof. Let U ′ → K′ be a ruling by members of K. The image of U ′ in C gives a section
of the projection C → X over a Zariski open subset of X . Thus Cx is irreducible for a general
point x. �

The following Corollary will be used in Section 2.

Corollary 1.3.5. Let X ⊂ PN be a projective submanifold of dimension n. Assume that X
has a minimal rational component K consisting of lines of PN lying on X such that

(i) X is rationally 2-connected by members of K, in other words, any two points of X
can be joined by a connected union of two lines belonging to K.

(ii) X has a ruling by lines belonging to K.

Then at a general point x ∈ X, the variety of minimal rational tangents Cx defined by K
is smooth irreducible and non-degenerate. In particular, there does not exist any holomorphic
vector field vanishing at x to the order ≥ 3.

Proof. On a submanifold of the projective space uniruled by lines, the variety of minimal
rational tangents at a general point is always nonsingular because the tangent morphism τx

is an embedding as already noticed in the proof of Corollary 1.3.3. By the assumption (ii)
and Lemma 1.3.4., Cx at general x is irreducible. It suffices to prove the non-degeneracy of
Cx ⊂ PTx(X).

We will first establish the estimate dim(Cx) ≥ n−2
2

. For x ∈ X general, any point
y ∈ X can be joined to x by no more than two lines belonging to K. We may assume that
dim(Cy) = dim(Cx) := p for any y ∈ X sufficiently close to x. Let V1 ⊂ X be the union of
all lines belonging to K passing through x. By assumption on X , there exists a subvariety
S ⊂ V1 such that the union of lines issuing from points on S cover X . A general choice C0 of
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a line issuing from S is then free and deformations of C0 sweep out an open subset in X ([Kl,
II.3]). Let Vo

1 ⊂ V1 be any Zariski-dense open subset and Vo
2 be the union of lines issuing

from Vo
1 . From the freeness of C0 there are deformations of C0 arbitrarily close to C0, which

intersect Vo
1 . It follows that C0 is contained in the closure V2 of Vo

2 . Since C0 is a general line
issuing from S,V2 = X . We have dim(V1) = p+ 1 and dim(V2) ≤ 2(p+ 1). From V2 = X it
follows that 2(p+ 1) ≥ dim(X) = n, i.e., p ≥ n−2

2 .
Suppose Cz is degenerate for z general. Let W be the proper meromorphic distribution

of rank < n on X defined by

Wz := the linear span of Cz in Tz(X)

at general z. If W is integrable the varieties V1 and V2 constructed by adjoining members of K
starting with x ∈ X will have open subsets lying inside the leaf of the integrable distribution
through x, provided that we start with x outside the singularity set of W . But this violates
the fact that V2 = X . We have thus proven that W is not integrable.

On the other hand, since Cz ⊂ PWz is a nonsingular subvariety of dimension p in the
projective space PWz of dimension ≤ n − 2. By the estimate p ≥ n−2

2 , noting that Cz

is nonsingular and irreducible, [HM3, 1.3.2] applies to show that W is integrable, a plain
contradiction. In other words, W cannot be a proper distribution, i.e., Cz is linearly non-
degenerate, as desired. �

§2. Proofs of Theorem 1.1.2 and Theorem 1.1.3

(2.1) For the proof of Theorem 1.1.2. and Theorem 1.1.3, we need to relate the prolongation
of aut(Ỹ ) to the geometry of Y . The following observation is crucial. For A ∈ S2V ∗⊗V , the
evaluation of A at two vectors α, β ∈ V will be denoted by Aαβ ∈ V .

Proposition 2.1.1. Let Y ⊂ PV, Y 6= PV, be an irreducible smooth non-degenerate proper
subvariety. For any A ∈ aut(Ỹ )(1) and any α ∈ Ỹ , Aαα ∈ Cα.

For the proof of Proposition 2.1.1, we will make use of Zak’s Tangency Theorem for
nonsingular projective subvarieties, as follows.

Lemma 2.1.2 [Za]. Let Y ⊂ PV be a nonsingular and nonlinear projective subvariety.
Then the Gauss map on Y is a birational map onto its image. In particular, the kernel of the
projective second fundamental form σ on Y is zero at a general point of Y and the intersection
of all projective tangent spaces of Y is empty.

Proof of Proposition 2.1.1. By Lemma 1.1.1, in the notations of Proposition 2.1.1 for the
linear homomorphism A : S2V → V , for any β ∈ V and any nonzero α ∈ Ỹ we have
Aαβ ∈ T̃α(Ỹ ) =: Pα. In particular if β is itself a nonzero vector in Ỹ , we have from the
symmetry of A the property that Aαβ ∈ Pα ∩ Pβ. Fixing α, consider the endomorphism
Aα ∈ End(V ) defined by Aα(β) = Aαβ. Aα corresponds to a linear holomorphic vector
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field on V to be denoted by the same symbol. Denote by ∇ covariant differentiation on the
Euclidean space V with respect to the flat connection. From the property that Aαη ∈ Pα

for any η ∈ V , the vector field Aα has value in Pα at every point of V . It follows that the
covariant derivative ∇ξAα of the vector field Aα with respect to any tangent vector ξ ∈ Pα

gives an element in Pα. Since the restriction of Aα to Ỹ − {0} gives a holomorphic vector
field on Ỹ − {0} it follows that σ(ξ;Aα(α)) = 0 for the Euclidean second fundamental form
σ, for any ξ ∈ Pα. In particular, Aαα = Aα(α) lies in the kernel of the second fundamental
form. For a general point [α] ∈ Y from Lemma 2.1.2 we must have Aαα ∈ Cα. The same is
true for any [α] ∈ Y by taking limits, as desired. �

Proposition 2.1.3. Let Y ⊂ PV, Y 6= PV, be an irreducible smooth non-degenerate subvari-
ety. Suppose for an A ∈ aut(Ỹ )(1), Aαα = 0 for any α ∈ Ỹ . Then A ≡ 0.

The proofs of Theorem 1.1.2 and Proposition 2.1.3 will be given simultaneously by in-
duction on the dimension n in the following two steps.

Step 1: Proposition 2.1.3 for dimV < n and Corollary 1.3.5 for dimX < n implies Proposi-
tion 2.1.3 for dimV = n.
Step 2: Proposition 2.1.3. for dimV = n implies Theorem 1.1.2 for dimension dimV = n

Note that both Theorem 1.1.2 and Proposition 2.1.3 are obvious when dimV ≤ 2. Since
Corollary 1.3.5 for dimX = n was proved using Theorem 1.1.2 for dimV = n, establishing
these two steps completes the proof.

(2.2) To establish the two steps explained in (2.1), we need two lemmas.

Lemma 2.2.1. Under the hypothesis of Proposition 2.1.3, suppose there exists a non-zero
A ∈ aut(Ỹ )(1) such that Aαα = 0 for any α ∈ Ỹ . Then, Y has a minimal rational component
K consisting of lines such that Y is rationally 2-connected by members of K and Y has a
ruling by members of K.

Proof. For any η ∈ V consider the linear endomorphism Aη : V → V given by Aη(ζ) = Aηζ .
We sometimes identify Aη as equivalently a linear holomorphic vector field on V . For any
γ ∈ Ỹ we have Aγγ = 0. For a nonzero α ∈ Ỹ and any holomorphic arc {α(t) ∈ Ỹ : α(0) = α},
we have by expansion and symmetry Aαξ = 0, where ξ = α′(0). It follows that Aαξ = 0 for
any ξ ∈ Pα := T̃α(Ỹ ); i.e., Aα|Pα

≡ 0. On the other hand, since Aα(η) = Aη(α) ∈ Pα, we
have Im(Aα) ⊂ Pα, so that Im(Aα) ⊂ Pα ⊂ Ker(Aα). In particular, A2

α ≡ 0. Consider the
1-parameter group of linear transformations {Φα,t := exp(tAα), t ∈ C} on V . From A2

α ≡ 0
we deduce that

Φα,t(η) = η + tAα(η) = η + tAαη.

Thus the closures of the orbits of the vector field on Y induced by Aα are lines. Let Ko be
the lines on Y defined by general orbits of Aα as α varies over general points of Y . Clearly
Ko is an irreducible family. Let K be a minimal rational component containing Ko.
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For a general α, the orbits of Aα defines a ruling on X by curves belonging to K. Let us
show that X is rationally 2-connected by members of K. Since A 6≡ 0 and Y ⊂ PV is non-
degenerate we may now pick a pair of distinct points [α], [β] ∈ Y such that β /∈ Pα, α /∈ Pβ

and Aαβ 6= 0. Then, Φα,t(β) = β+ tAαβ and Φβ,t(α) = α+ tAβα; Aβα = Aαβ . Since α /∈ Pβ ,
β /∈ Pα and Aαβ ∈ Pα ∩Pβ , Aαβ is neither proportional to α nor to β, and P(Cβ + CAαβ) is
a line on Y joining [β] to [γ]; γ := Aαβ. Likewise P(Cα+ CAβα) is a line on Y joining [α] to
[γ]. Since the preceding procedure applies to any general pair of distinct points [α], [β] ∈ Y ,
we have proven that Y is rationally 2-connected by lines belonging to K. �

In order to do induction we need to examine varieties of minimal rational tangents on
Y for the Chow space K of lines lying on Y . This choice of K will be implicit in the sequel.
Under the assumption of Lemma 2.2.1 for the induction argument we need to produce, at
a general point [α] ∈ Y , a holomorphic vector field on Y vanishing at [α] to the order ≥ 2
whose 2-jet enjoys similar properties as in Lemma 2.2.1. We have

Lemma 2.2.2. Under the hypothesis of Lemma 2.2.1, let K be a minimal rational component
with the properties mentioned in Lemma 2.2.1 and C[α] be the variety of minimal rational
tangents with respect to K at general [α] ∈ Y . Consider the linear endomorphism Aα : V → V

defined by Aα(η) = Aαη. Denote by Z the holomorphic vector field on PV induced by Aα

and write Z0 for the restriction Z|Y , which is a holomorphic vector field on Y . Then, Z0

vanishes at [α] to the order ≥ 2. Moreover, if we denote by B : S2T[α](Y ) → T[α](Y ) the
homomorphism corresponding to the second order term in the Taylor expansion of Z0 at [α],
then Bµµ = 0 whenever [µ] ∈ C[α].

Proof. The holomorphic vector field Z vanishes at [α] since Aα(α) = Aαα = 0. Z0 = Z|Y
vanishes to the order ≥ 2 at [α] because Aα(ξ) = Aαξ = 0 for each ξ ∈ Pα as in the proof of
Lemma 2.2.1. Finally, for B : S2T[α](Y ) → T[α](Y ) corresponding to the second order term
of Z0 at [α], for µ ∈ T[α](Y ), Bµµ = 0 if there exists a local holomorphic curve Γ on Y passing
through [α], tangent to µ, such that Z0|Γ vanishes at [α] to the order ≥ 3. If [µ] ∈ C[α], then
there is a line L := P(Cα+Cξ), µ ≡ ξ mod α such that L ⊂ Y . In this case we have Aαβ = 0
for any [β] ∈ L, so that we can take Γ to be the germ of L at [α] to have even Z0|Γ ≡ 0. The
proof of Lemma 2.2.2 is complete. �

We are ready for the proof of Theorem 1.1.2 by establishing Step 1 and Step 2 stated in
(2.1).

Proof of Step 1. Let us prove Proposition 2.1.3 for dimV = n. Under the assumption
of Lemma 2.2.1, C[α] for K at general point α ∈ Ỹ is smooth irreducible and non-degenerate
by using Corollary 1.3.5 for dimension dimY < dimV = n. On the other hand, A gives rise
to a holomorphic vector field Z0 on Y such that, in the notation of the lemma, Bµµ = 0 for
any µ ∈ C[α]. Since B belongs to aut(C̃[α])(1), by Proposition 2.1.3 for dimension < n, B ≡ 0.
This means that Z0 vanishes to the order ≥ 3 at [α]. By Corollary 1.3.5 for dimension < n,
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Z0 ≡ 0. Recall that Z0 = Z|Y for a global vector field Z ∈ Γ(PV, TPV ) defined by A. Z0 ≡ 0
if and only if Aαη = 0 for η such that [η] ∈ Y . Since Y ⊂ PV is linearly non-degenerate,
we have Aαη = 0 for any η ∈ V . Varying α and using linear non-degeneracy once more we
conclude that A ≡ 0, a contradiction to the assumption that A is non-zero. �

Proof of Step 2. Let A : S3V → V be an element of aut(Ỹ )(2). Fixing γ ∈ Ỹ − {0} the
linear homomorphism B : S2V → V defined by Bµν := Aµνγ , µ, ν ∈ V belongs to aut(Ỹ )(1).
It follows from Proposition 2.1.1 that for each α ∈ Ỹ , we have Bαα ∈ Cα. Thus, for any
nonzero γ ∈ Ỹ , we have Aααγ ∈ Cα ∩ Pγ . Given a nonzero α ∈ Ỹ , if Aααγ 6= 0 for some
γ, then [Aααγ ] = [α] must belong to Pγ for any nonzero γ ∈ Ỹ , violating Zak’s Theorem
applied to the nonsingular projective subvariety Y ⊂ PV . We conclude therefore that for any
α, γ ∈ Ỹ , we have Aααγ = 0. Fixing now again γ we conclude that Bαα = 0 for any α ∈ Ỹ .
By Proposition 2.1.3, B ≡ 0. As the choice of γ ∈ Ỹ is arbitrary, A ≡ 0 too. �

(2.3) We now turn to the proof of Theorem 1.1.3. A direct consequence of Proposition 2.1.1
and Proposition 2.1.3 is the following.

Proposition 2.3.1. Suppose Y ⊂ PV is irreducible smooth non-degenerate and linearly
normal. For any non-zero A ∈ aut(Ỹ )(1), there exists a unique non-zero linear functional
λA ∈ V ∗ such that Aαα =< λA, α > α for any α ∈ Ỹ .

We start the proof of Theorem 1.1.3 with two Lemmas.

Lemma 2.3.2. Let Y ⊂ PV, Y 6= PV, be a Veronese embedding of a projective space. If
aut(Ỹ )(1) 6= 0, then Y is the second Veronese embedding.

Proof. If A ∈ aut(Ỹ )(1), Aαβ ∈ Pα ∩ Pβ for α, β ∈ Ỹ . Thus Lemma 2.3.2 follows
from the fact that the tangent spaces at two distinct points on the Veronese embedding have
nonempty intersection only for the second Veronese embedding. In fact, when V = SkW for
a (p+1)-dimensional vector space W and Y ⊂ PV is the Veronese variety of pure symmetric
tensors, a tangent line at [wk] ∈ Y for w ∈W is of the form [Cwk +Cwk−1u] for some u ∈W .
If tangent lines at two different points [wk

1 ] 6= [wk
2 ] have a common point,

wk
1 + wk−1

1 u1 = awk
2 + wk−1

2 u2

wk−1
1 (w1 + u1) = wk−1

2 (aw2 + u2)

for some a ∈ C and u1, u2 ∈W . This is possible only when k = 2. �

Lemma 2.3.3. Suppose that Y ⊂ PV, Y 6= PV, is a smooth irreducible non-degenerate lin-
early normal subvariety different from the second Veronese embedding of a projective space.
Let A ∈ aut(Ỹ )(1). Suppose for some α ∈ V , there exists an ample hypersurface H ⊂ Y such
that the endomorphism Aα ∈ End(V ) annihilates vectors contained in H̃, i.e.,

Aα(e) = 0 for any e ∈ Ẽ.
14



Then Aα = 0.

Proof. Otherwise the vector field on Y generated by Aα vanishes on an ample divisor.
This implies Y is a projective space by [MS] or [Wa], and must be the second Veronese
embedding by Lemma 2.3.2. �
Proof of Theorem 1.1.3. (i) This is immediate from Proposition 2.3.1.

(ii) For A ∈ aut(Ỹ )(1), we have λ ∈ V ∗ such that Aαα =< λ, α > α for any α ∈ Ỹ by
Proposition 2.3.1. Let H ⊂ Y be the zero divisor of λ on Y so that Aαα = 0 for any α ∈ H̃.
When α is a smooth point of H̃, we have Aαγ = 0 for any γ ∈ T̃α(H̃) because for any curve
α+ tγ + · · · on H̃ through α where (· · · ) stands for terms involving t2 or higher factor,

0 = Aα+tγ+··· ,α+tγ+··· = 2tAαγ + · · · .

We may assume that there exists a smooth point α of H̃ such that Aα 6= 0. In fact, if Aαη = 0
for all α ∈ H̃ and all η ∈ Ỹ , then for a general η ∈ Ỹ with Aη 6= 0, the endomorphism Aη

annihilates the vectors contained in H̃. Thus Y must be the second Veronese embedding of
a projective space by Lemma 2.3.3. The second Veronese embedding of a projective space
clearly satisfies (ii).

Regarding Aα as an endomorphism of V preserving Y , we know Aα(V ) ⊂ Pα and
Aα(T̃α(H̃)) = 0. We claim that Aα is a nilpotent endomorphism of V . Assuming this claim
for the time being, let us finish the proof of (ii). By the assumption Aα cannot have an
eigenvector in the 1-dimensional space Pα/T̃α(H̃) and so Aα(Pα) ⊂ T̃α(H̃). The subspace
Iα := A2

α(V ) = Aα(Pα) is contained in T̃α(H̃) and dim Iα ≤ 1. Thus for any general η ∈ Y ,
A2

α(η) ∈ Iα and A3
α(η) = 0. It follows that

exp(tAα)(η) = η + tAαη +
t2

2
A2

α(η).

So the orbit of η ∈ Y under the C-action induced by Aα is a conic curve whose limit is the
point [Iα] ∈ Y .

It remains to prove that Aα is nilpotent. Assuming the contrary, let s 6= 0 be the semi-
simple part of the Jordan decomposition of Aα. Then s ∈ aut(Ỹ ) because aut(Ỹ ) is the
Lie algebra of an algebraic subgroup of GL(V ) (e.g. [OV] p.127). Moreover s(V ) ⊂ Pα and
s(T̃α(H̃)) = 0. Thus there must be an (n − 1)-dimensional eigenspace of s with eigenvalue
0 and a 1-dimensional eigenspace B of s with non-zero eigenvalue. Then the orbits of the
1-parameter subgroup {exp(λs), λ ∈ C} on PV must be lines passing through the point
[B] ∈ PV and an invariant subvariety must be a cone with vertex at [B]. But Y is an
invariant subvariety which is smooth and non-degenerate, a contradiction.

(iii) Given A ∈ g(1), let λ ∈ V ∗ be as in Proposition 2.3.1. For α′ ∈ Pα,

< λ, α+ tα′ + · · · > (α+ tα′ + · · · ) = Aα+tα′+··· ,α+tα′+··· = Aαα + 2tAαα′ + · · ·
15



where (· · · ) stands for terms containing t2-factor. It follows that

< λ, α > α′+ < λ, α′ > α = 2Aαα′ .

This equation, together with the fact that α is an eigenvector of Aα with the eigenvalue
< λ, α >, implies that if we choose α outside the zero locus of λ, Aα acts on the tangent
space

T[α](Y ) = Hom(Cα, Pα/Cα)

as the scalar multiplication by 1
2 . In particular, the semi-simple part s of Aα under the Jordan

decomposition is non-zero and s acts on Tα(Y ) as the scalar multiplication by 1
2 . Since g is

an algebraic Lie subalgebra, s ∈ g. The C∗-action {exp(2ts), t ∈ C∗} on Y has an isolated
fixed point [α] and the isotropy representation on T[α](Y ) is the scalar multiplication by t.
Putting y = [α] and Ey = 2s, we have (iii) �

Chapter II. Rigidity of symplectic Grassmannians

§3. Varieties of minimal rational tangents on symplectic Grassmannians and the

central fiber

(3.1) Let V be a 2`-dimensional complex vector space with a symplectic form ω. Fix an integer
k, 1 < k < ` and write S = Sk,` for the variety of all k-dimensional isotropic subspaces of V .
The aim of Chapter II is the proof of the following rigidity theorem.

Theorem 3.1.1. Let π : X → ∆ be a smooth and projective morphism from a complex
manifold X to the unit disc ∆. Suppose for any t ∈ ∆ − {0}, the fiber Xt := π−1(t) is
biholomorphic to Sk,`. Then the central fiber X0 is also biholomorphic to Sk,`.

In Section 3, we will study the variety of minimal rational tangents of S and X0 at a
general point.

(3.2) We can view S as a subvariety of the Grassmannian G(k, V ) of k-dimensional sub-
spaces of V . Fix a k-dimensional isotropic subspace W ⊂ V and denote by [W ] ∈ S the
corresponding point of S. The tangent space of G(k, V ) at [W ] is naturally isomorphic to
Hom(W,V/W ). By the inclusion S ⊂ G(k, V ), we can see that the tangent space of S at
[W ] is

T[W ](S) = {h ∈ Hom(W,V/W ) : ∀w1, w2 ∈W,ω(h(w1), w2) + ω(w1, h(w2)) = 0}.

Let
W⊥ := {v ∈ V : ω(v, w) = 0 for all w ∈W}

which is a subspace of dimension 2`− k containing W . Let

ψ : W ∗ ⊗ (V/W ) →W ∗ ⊗W ∗

16



be the projection defined by the composition of V/W → V/W⊥ with the isomorphism
V/W⊥ ∼= W ∗ induced by ω. Then under the identification Hom(W,V/W ) = W ∗ ⊗ (V/W ),

T[W ](S) = ψ−1(S2W ∗) ⊂W ∗ ⊗ (V/W ).

There is a natural subspace D[W ] of the tangent space ψ−1(S2W ∗) defined by

D[W ] := W ∗ ⊗ (W⊥/W ) = Ker(ψ).

This defines a natural distributionD on S of rank k(2`−2k). The quotient space T[W ](S)/D[W ]

can be naturally identified with S2W ∗. It follows that the dimension of S is

dimD[W ] + dimS2W ∗ =
1
2
k(4`− 3k + 1).

Minimal rational curves of S are precisely lines of G(k, V ) lying on S. Recall that the
variety of minimal rational tangents of G(k, V ) at [W ] consists of decomposable tensors in
T[W ](G(k, V )) = W ∗ ⊗ (V/W ). Thus the variety of minimal rational tangents of Sk,` ⊂
G(k, V ) corresponds to the set of decomposable tensors in T[W ](S) ⊂ W ∗ ⊗ (V/W ). From
T[W ](S) = ψ−1(S2W ∗), a simple calculation shows that the affine cone of the variety of
minimal rational tangents of S is

C̃[W ] = {λ⊗ µ ∈W ∗ ⊗ (V/W ) : µ[ ∈ Cλ}

where v[ ∈ W ∗ for v ∈ V is defined by v[(w) := ω(v, w) for all w ∈ V . The intersection
C[W ] ∩ PD[W ] will be denoted by E[W ]. Its affine cone is

Ẽ[W ] = {λ⊗ µ ∈W ∗ ⊗ (W⊥/W )}.

Thus E[W ] is isomorphic to PW ∗ × P(W⊥/W ).

Proposition 3.2.1. The variety of minimal rational tangents C[W ] at [W ] ∈ S = Sk,l is
isomorphic to the projectivization of the vector bundle O(−1)2l−2k⊕O(−2) on PW ∗ embedded
by the complete linear system associated to the dual tautological bundle of the projectivization.
In particular, C[W ] ⊂ PT[W ](S) is non-degenerate and linearly normal.

Proof. Under the projection of λ⊗ µ to λ, E[W ] is a trivial P2l−2k−1-bundle over Pk−1
∼=

PW ∗ and C[W ] is a P2l−2k-bundle over Pk−1
∼= PW ∗. Let F be the vector bundle on PW ∗ such

that PF = C[W ] and F has a trivial subbundle isomorphic to (W⊥/W )×PW ∗ corresponding
to E[W ]. From the above description of C[W ], the vector bundle modulo the trivial subbundle
is isomorphic to the tautological line bundle of PW ∗. Hence F ∼= O2l−2k ⊕ O(−1). The
embedding C[W ] ⊂ PT[W ](S) restricts to the Segre embedding on E[W ]. In other words the
line bundle O(1) on PT[W ](S) restricted to E[W ] is the dual tautological line bundle when we
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view E[W ] as the projectivization of the bundle O(−1)2l−2k on PW ∗. Thus the line bundle
O(1) of PT[W ](S) restricted to C[W ] corresponds to the dual tautological line bundle when we
view C[W ] as the projectivization of O(−1)2l−2k ⊕ O(−2) on PW ∗. This finishes the proof
because h0(PW ∗,O(2) ⊕O(1)2l−2k) = dimT[W ](S). �

(3.3) In this and the next subsection, we will study some geometric features of the projective
variety C[W ] ⊂ PT[W ](S), forgetting that it is the variety of minimal rational tangents for S.
To emphasize this, we will use the letter Z in place of C[W ].

Let Z be the projectivization of the vector bundle O(−1)2m ⊕O(−2) on the projective
space Pk−1. Here we will study some properties of Z as a complex manifold. Let ϑ : Z → Pk−1

be the natural projection and ξ be the dual tautological line bundle of the projectivization
so that ϑ∗ξ = O(1)2m ⊕ O(2). Then ξ is very ample and the complete linear system |ξ|
gives an embedding κ : Z ⊂ PH0(Z, ξ)∗. Let R ⊂ Z be the hypersurface corresponding to
P(O(−1)2m). As a complex manifold, R is the product P2m−1 × Pk−1 and the line bundle ξ
restricted to R is the Segre line bundle. A choice of the O(−2)-factor gives a section Σ ⊂ Z

of ϑ disjoint from R. The restriction of ξ to Σ ∼= Pk−1 is O(2).

Lemma 3.3.1. In Pic(Z), ξ = [R] + ϑ∗O(2) where [R] is the line bundle corresponding to
the divisor R.

Proof. Clearly, ξ = [R] +ϑ∗O(b) for some integers b. Restriction to Σ, which is disjoint from
[R], shows that b = 2. �

The next lemma is obvious.

Lemma 3.3.2. Let W be a vector bundle on a complex manifold. The affine bundle P(W ⊕
O)−PW has a vector bundle structure by choosing PO as the zero section. This vector bundle
is isomorphic to W itself.

Lemma 3.3.3. Let Pn−1 ⊂ Pn be a hyperplane. Consider a vector bundle V on Pn iso-
morphic to O(1)2m ⊕ O. Let V ′ be the subbundle corresponding to O(1)2m. A choice of
O-complement to V ′ in V over Pn−1 can be extended to a choice of O-complement on Pn.

Proof. Fix a complement of V ′ in V over Pn and identify PV − PV ′ with V ′ by Lemma 3.3.2.
Under this identification, a choice of O-complement to V ′ in V corresponds to a section of
the vector bundle V ′. Thus Lemma 3.3.3 follows from the fact that any section of V ′ on Pn−1

can be extended to a section on Pn. �

Using these lemmas, we have the following result about curves of ξ-degree 2 on Z.

Proposition 3.3.4. Let C be a rational curve on Z disjoint from R and of degree 2 with
respect to ξ. Then C lies on some section Σ of ϑ disjoint from R and deformations of C
fixing a point span an open set in Z.
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Proof. By Lemma 3.3.1, ϑ(C) is a line on Pk−1. Regarding Z as the projectivization of
O(1)2m ⊕ O and R as the projectivization of O(1)2m on Pk−1, C gives a complement to R
over the line ϑ(C). By successive use of Lemma 3.3.3, we can extend this to a complement
of R over Pk−1, which is Σ. Different choices of Σ passing through a fixed point correspond
to sections of O(1)2m on Pk−1 vanishing at a given point. Since such sections generate the
bundle at a general point, deformations of Σ fixing a point span an open set in Z. On the
other hand, it is clear that deformations of the conic C inside the Veronese variety Σ fixing
a point cover Σ. �

As a consequence, we have the following rigidity result.

Proposition 3.3.5. Let µ : M → ∆ be a smooth projective morphism with a line bundle ζ on
M such that Mt := π−1(t) is biholomorphic to Z for each t ∈ ∆ − {0} with ζ|Mt

isomorphic
to ξ. Suppose for any flat family of curves Ct ⊂Mt the following holds:

(i) if Ct is of degree 1 with respect to ζ then C0 is irreducible;

(ii) if Ct is of degree 2 with respect to ζ then either C0 is irreducible or C0 has exactly
two irreducible components of degree 1 with respect to ζ.

Then M0 is also biholomorphic to Z.

Before going into the proof of Proposition 3.3.5, we need two lemmas. Let C ⊂ Y

be a free rational curve on a projective manifold Y . By Kodaira’s stability ([Kd]), for any
deformation {Yt, t ∈ ∆} of Y , C ⊂ Y can be deformed to free rational curves Ct ⊂ Yt for
sufficiently small t.

Lemma 3.3.6. In the situation of Proposition 3.3.5, let R ⊂ M be the irreducible hyper-
surface corresponding to R ⊂ Z on Mt, t 6= 0. For a general point z ∈ M0 and any section
ν : ∆ → M of µ with ν(0) = z, there exists a family of irreducible curves {Ct, t ∈ ∆} such
that ν(t) ∈ Ct, Ct ∩R = ∅ and Ct is of degree 2 for each t ∈ ∆.

Proof. Let {Ct ⊂Mt, t ∈ ∆} be a family of degree-2 curves through ν(∆) such that they are
disjoint from R and Ct is irreducible for t 6= 0. If C0 is reducible, it has two components of
degree 1 with respect to ζ by (ii). Let C1, C2 be two irreducible components of C0 and assume
ν(0) ∈ C1. Since ν0 is general, we can assume that C1 is free. Suppose that deformations
of C1 fixing ν(0) span an open set in M0. By Kodaira’s stability, we can deform C1 out of
M0 to get a degree-1 curve in Mt, whose deformations fixing a point span an open set, a
contradiction from Lemma 3.3.1. It follows that deformations of C1 fixing ν(0) cannot sweep
out an open subset in M0. By Proposition 3.3.4, deformations of Ct fixing ν(t) sweep out an
open subset in Mt. Thus deformations of C1∪C2 fixing one point sweep out an open subset in
M0. This means that we can choose Ct such that both C1 and C2 are free. But then C1 ∪C2

can be deformed to an irreducible free rational curve of degree 2 whose deformations fixing
one point sweep out an open subset of X0 by the smoothing argument of [Kl, II.6]. This
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irreducible degree 2 curve must be a limit of degree-2 curves disjoint from R in Mt, t 6= 0, by
Kodaira’s stability again. Thus we can choose Ct so that C0 is irreducible. �

A holomorphic vector field v on a projective manifold M is called a C∗-vector field

if the 1-parameter subgroup {exp(λv), λ ∈ C} has a period so that its image in Aut(M ) is
isomorphic to the multiplicative group C∗. Orbits of C∗-vector fields can be compactified
to rational curves by adding two limit points. These curves will be called orbital curves.
Conversely, if the orbits of a vector field can be compactified to rational curves by adding
two distinct points, the vector field is a C∗-vector field. We need the following result of
Bialynicki-Birula on the structure of the zero set and the orbital curves of a C∗-vector field.

Lemma 3.3.7 [BB]. The fixed point set of a C∗-action on a projective manifold M is
smooth. There is a unique component M+ (resp. M−) of the fixed point set where all the
weights of the isotropy action on the tangent space are non-negative (resp. non-positive).
The codimension of M+ (resp. M−) is equal to the number of strictly positive weights (resp.
strictly negative weights) of the isotropy action. Generic orbital curves join M+ and M−.
There exists an invariant Zariski open subset M̂+ (resp. M̂−) of M containing M+ (resp.
M−) such that M̂+ (resp. M̂−) has the structure of a vector bundle over M+ (resp. M−)
and the C∗-action corresponds to the scalar multiplication on the vector bundle.

Proof of Proposition 3.3.5 Choose a general section ν : ∆ → M disjoint from R. For
each t 6= 0, we can find a section Yt of the projection ϑt : Mt → Pk−1 corresponding to
ϑ : Z → Pk−1 such that Yt ∩R = ∅ and ν(t) ∈ Yt. We can choose the varieties Yt so that the
limit Y0 exists. We know that conics on Yt through ν(t) cover Yt for all t 6= 0. By Lemma
3.3.6, the limit of a general choice of these conics will remain irreducible and cover the limit
Y0. This implies that Y0 is irreducible.

Regarding Mt as the projectivization of O(1)2m ⊕O on Pk−1 for t 6= 0, the hypersurface
Rt := R∩Mt and the section Yt define a splitting of the vector bundle O(1)2m⊕O. Consider
the C∗-action on the vector bundle given by the action of λ ∈ C∗ as

v 7→ v for v ∈ O(1)2m

v 7→ λv for v ∈ O, the factor determined by Yt.

This action induces a vector field Et on Mt, t 6= 0, such that Et is a C∗-vector field whose
orbital curves are lines joining Yt to Rt. After multiplying by a suitable power of t, we can
assume that the limit E0 is a non-trivial vector field on M0 vanishing on R0 and Y0 whose
orbital curves are irreducible degree-1 curves joining R0 and Y0. Since Y0 is irreducible and
contains ν(0) 6∈ R0, Y0 is not contained in R0. Note that through each point of Yt, t 6= 0, there
exists an orbital curve of Et which is not contained in Yt. By the condition (i), a family of
orbital curves of Et converges to an irreducible orbital curve of E0. We see that through each
general point of Y0, an orbital curve exists which is not contained in Y0. These are general
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orbital curves and they intersect R0 because they are limit of orbital curves of Et, t 6= 0, which
intersect Yt. Since Y0 6⊂ R0, general orbital curves of E0 have two distinct limit points. This
means E0 is a C∗-vector field on X . It follows that R and Y are smooth families. By the same
argument as in [HM2, Section 3], R and Y are trivial families of P2m−1 ×Pk−1 and Pk−1. By
changing the sign, we can say Y0 = M+

0 and R0 = M−
0 in the notation of Lemma 3.3.7. Since

all the orbital curves intersect both M+
0 and M−

0 , M̂+
0 = M0 −M−

0 and M̂−
0 = M0 −M+

0 .
Since R0 is a hypersurface in M0, the C∗-action on M0 − Y0 is the scalar multiplication on
the line bundle M̂−

0 over R0 and there exists a unique orbital curve through each point of R0.
Thus the collection of all orbital curves passing through two distinct points on Y0 define two
disjoint projective subvarieties in M0. This induces a morphism M0 → Y0

∼= Pk−1, which is
the limit of the P2m-bundle structure on Mt, t 6= 0. It follows that M0 is a P2m-bundle over
Y0, and it is easy to check that this bundle is biholomorphic to Z. �

(3.4) Let us continue to use the notation of (3.3). Fix a k-dimensional vector space U and
a 2m-dimensional vector space Q. Let t be the tautological line bundle on PU. The vector
bundle (Q⊗t)⊕t⊗2 on PU is isomorphic to O(−1)2m⊕O(−2). Let us make an identification
of Z with the projective bundle ϑ : P((Q⊗ t)⊕ t⊗2) → PU and then ξ, the dual tautological
line bundle on Z, satisfies ϑ∗ξ = (Q∗ ⊗ h) ⊕ h⊗2 where h is the hyperplane line bundle on
PU, namely, the dual bundle of t. So

H0(Z, ξ) = H0(PU, ϑ∗ξ) = H0(PU, (Q∗ ⊗ h) ⊕ h⊗2) = (U∗ ⊗Q∗) ⊕ S2U∗.

Let T := H0(Z, ξ)∗. The line bundle ξ is very ample defining an embedding κ : Z ⊂ PT.
The hypersurface R ⊂ Z is naturally identified with P(Q ⊗ t). Let D ⊂ T be the subspace
spanned by κ(R). Then D = U ⊗ Q and T/D = S2U. In terms of the decomposition
T = (U ⊗ Q) ⊕ S2U, the affine cone over Z is

Z̃ = {λ⊗ µ+ Cλ2 : λ ∈ U, µ ∈ Q}.

The next lemma follows directly from this expression.

Lemma 3.4.1. For the point α = λ2 ∈ S2U, the affine tangent space to Z̃ at α is

Pα = Span{λ⊗ µ, λ� ζ : µ ∈ Q, ζ ∈ U}.

For the point β = λ⊗ µ+ λ2, the tangent space to Z̃ at β is

Pβ = Span{λ⊗ θ, ζ ⊗ µ+ 2λ� ζ : θ ∈ Q, ζ ∈ U}.

For the point γ = λ⊗ µ of the affine cone R̃ over R ⊂ Z, the tangent space to R̃ at γ is

P ′
γ = Span{λ⊗ θ, ζ ⊗ µ : θ ∈ Q, ζ ∈ U}.
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Proposition 3.4.2. Let T ⊂ PΛ2T be the variety of tangential lines to Z ⊂ PT under the
Plücker embedding G(2,T) ⊂ PΛ2T. Then T is non-degenerate in PΛ2T.

Proof. Let Υ ⊂ Λ2T be the linear span of the tangential lines to Z. Note that Z is
invariant under the natural action of GL(U)×GL(Q) on T = (U⊗Q)⊕ S2U. So Υ is also
GL(U) ×GL(Q)-invariant. As GL(U) ×GL(Q)-modules

Λ2T = Λ2(U ⊗Q) ⊕ Λ2(S2U) ⊕ (U ⊗Q⊗ S2U).

From the expression of P ′
γ in Lemma 3.4.1, we see that vectors of the form

(λ⊗ µ) ∧ (λ⊗ θ), (λ⊗ µ) ∧ (ζ ⊗ µ)

are in Υ. Thus Λ2(U ⊗ Q) ⊂ Υ. From the expression of Pα in Lemma 3.4.1, we see
that Υ contains non-zero vectors in Λ2(S2U), which is an irreducible GL(U)-module. Thus
Λ2(S2U) ⊂ Υ. Now recall the irreducible GL(U)×GL(Q)-module decomposition (e.g. [OV],
p.300 table 5)

U⊗ Q⊗ S2U = (S3U⊕ Γ) ⊗Q

where Γ is the irreducibleGL(U)-module defined as the kernel of the product map U⊗S2U →
S3U. Again from the expression of Pα, we see that S3U ⊂ Υ. Finally, the expression of Pβ

in Lemma 3.4.1 gives the element of Υ of the form

(λ⊗ µ+ λ2) ∧ (ζ ⊗ µ+ 2λ� ζ) ≡ λ2 ∧ (ζ ⊗ µ) − 2(λ� ζ) ∧ (λ⊗ µ) mod Υ.

The left hand side cannot be contained in Λ2(U⊗Q),Λ2(S2U) or S3U⊗Q. Thus Υ contains
Γ ⊗ Q, too. �

(3.5) Let us consider the situation of Theorem 3.1.1. Using the results from (3.3) and (3.4),
we will show that the variety of minimal rational tangents at a general point x ∈ X0 is
isomorphic to Co at a base point o ∈ S.

Proposition 3.5.1. In the notation of Theorem 3.1.1, choose a section σ : ∆ → X of π such
that x0 := σ(0) is a general point of X0. Let µ : M → ∆ be the family where Mt := µ−1(t)
is the normalized Chow space of minimal rational curves through xt := σ(t). Then Mt

∼= Co

for each t ∈ ∆.

Proof. We know that Mt
∼= Co for each t ∈ ∆−{0}. We want to show that M0

∼= Co. By
the same proof as in [HM2, Proposition 4], µ is smooth and projective. We can find a line
bundle on M whose restriction to Mt, t 6= 0, corresponds to the line bundle ξ on Co. Let us
denote this line bundle by the same symbol ξ. By the same argument as in [HM5, Lemma
1 and Lemma 2], the limits of lines on Mt remain to be irreducible curves of ξ-degree 1 on
M0. Similarly, limits of degree 2 curves are either irreducible, or have two components. Thus
Proposition 3.5.1 follows from Proposition 3.3.5. �
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Proposition 3.5.2. The tangent morphism τx0 : M0 → Cx0 ⊂ PTx0(X0) is the embedding
defined by the complete linear system of the line bundle ξ. In particular, the variety of minimal
rational tangents Cx ⊂ PTx(X0) at a general point x ∈ X0 is isomorphic to Co ⊂ PTo(S) at a
base point o ∈ S.

Proof. By Proposition 3.5.1, M0
∼= C0. The tangent morphism τt : Mt

∼= Co → PTxt
(Xt)

is the one defined by the complete linear system associated to ξ for t 6= 0. Thus τx0 must
be defined by a subsystem of ξ and it suffices to show that the image of the tangent map
is linearly non-degenerate. But this follows from the same argument as in the Hermitian
symmetric case as given in [HM2, (5.1), Proposition 16 and proof of Theorem 1 in (5.2)],
together with the linear non-degeneracy of To ⊂ PΛ2To(S) as given by Proposition 3.4.2. �

§4. Lie algebra of vector fields on symplectic Grassmannians

(4.1) In this section, we study the Lie algebra of holomorphic vector fields on the symplectic
Grassmannian. It will be useful to start the discussion with general rational homogenous
spaces and their associated graded Lie algebras, cf. Yamaguchi [Ya]. Let g be a simple Lie
algebra. Choose a Cartan subalgebra h ⊂ g and denote by Φ the set of roots of g with respect
to h. Any ρ ∈ Φ can be expressed uniquely as an integral linear combination of the simple
roots αi, 1 ≤ i ≤ `. Fix a simple root αk. For m ∈ Z, denote by Φm the set of roots whose
coefficient in αk is equal to m. Let µ be the maximal integer such that Φm 6= ∅. We call µ
the depth of (g, αk). We have a decomposition of g as a complex graded Lie algebra

g = g−µ ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gµ,

where for m 6= 0, gm is the direct sum of root spaces gρ, ρ ∈ Φm, and g0 is the direct sum of
h and root spaces gρ, ρ ∈ Φ0. This decomposition of g is said to be associated to the simple
root αk. The subalgebra

p = g−µ ⊕ · · · ⊕ g−1 ⊕ g0

is called the parabolic subalgebra associated to αk. The nilradical of p is g−µ ⊕ · · · ⊕ g−1.
Let G be a simple Lie group associated to g and P ⊂ G be the subgroup associated to p. We
say that the homogeneous space S := G/P is of type (g, αk).

Consider the case of depth 2, g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2. The decomposition of g

has a geometric interpretation in terms of holomorphic vector fields on S = G/P . Let o ∈ S

be the base point fixed by P . When g is regarded as the Lie algebra of holomorphic vector
fields on S, the parabolic subalgebra p ⊂ g is the Lie subalgebra of holomorphic vector fields
vanishing at o. For any element v ∈ p, let ρo(v) be the linear transformation of the tangent
space To(S) given by the isotropy representation. The tangent space To(S) can be naturally
identified with g1 ⊕g2 and g1 defines a G-invariant subbundle D of the tangent bundle T (S).
By the G-invariance of the distribution D on S, ρo(v) preserves Do.
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Proposition 4.1.1. Let g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 be a decomposition of a simple Lie
algebra g as a graded Lie algebra of depth 2 as described above, p = g−2 ⊕ g−1 ⊕ g0 ⊂ g the
parabolic subalgebra, and o ∈ S be the unique fixed point of the parabolic subgroup P = exp(p).
Define

J := {v ∈ p : ρo(v)|Do
≡ λ · id for some λ ∈ C},

I := {v ∈ p : ρo(v)|Do
≡ 0},

H := {v ∈ p : ρo(v) ≡ 0}.

Then, H agrees with g−2, I agrees with g−2⊕g−1, and J agrees with g−2⊕g−1⊕z(g0), where
z(g0) stands for the 1-dimensional center of g0.

Proof. As is well-known (cf. Yamaguchi [Ya]), gi, i 6= 0, is irreducible as a g0-module. g0 is
reductive with 1-dimensional center z(g0). Furthermore, [g−1, g2] = g1. Under the identifica-
tion To(S) = g/p, for v ∈ p, we have

ρo(v) = ad(v)|g1⊕g2 mod p ∈ End(g1 ⊕ g2) ∼= End(To(S)).

Thus v = g−2+g−1+g0 ∈ J if and only if g0 ∈ J , which is the case if and only if [g0, h1] = λh1

for some λ ∈ C and for any h1 ∈ g1. By the irreducibility of g1 as a g0-module and Schur’s
Lemma, v ∈ J if and only if g0 ∈ z(g0), so that J = g−2 ⊕ g−1 ⊕ z(g0). Likewise v ∈ I if and
only if g0 = 0, i.e., I = g−2 ⊕ g−1. Finally, v ∈ H if and only if [g−1, g2] = 0. This forces
g−1 = 0 by the irreducibility of g−1 and the fact that [g−1, g2] = g1, so that H = g−2. �

For v ∈ H, let %o(v) ∈ S2T ∗
o (S) ⊗ To(S) be the element defined by the 2-jet of v at o as

in Proposition 2.2.1. For v ∈ g, let εo(v) ∈ To(S) be the value of v at o.

Proposition 4.1.2. In the situation of Proposition 4.1.1, the adjoint representation gives
injections

g−1 ⊂ Hom(g2, g1)

g−2 ⊂ Hom(g2, g0).

For a vector field v ∈ g−1 and a vector field w ∈ g2, εo([v, w]) is determined by ρo(v) and
εo(w). For a vector field v ∈ g−2 and a vector field w ∈ g2, ρo([v, w]) is determined by %o(v)
and εo(w).

Proof. The injections follow from the irreducibility of g−1 and g−2 as g0-modules as in
the proof of Proposition 4.1.1.

The second and the third statements are essentially local. For local vector fields v, w in
a neighborhood of o with εo(v) = 0, ρo(v)(w) is defined by the derivative of v with respect
to the vector field w at o and agrees with εo([w, v]). Similarly, for local vector fields u, v, w
with εo(v) = ρo(v), %o(v)(w, u) is defined by the derivative of [w, v] with respect to u at o,
which agrees with ρo([w, v])(u) because ρo(v) = 0. �
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Proposition 4.1.3. Let g be as in Proposition 4.1.1 and assume that dim g2 > 1. A graded
vector space automorphism of g preserving the graded Lie algebra structure of ⊕i=2

i=0gi and the
adjoint actions of g−1 ⊂ Hom(g2, g1) and g−2 ⊂ Hom(g2, g0) is a Lie algebra automorphism.

Proof. By [Ya, Theorem 5.2] the graded Lie algebra g with dim g2 > 1, is the prolongation
of the graded Lie algebra ⊕i=2

i=0gi in the sense of [Ya, p. 429-430], i.e., it is the maximal graded
Lie algebra extending ⊕i=2

i=0gi by adding terms with negative degrees so that the action of gj

on ⊕i=2
i=j+1gi is faithful ([Ya, p.433]). Thus any graded Lie algebra extending ⊕i=2

i=0g by adding
terms with negative degrees has a natural graded Lie algebra injection into g. This implies
Proposition 4.1.3. �

We will also need corresponding results for Hermitian symmetric space. Let g = g−1 ⊕
g0 ⊕ g1 be the gradation with G/P isomorphic to an irreducible Hermitian symmetric space
of rank ≥ 2. In this case, g−1 is the set of vector fields v with ρo(v) = 0. The following two
propositions can be proved in a similar way as the above two propositions.

Proposition 4.1.4. When g = g−1 ⊕ g0 ⊕ g1 is the gradation associated to an irreducible
Hermitian symmetric space of rank ≥ 2, the adjoint representation gives injections g−1 ⊂
Hom(g1, g0). For a vector field v ∈ g−1 and a vector field w ∈ g1, ρo([v, w]) is determined by
%o(v) and εo(w).

Proposition 4.1.5. For g = g−1 ⊕ g0 ⊕ g1 as in Proposition 4.1.4, a graded vector space
automorphism of g preserving the graded Lie algebra structure of g0 ⊕ g1 and the adjoint
actions of g−1 ⊂ Hom(g1, g0) is a Lie algebra automorphism.

(4.2) The symplectic Grassmannian S = Sk,` is the rational homogeneous space of type
(g, αk) = (sp`, αk) where 1 < k < ` under the usual numeration of simple roots of the
symplectic Lie algebra sp` (cf. [Ya] p. 454). The depth is µ = 2 and dim g2 > 1. So
Propositions 4.1.1, 4.1.2 and 4.1.3 can be applied. The distribution D defined using g1 is a
unique G-invariant distribution on Sk,`. So it is exactly the distribution D defined in (3.2)
by the uniqueness. In particular, dim g1 = k(2`− 2k) and dim g2 = 1

2
k(k + 1).

Now let us see what the variety of minimal rational tangents tells us about the vector
fields on S. We start with examining its infinitesimal linear automorphisms aut(C̃o). For
simplicity, let us use the notation of (3.4), identifying Co with Z = P((Q ⊗ t) ⊕ t⊗2). Since
any endomorphism of T preserving Z̃ must preserve R̃, we have the restriction homomorphism
χ : aut(Z̃) → aut(R̃) where aut(R̃) denotes the endomorphisms of D preserving R̃.

Proposition 4.2.1. The homomorphism χ : aut(Z̃) → aut(R̃) is surjective. Let n be the
nil-radical of Ker(χ). Then Ker(χ)/n is 1-dimensional and represented by homotheties on
T/D = S2U. Furthermore

aut(R̃) = z ⊕ sl(U) ⊕ sl(Q)

n = U∗ ⊗Q
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where ⊕ is a Lie algebra direct sum and z denotes the 1-dimensional center consisting of
homotheties on D.

Proof. Recalling T = H0(PU, (Q∗ ⊗ h) ⊕ h⊗2)∗, there is a natural injective homomor-
phism

H0(PU, End((Q⊗ t) ⊕ t⊗2)) −→ End(T).

The image of this injection is precisely aut(Z̃). The surjectivity of χ follows from the fact
that any endomorphism of Q ⊗ t can be extended to an endomorphism of (Q ⊗ t) ⊕ t⊗2.
Ker(χ) consists of elements of H0(PU, End((Q ⊗ t) ⊕ t⊗2)) which annihilates Q ⊗ t and
n ⊂ Ker(χ) corresponds to those elements with zero trace. Thus n is the abelian Lie algebra

H0(PU, Hom(t⊗2,Q⊗ t)) = H0(PU,Q⊗ h) = U∗ ⊗ Q

and the statement about Ker(χ)/n is obvious. Finally, for the Segre variety R ⊂ P(U⊗Q),
the isomorphism aut(R̃) = z ⊕ sl(U) ⊕ sl(Q) is well-known. �

Proposition 4.2.2. For the linear Lie algebra aut(Z̃) ⊂ End(T), aut(Z̃)(2) = 0 and there
is a natural inclusion aut(Z̃)(1) ⊂ S2U∗.

Proof. The vanishing of the second prolongation is a direct consequence of Theorem
1.1.2. Let A ∈ aut(Z̃)(1) ⊂ S2T∗ ⊗ T. We will denote by Aαβ the value of A on α, β ∈
T = (U ⊗ Q) ⊕ S2U. Recall that when α, β ∈ Z̃, the vector Aαβ is in the intersection
Pα ∩ Pβ where Pα ⊂ T (resp. Pβ) denotes the affine tangent space to Z̃ at α (resp. β). Fix
α ∈ Z̃ ∩ S2U, say α = λ2, λ ∈ U. Let β = ζ ⊗ µ + ζ2 for some ζ ∈ U, µ ∈ Q, be a general
point of Z̃. Using Lemma 3.4.1, we see

Pα ∩ Pβ = C(λ⊗ µ+ 2λ� ζ).

Replacing µ by tµ with t→ ∞, we get βt = tζ ⊗ µ+ ζ2 with [βt] → [ζ ⊗ µ]. Write δ = ζ ⊗ µ.
We have lim

t→∞
1
t βt = δ. Then Aαβ ∈ Pα ∩ Pβ implies

Aαβt
∈ C(2λ� ζ + ζ ⊗ tµ) = C

( 2
t
λ� ζ + ζ ⊗ µ

)
, so that

Aαδ = lim
t→∞

1
t
Aαβt

∈ C(ζ ⊗ µ) .

We conclude that Aαδ ∈ Cδ for any δ ∈ Z̃ ∩ D = R̃ and α ∈ Z̃ ∩ S2U. In particular, if
Aαδ 6= 0 then δ ∈ Pα. Since we can choose the factor S2U so that it contains any point
of Z̃ − R̃, this means that δ is contained in the tangent space Pα for any choice of α ∈ Z̃.
This is impossible by Lemma 2.1.2. Thus Aαδ = 0 for all α ∈ Z̃ and δ ∈ R̃. By linearity,
Aαδ = 0 if δ ∈ D. Thus the value of A is determined by its values on S2U. Since for
α, β ∈ Z̃ ∩ S2U, Pα ∩ Pβ ⊂ S2U, we see that A induces an element A′ of S2(S2U∗) ⊗ S2U
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and A is determined by A′. Moreover A′ is an element of aut(Z̃ ∩ S2U)(1). In other words
we have a natural injection

aut(Z̃)(1) ⊂ aut(Z̃ ∩ S2U)(1).

But Z ∩ PS2U is the second Veronese embedding of the projective space PU. Thus

aut(Z̃ ∩ S2U)(1) ⊂ dimS2U∗

by Theorem 1.1.3 (i). This completes the proof of Proposition 4.2.2. �
Recall that for any vector field v vanishing at o, ρo(v) ∈ End(To(S)) is the endomorphism

induced by the first jet of v at o. If ρo(v) = 0, %o(v) ∈ S2T ∗
o (S)⊗To(S) is the element induced

by the 2-jet of v at o. Denote by χo the surjective homomorphism aut(C̃o) → aut(Ẽo) and by
no the nil-radical of Ker(χo).

Proposition 4.2.3. Let us choose identification of Co with Z = P((Q ⊗ t) ⊕ t⊗2), inducing
identifications Do = U ⊗ Q and To(S)/Do = S2U in the notation of (3.4). Denoting by
εo(v) the value of a vector field v on S at the base point o ∈ S and by ςo the projection
To(S) → To(S)/Do, we have isomorphisms

ςo ◦ εo : g2 → To(S)/Do = S2U

εo : g1 → Do = U⊗Q.

By taking 1-jets at o of vector fields vanishing at o, we have homomorphism ρo : g0 ⊕ g−1 →
aut(C̃o). It gives an injection

χo ◦ ρo : g0 → aut(Ẽo) = aut(R̃) = z ⊕ sl(U) ⊕ sl(Q)

and an isomorphism
ρo : g−1 → no = U∗ ⊗ Q.

By taking 2-jets at o of vector fields vanishing to order ≥ 2 at o, we get an isomorphism

%o : g−2 → aut(C̃o)(1) = S2U∗.

Proof. From aut(C̃o)(2) = 0 in Proposition 4.2.2, %o must be injective. Since dim g−2 =
dim g2 by [Ya] and dim g2 = dimT/D, %o : g−2 → aut(C̃o)(1) ∼= aut(Z̃)(1) and the inclusion
aut(Z̃)(1) ⊂ S2U∗ in Proposition 4.2.2 must be isomorphisms. This implies that ρo : g0 ⊕
g−1 → aut(C̃o) is injective and its image is isomorphic to the Lie algebra g0 ⊕ g−1 mod g−2,
which has nil-radical g−1.

By Proposition 4.1.1, ρo(g−1) lies in the kernel of χo : aut(C̃o) → aut(Ẽo). Since
dim g−1 = dim g1 by [Ya] and dim g1 = dim no by Proposition 4.2.1, ρo|g−1 gives the iso-
morphism to no. This implies that ρo(g0) intersects no at 0. By Proposition 4.1.1 and the
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description of Ker(χo) in Proposition 4.2.1, ρ(g0) intersects Ker(χo) at 0. So the homomor-
phism χo ◦ρo : g0 → aut(Ẽo) is injective. The statements about εo and ςo ◦ εo are obvious. �

(4.3) Let us consider the situation of Proposition 4.1.1, i.e., a gradation of a simple Lie
algebra g with depth 2. Under the decomposition g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, there is a
unique element E ∈ z(g0), called the characteristic element, such that [E, g] = ig if and only
if g ∈ gi. A holomorphic vector field on S = G/P will be called a characteristic vector

field if it corresponds to the characteristic element under a choice of the Cartan subalgebra
and simple roots when we regard g as a Lie algebra of holomorphic vector fields on S. From
Proposition 4.1.1, E belongs to the subspace J . We observe that a general element of J gives
a characteristic vector field on S. More precisely, we have

Proposition 4.3.1. Let I ⊂ J ⊂ p ⊂ g be the subalgebras defined by a choice of the base
point o ∈ S as in Proposition 4.1.1. Let E′ be any element of J − I with ρo(E′)|Do

= id.
Then E′ is a characteristic element of a decomposition g = g′−2 ⊕ g′−1 ⊕ g′0 ⊕ g′1 ⊕ g′2 with
respect to some choice of a Cartan subalgebra h′ ⊂ g and a system of roots.

Proof. We have the characteristic vector field E ∈ J − I associated to a Cartan subalgebra
h ⊂ p ⊂ g. It suffices to show that any element E′ as in the statement of Proposition 4.3.1
is conjugate to E by the adjoint action of P on p. This is equivalent to showing that the
P -orbit of [E] in the projective space PJ is the affine space PJ − PI. In fact, we can show
that the orbit of [E] under the unipotent subgroup exp(I) is PJ − PI as follows. Since

dim[g−1 + g−2, E] = dim(g−1 + g−2) = dim(PJ − PI),

the exp(I)-orbit of [E] in PJ is open. But the orbit of a unipotent group acting on an affine
space must be closed ([Bo2] Proposition 4.10, p.88). Thus the orbit must be the whole affine
space. �

Corollary 4.3.2. A holomorphic vector field v on S is a characteristic vector field if it
vanishes at a point o ∈ S and its first jet at o satisfies

ρo(v)|Do
≡ id.

Now consider the case of the symplectic Grassmannian S = Sk,`. From Corollary 4.3.2,
we can describe the C∗-action on S = Sk,` generated by a characteristic vector field as follows.
Let [W ] ∈ Sk,` be as in (3.2). Pick a complement W ] of W in W⊥. The symplectic form ω

is non-degenerate on W ]. Thus (W ])⊥ is a complementary subspace of W ] in V , on which
ω is non-degenerate. Choose an isotropic complement W � to W in (W ])⊥. Consider the
symplectic action of λ ∈ C∗ on V defined by

w 7→ λ−1w for w ∈ W

w 7→ w for w ∈W ]

w 7→ λw for w ∈W �.
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The induced action on D[W ] = W ∗ ⊗ (W⊥/W ) = W ∗ ⊗W ] is multiplication by λ. Thus
the vector field generating this action must be a characteristic vector field by Corollary 4.3.2.
Conversely, any C∗-action defined by a characteristic vector field must be the above form
associated to some choice of [W ] ∈ Sk,` and the complements W ] and W �.

Given a characteristic vector field E at [W ] determined by a choice of complement W ]

and W �. Let W = W ′ ⊕ W
′′

be any direct sum decomposition with dimW ′ = 2 and
dimW

′′
= k − 2. Define a new symplectic C∗-action on V where λ ∈ C∗ acts as

v 7→ λv for v ∈W
′′

v 7→ v for v ∈W ′ ⊕W ] ⊕ (W � ∩ (W
′′
)⊥)

v 7→ λ−1v for v ∈W � ∩ (W ′)⊥.

This induces a C∗-action on S. A fixed point component of this action on Sk,` consists of
k-dimensional isotropic subspaces contained in (W

′′
)⊥ which contains W

′′
. This is naturally

isomorphic to the set of isotropic 2-planes in W ′ ⊕W ] ⊕ (W � ∩ (W ′′)⊥). The vector field
F generating this C∗-action will be called the slicing vector field determined by E and
W = W ′⊕W ′′

. Thus the component of the zero set of the slicing vector field containing [W ]
is biholomorphic to S2,`−k+2.

Proposition 4.3.3. The slicing vector field F determined by a characteristic vector field E
at o = [W ] ∈ S and a decomposition W = W ′ ⊕W

′′
is the unique element of g0 satisfying

ρ(F )|W ′⊗(W⊥/W ) ≡ id and ρo(F )|W ′′⊗(W⊥/W ) ≡ 0.

Proof. It is clear that F satisfies the stated conditions. Thus Proposition 4.3.3 is a direct
consequence of the injectivity of χo ◦ ρo : g0 → End(W ⊗ (W⊥/W )) in Proposition 4.2.3. �

§5. Limit vector fields on the central fiber

(5.1) Now let us go to the situation of Theorem 3.1.1. From Proposition 3.5.2, there exists a
subvariety B ⊂ X0 such that Cx ⊂ PTx(X0) is isomorphic to Z ⊂ PT for any x ∈ X0 − B.
Let Ex ⊂ Cx be the subvariety corresponding to R ⊂ Z. Denote by D the distribution on
X −B defined by the linear span of Ex.

Fix a holomorphic section σ : ∆ :→ X −B, xt := σ(t), x := x0. Fix a vector bundle U
of rank k and another vector bundle Q of rank 2m on σ(∆). We can choose an isomorphism

(‡) {Cxt
: t ∈ ∆} ∼= {P((Qxt

⊗ t) ⊕ t⊗2) : t ∈ ∆}

where on the right hand side Q is regarded as a vector bundle on PU pulled back from σ(∆) by
the projection PU → σ(∆) and t denotes the tautological line bundle on PUxt

. We will keep
the choice of σ and the isomorphism (‡) throughout Section 5. This induces isomorphisms

aut(Ẽxt
) ∼= zxt

⊕ sl(Uxt
) ⊕ sl(Qxt

)
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nxt
∼= U∗

xt
⊗Qxt

aut(C̃xt
)(1) ∼= S2U∗

xt

from Proposition 4.2.1 and Proposition 4.2.3. Here zxt
denotes the 1-dimensional center

consisting of homotheties on Dxt
and nxt

is the nil-radical of Ker(χxt
) where χxt

: aut(C̃xt
) →

aut(Ẽxt
) is the natural homomorphism.

For the relative tangent bundle Tπ of π : X → ∆ write T π for the associated relative
tangent sheaf and L for the direct image π∗(T π). L is a locally free sheaf with fiber at t 6= 0,

Lt ∼= the Lie algebra of holomorphic vector fields on Xt
∼= g.

The Lie algebra L0 with dimL0 = dim g is called the Lie algebra of limit vector fields on
X0. For v ∈ Lt, let εxt

(v) ∈ Txt
(Xt) be the evaluation at xt. When εxt

(v) = 0, let ρxt
(v) be

the endomorphism of Txt
(Xt) given by the first jet of v. Following Proposition 4.1.1, define,

for each t ∈ ∆,

J t := {v ∈ Lt : εxt
(v) = 0, ρxt

(v)|Dxt
≡ µ · id for some µ ∈ C}

It := {v ∈ Lt : εxt
(v) = 0, ρxt

(v)|Dxt
≡ 0}

Ht := {v ∈ Lt : εxt
(v) = 0, ρxt

(v) = 0}.

These are subalgebras of the Lie algebra Lt for each t ∈ ∆.

Proposition 5.1.1. The homomorphism defined by 2-jets of vector fields at xt

%xt
: Ht → aut(C̃xt

)(1) ∼= S2U∗
xt

is an isomorphism for each t ∈ ∆. The homomorphism defined by 1-jets of vector fields at xt

ρxt
: It → nxt

∼= U∗
xt

⊗Qxt

is an isomorphism for each t ∈ ∆. The homomorphism defined by 1-jets of vector fields at xt

χxt
◦ ρxt

: J t/It → aut(Ẽxt
)

is injective and has image zxt
, the 1-dimensional center of aut(Ẽxt

), for each t ∈ ∆. In
particular,

{Ht ⊂ It ⊂ J t : t ∈ ∆}

form a subbundle of the locally free sheaf L on ∆.

Proof. For t 6= 0, this follows from Proposition 4.1.1 and Proposition 4.2.3. Let us show it for
t = 0. By Theorem 1.3.1, X0 cannot have a vector field vanishing to the order ≥ 3 at x = x0,
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which implies the injectivity of %x : H0 → S2U∗
x0

. Since dimH0 ≥ dimHt = dimS2U∗
xt

by
Proposition 4.1.1 and Proposition 4.2.3, we conclude that %x is an isomorphism. This implies
that

Ker(ρx : J0 → End(Tx(X0))) = H0

and the quotient map ρx : J0/H0 → End(Tx(X0)) is injective. Since ρx(I0/H0) ⊂ nx while

dim(I0/H0) ≥ dim(It/Ht) = dim nxt
= dim nx for t 6= 0,

we conclude that ρx : I0/H0 → nx is an isomorphism. This implies the injectivity of χxt
◦ρxt

:
J t/Ht → aut(Ẽxt

) for all t ∈ ∆. Certainly the image of χxt
◦ρxt

should be the 1-dimensional
zxt

. �

(5.2) From Proposition 5.1.1 we deduce the extension of characteristic vector fields to X0.
More precisely, we have

Proposition 5.2.1. Let xt = σ(t) be as in (5.1). There exists a family of C∗-vector fields
Et on Xt with an isolated zero at xt for all t ∈ ∆ such that Et is a characteristic vector field
at xt for each t 6= 0.

Proof. By choosing a section of the invertible sheaf {J t/It, t ∈ ∆} in Proposition 5.1.1 over
∆, we get a holomorphic family of holomorphic vector fields {Et : t ∈ ∆} such that for all
t ∈ ∆, Et vanishes at xt, and the 1-jet ρxt

(Et) ∈ End(Txt
(Xt)) at xt restricts to the identity

map on Dxt
. By Corollary 4.3.2, Et is a characteristic vector field on Xt for t 6= 0. The

1-parameter subgroup on Xt, given by {exp(λEt), λ ∈ C} is of minimum period 2π for each
t 6= 0, and the same must hold true for t = 0 by continuity. Thus E0 is also a C∗-vector field
with an isolated zero at x0 and ρx0(E0) restricts to the identity map on Dx0 . �

A C∗-vector field on X0 with an isolated zero x will be called a characteristic vector

field at x if it is the limit of a family of characteristic vector fields at xt for a section of π
as in Proposition 5.2.1. For any point x ∈ X0 − B, there exists a characteristic vector field
at x by Proposition 5.2.1.

Let us fix a family Et of characteristic vector fields. For each t 6= 0, we have the
eigenspace decomposition of the adjoint action of Et, t 6= 0,

Lt = Lt
−2 ⊕ Lt

−1 ⊕ Lt
0 ⊕ Lt

1 ⊕ Lt
2

which is conjugate to g = g−2⊕g−1⊕g0⊕g1⊕g2. For each i,−2 ≤ i ≤ 2, the i-eigenspace L0
i of

L0 under the adjoint action of E0 must have dimension at least dimLt
i. Since dimL0 = dimLt,

we have the eigenspace decomposition

L0 = L0
−2 ⊕ L0

−1 ⊕ L0
0 ⊕ L0

1 ⊕ L0
2.

In analogy with Proposition 4.2.3, we have
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Proposition 5.2.2. Let L0 = L0
−2 ⊕ L0

−1 ⊕ L0
0 ⊕ L0

1 ⊕ L0
2 be the eigenspace decomposition

associated to a choice of a family of characteristic vector fields Et along xt as above. Denoting
by εx the evaluation of vector fields on X0 at x = x0 ∈ X0 and denoting by ςx the projection
Tx(X0) → Tx(X0)/Dx, we have two isomorphisms

ςx ◦ εx : L0
2 → Tx(X0)/Dx

∼= S2Ux

εx : L0
1 → Dx

∼= Ux ⊗Qx.

By taking 1-jets at x = x0 of vector fields vanishing at x, we have the homomorphism ρx :
L0

0 ⊕ L0
−1 → aut(C̃x) which induces an injection

χx ◦ ρx : L0
0 → aut(Ẽx) ∼= zx ⊕ sl(Ux) ⊕ sl(Qx)

and an isomorphism

ρx : L0
−1 → nx

∼= U∗
x ⊗Qx.

By taking 2-jets at x of vector fields vanishing to order ≥ 2 at x, we get an isomorphism

%x : L0
−2 → aut(C̃x)(1) ∼= S2U∗

x .

Proof. The statements about χx◦ρx, ρx and %x can be proved in exactly the same way as
in Proposition 4.2.3. It remains to prove the statements about εx and ςx ◦ εx. By considering
dimensions, it suffices to show that non-zero elements of L0

2 and L0
1 do not vanish at x. We

will check this for L0
2. The proof for L0

1 will be exactly the same. Suppose there exists a
non-zero element v ∈ L0

2 vanishing at x. Note that

ρx : {vector fields vanishing at x} → End(Tx(X0))

is a Lie algebra homomorphism. Since [E0, v] = 2v, we see that ρx(v) ∈ End(Tx(X0)) satisfies
[ρx(E0), ρx(v)] = 2ρx(v) inside the Lie algebra End(Tx(X0)). ρx(E0) ∈ End(Tx(X0)) is a
semi-simple endomorphism with eigenvalues 1 and 2. ρx(v) must preserve Dx which is the
eigenspace of ρx(E0) with eigenvalue 1. This implies that ρx(v) is an eigenvector of the adjoint
action of ρx(E0) only if it annihilates Dx, in which case [ρx(E0), ρx(v)] = −ρx(v). It follows
that ρx(v) = 0 and v should vanish to the order ≥ 2 at x. This implies that v ∈ H0. But by
Proposition 5.1.1 and the statement about %x in Proposition 5.2.2, we have H0 = L0

−2. This
gives v ∈ L0−2, a contradiction. �

(5.3) Now we study the distribution D on X0 − B. The identification (‡) in (5.1) induces
identifications Dxt

∼= Uxt
⊗Qxt

and Tπ
xt
/Dxt

∼= S2Uxt
.
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Proposition 5.3.1. In terms of the identifications Dxt
∼= Uxt

⊗Qxt
and Tπ

xt
/Dxt

∼= S2Uxt
,

the Frobenius bracket tensor [, ] : Λ2Dxt
→ Tπ

xt
/Dxt

for the distribution D at xt is given by

[u⊗ w, v ⊗ z] = νxt
(w, z) u� v

for u, v ∈ Uxt
and w, z ∈ Qxt

where ν : Λ2Q → Oσ(∆) is a bundle homomorphism such that
νxt

is non-degenerate for t 6= 0.

Proof. It suffices to show that [u ⊗ w, v ⊗ z] is proportional to u � v. Moreover by
continuity, it is enough to check it for t 6= 0. Thus the problem is about the distribution D

on the symplectic Grassmannian S. At the point [W ] ∈ S, the Frobenius bracket of D,

[, ] : Λ2D[W ] = Λ2(W ∗ ⊗ (W⊥/W )) → T[W ](S)/D[W ] = S2W ∗

must be invariant under the natural action of GL(W )×Sp(W⊥/W ) arising from the isotropy
action of the stabilizer of [W ] from which it is easy to see that [u⊗w, v⊗ z] = cω(w, z)u� v

for some constant c 6= 0 and the symplectic form ω on W⊥/W . It is clear that νxt
is

non-degenerate for t 6= 0. �
Let us recall the following lemma, which can be proved easily by modifying the standard

proof of the existence of symplectic basis on a symplectic vector space.

Lemma 5.3.2. Let Q = {Qt, t ∈ ∆} be a vector bundle of rank 2q on the unit disc with an
anti-symmetric form νt : Λ2Qt → C on the fiber depending holomorphically on t such that νt

is non-degenerate for t 6= 0 and ν0 has rank 2r, r ≤ q. Then there exist sections f1, . . . , f2q

of the dual bundle Q∗ which gives a basis of Q∗
t for each t with respect to which

νt = f1 ∧ f2 + · · ·+ f2r−1 ∧ f2r + a1(t)f2r+1 ∧ f2r+2 + · · · + aq−r(t)f2q−1 ∧ f2q

for some holomorphic functions a1(t), . . . , aq−r(t) on ∆ vanishing at t = 0.

Let 2r be the rank of νx, x0. By Lemma 5.3.2, we can choose a subbundle Q′ ⊂ Q of
rank 2r on σ(∆) such that

(†) ν is non-degenerate onQ′
xt

for all t ∈ ∆ and the complementary subspaces (Q′
xt

)⊥, t 6=
0, in Qxt

with respect to the symplectic from νxt
, t 6= 0, converges to the kernel of νx0 on

Qx0 .

Choose a family of characteristic vector fields Et, xt = σ(t) as in Proposition 5.2.1,
inducing the eigenspace decomposition Lt = Lt

−2 ⊕ Lt
−1 ⊕ Lt

0 ⊕ Lt
1 ⊕ Lt

2. For t 6= 0, let
ht = ht

−2 ⊕ ht
−1 ⊕ ht

0 ⊕ ht
1 ⊕ ht

2 be the graded subalgebra of Lt defined as follows using the
notation of Proposition 5.2.2.

ht
2 = Lt

2

ht
1 = {v ∈ Lt

1 : εxt
(v) ∈ Uxt

⊗Q′
xt
}

ht
0 = {v ∈ Lt

0 : χxt
◦ ρxt

(v) ∈ zxt
⊕ sl(Uxt

) ⊕ sp(Q′
xt

)}

ht
−1 = {v ∈ Lt

−1 : ρxt
(v) ∈ U∗

xt
⊗Q′

xt
}

ht
−2 = Lt

−2
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where in the third line sp(Q′
xt

) is regarded as a subalgebra of sl(Qxt
) by

sp(Q′
xt

) = {v ∈ sl(Qxt
) : v((Q′

xt
)⊥) = 0, v(Q′

xt
) ⊂ Q′

xt
and v preserves νxt

}.

When r = 0, ht
1 = ht

−1 = 0. From the description of ht
i, it is clear that the limit h0

i as t → 0
is defined and we have also a graded Lie subalgebra h0 = h0−2 + h0−1 + h0

0 + h0
1 + h0

2 of L0.
Note that by our choice (†) of Q′,

h0
0 = {v ∈ L0

0 : χx0 ◦ ρx0(v) ∈ zx0 ⊕ sl(Ux0) ⊕ sp(Q′
x0

)}
h0
−1 = {v ∈ L0

0 : ρx0(v) ∈ U∗
x0

⊗Q′
x0
}

where sp(Q′
x0

) is regarded as a subalgebra of sl(Qx0) by

sp(Q′
x0

) = {v ∈ sl(Qx0) : v(Ker(νx0)) = 0, v(Q′
x0

) ⊂ Q′
x0

and v preserves νx0}.

To determine the Lie algebra structure of ht, let g = sp(k+r) and consider the gradation
with respect to the simple root αk. When r > 0, the gradation on g has depth 2, g =
g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, and Proposition 4.1.2 and Proposition 4.1.3 hold for g. When
r = 0, the gradation has depth 1, g = g−1 ⊕ g0 ⊕ g1, and is associated to the Lagrangian
Grassmannian, which is a Hermitian symmetric space of rank ≥ 2. Proposition 4.1.4 and
Proposition 4.1.5 hold for g. It is easy to check that when r > 0, the graded Lie algebra ht

for each t ∈ ∆−{0} is isomorphic to g. When r = 0, ht = ht−2 ⊕ht
0 ⊕ht

2 for each t ∈ ∆−{0}
is isomorphic to g = g−1 ⊕ g0 ⊕ g1 as graded Lie algebras, if we view elements of ht

−2 as
elements of degree −1 and elements of ht

2 as elements of degree 1. We claim the isomorphism
ht ∼= g holds for t = 0, too:

Proposition 5.3.3. The graded Lie subalgebra h0 defined above is isomorphic to ht ∼= g.

Proof. First, we will give the proof when r > 0. Let U be a vector space of dimension k
and Q′ be a vector space of dimension 2r with a fixed symplectic form $. Define

h2 = S2U

h1 = U⊗ Q′

h0 = C ⊕ sl(U) ⊕ sp(Q′)

h−1 = U∗ ⊗ Q′

h−2 = S2U∗.

Now fix a trivialization of the vector bundle U |σ(∆)
∼= U × σ(∆) and a trivialization of

the symplectic vector bundle Q′|σ(∆)
∼= Q′ × σ(∆). Then we get natural isomorphisms

ht
2
∼= S2Uxt

∼= S2U ∼= h2
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ht
1
∼= Uxt

⊗Q′
xt

∼= U⊗ Q′ ∼= h1

ht
0
∼= zxt

⊕ sl(Uxt
) ⊕ sp(Q′

xt
) ∼= C ⊕ sl(U) ⊕ sp(Q′) = h0

ht
−1

∼= U∗
xt

⊗Q′
xt

∼= U∗ ⊗ Q′ = h−1

ht
−2

∼= S2U∗
xt

∼= S2U∗ = h−2

for each t ∈ ∆. This gives a natural vector space isomorphism ϕt : ht → h := h−2 ⊕ h−1 ⊕
h0 ⊕ h1 ⊕ h2.

Fix t1 6= 0 and consider the vector space isomorphism ψt : ht1 → ht defined by ψt :=
ϕ−1

t ◦ϕt1 . h0⊕h1⊕h2 has a natural graded Lie algebra structure given by [u1⊗q1, u2⊗q2] =
$(q1, q2) u1 � u2 for u1, u2 ∈ h1 and the natural action of h0 on h1 and h2. By the
construction, ϕt preserves the natural graded Lie algebra structures on ht

0 ⊕ ht
1 ⊕ ht

2 and
h0 ⊕h1 ⊕h2. Thus ψt preserves the graded Lie algebra structure on ht

0 ⊕ ht
1 ⊕ ht

2. For t 6= 0,
the adjoint action gives injections ht

−1 ⊂ Hom(ht
2, h

t
1), h

t
−2 ⊂ Hom(ht

2, h
t
0) from Proposition

4.1.2. By Proposition 4.1.2, these injections are determined by the ρxt
-values of vector fields

in ht
−1 and the %xt

-values of vector fields in ht
−2. Thus these injections are preserved by ψt

because the isomorphism ϕt is defined by ρxt
on ht

−1 and %xt
on ht

−2. This implies that ψt is
a Lie algebra homomorphism for t 6= 0 by Proposition 4.1.3. By continuity, the vector space
isomorphism ψ0 : ht1 → ht

0 is also a Lie algebra homomorphism.
The proof for the case of r = 0 can be done in the same way using Proposition 4.1.4 and

Proposition 4.1.5. �

Corollary 5.3.4. The orbit of x under exp(h0) ⊂ Aut(X0) is isomorphic to Sk,k+r. In
particular, if r = `− k, X0

∼= G/P .

Proof. h0 ∼= g ∼= sp(k + r) and the isotropy subalgebra at x is h0
−2 ⊕ h0

−1 ⊕ h0
0 which is

conjugate to the parabolic subalgebra of sp(k + r) associated to Sk,k+r. �

(5.4) We want to show that L0 contains also a C∗-vector field with a component of the
zero set isomorphic to a deformation of S2,`−k+2, by taking the limit of a family of slicing
vector fields. Under a choice of the identification (‡) in (5.1), choose a subbundle U ′ of
rank 2 in U and a complementary subbundle U ′′ of rank k − 2. Consider the decomposition
L0 = L0

−2 ⊕ L0
−1 ⊕ L0

0 ⊕ L0
1 ⊕ L0

2 with respect to a choice of a family of characteristic vector
fields Et along σ. Let F t ⊂ Lt

0 be the subspace defined by

F t = {v ∈ Lt
0 : ρxt

(v)|U ′
xt

⊗Qxt
≡ λ · id for some λ ∈ C, ρxt

(v)|U ′′
xt

⊗Qxt
≡ 0}.

For t 6= 0, F t is 1-dimensional subspace generated by the slicing vector field determined by
the choice of Et and Uxt

= U ′
xt

⊕ U ′′
xt

as explained in Proposition 4.3.3. Since χxt
◦ ρxt

:
Lt

0 → End(Dxt
) is injective for all t, the limit F0 ⊂ L0

0 is 1-dimensional and {F t} form a line
bundle over ∆. By choosing a non-vanishing section of this line bundle, we get a vector filed

35



Ft which is the slicing vector field for t 6= 0. The 1-parameter subgroup {exp(λFt), λ ∈ C}
has minimal period 2π for t 6= 0 and the same holds for {exp(λF0), λ ∈ C} by continuity.
Thus F0 is a C∗-vector field.

Let X ′ ⊂ X be the submanifold such that the fiber X ′
t = X ′ ∩Xt is the component of

the zero set of Ft containing xt. Then π′ = π|X ′ : X ′ → ∆ is a smooth projective morphism
with X ′

t
∼= S2,`−k+2 for all t 6= 0.

At x0, the variety of minimal rational tangents C′
x0

⊂ PTx0(X
′
0) is precisely the tangent

vectors to minimal rational curves on X0 through x0 which are fixed by the isotropy action
of {exp(λF0), λ ∈ C}. Under the identification Tx0(X0) = (Ux0 ⊗Qx0) ⊕ S2Ux0 induced by
(‡),

C̃′
x0 = C̃x0 ∩ [(U ′

x0
⊗Qx0) ⊕ S2U ′

x0
].

As a submanifold of Cx0
∼= Z, C′

x0
is isomorphic to the restriction of the P2`−2k−1-bundle Z

over Pk−1 to a line in Pk−1. It is clear that any deformation of such submaifold of Z comes
from a deformation of the line in Pk−1. It follows that there exists some B′ ⊂ X ′

0 such that
C′

y ⊂ Cy is isomorphic to C′
x0

⊂ Cx0 for any y ∈ X ′
0−B′. The natural subbundle D′ ⊂ D|X ′−B

arising from the invariant distributions on S2,`−k+2 satisfies

D′
y = Dy ∩ Ty(X ′

t) for y ∈ X ′
t −B′, t ∈ ∆.

The Frobenius bracket for D′ must be the restriction of the Frobenius bracket for D. Thus
under the identifications D′

xt
∼= U ′

xt
⊗Qxt

and Txt
(X ′

t)/D′
xt

∼= S2U ′
xt

, the Frobenius bracket
for D′ is [u ⊗ a, v ⊗ b] = νxt

(a, b) u � v for u, v ∈ U ′
xt

and a, b ∈ Qxt
where νxt

is the same
antisymmetric form on Qxt

as before.

Proposition 5.4.1. Suppose Theorem 3.1.1 is true for S = Sk,` with k = 2. Then it is true
for all k, 2 ≤ k < `.

Proof. By Corollary 5.3.4, Theorem 3.1.1 is true if and only if the rank 2r of νx0 is 2(`−k).
Taking the subfamily X ′

t as above, and applying Theorem 3.1.1 for k = 2 to this subfamily,
we see that X ′

0
∼= S2,`−k+2 which implies the rank 2r of νx0 is 2[(`−k+2)−2] = 2(`−k). �

§6. Structure of the foliation on the central fiber

(6.1) In Section 6, we will assume k = 2. We will extend the isomorphism (‡) in (5.1) to an
open neighborhood. There exist a vector bundle U of rank 2 and a vector bundle Q of rank
2`− 4 on X0 −B where B is as in (5.1) such that D ∼= U ⊗Q and Tπ/D ∼= S2U on X0 −B.
We will fix such an identification. The Frobenius bracket for D at y ∈ X0 − B is given by
[u⊗ w, v ⊗ z] = νy(w, z)u � v for some anti-symmetric form νy on Qy. We will assume that
the rank of νy is 2r, r < `− 2 for a general y ∈ X0 −B. We will get a contradiction from this
assumption, which will prove Theorem 3.1.1 by Corollary 5.3.4 and Proposition 5.4.1.
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Lemma 6.1.1. Let Ker(νx) ⊂ Qx be the the kernel of the anti-symmetric form νx on Qx at
x ∈ Ω. Then, the meromorphic distribution U ⊗Ker(ν) is integrable on X0.

Proof. For u 6= 0, [u ⊗ w, η] = 0 for every η ∈ Uy ⊗ Qy if and only if νy(w, z) = 0 for every
z ∈ Qy. In other words, U ⊗Ker(ν) is the Cauchy characteristic (cf. [HM3, 3.1]) of D, hence
integrable. �

Let P be the meromorphic foliation on X0 defined by U⊗Ker(ν). From now on, assume
that B ⊂ X0 is the smallest subvariety such that the distribution P is holomorphic on X0−B,
and that the variety of minimal rational tangents Cy ⊂ PTy(X0) is isomorphic to the model
Co ⊂ PTo(S) for each y ∈ X0 − B. To start with, we will show that the leaves of P are
quasi-projective. More precisely, we have

Lemma 6.1.2. For any y ∈ X0−B the leaf of P|X0−B passing through y is closed in X0−B,
and its topological closure in X0 is a projective subvariety of X0.

Proof. On X0 a minimal rational curve C not lying on B and tangent to P on C − B will
be called a P-minimal rational curve. By Proposition 5.2.1, at each point y ∈ X0 − B,
there exists a characteristic vector field Ey which is the limit of characteristic vector fields
on Xt, t 6= 0. From (4.3) one can see that the orbital curves of a characteristic vector
field at o ∈ S are rational curves and those tangent to Co are minimal rational curves. It
follows that the orbital curves of Ey through y are rational curves and by the invariance of
P under {exp(λEy), λ ∈ C}, those tangent to Cy ∩ PPy are P-minimal rational curves. Thus
the tangent vectors to P-minimal rational curves through y are precisely the decomposable
tensors in Py = Uy ⊗Ker(νy), which is exactly Cy ∩ PPy.

Pick y ∈ X0−B and denote by Λ(y) the local leaf of P passing through y. Starting with
y we construct projective varieties {y} = V0 ⊂ V1 ⊂ · · · inductively, as follows. Let V1 be the
union of P-minimal rational curves passing thorough y. Having constructed Vk, we define

Vk+1 := closure of
⋃

C:P-minimal rational curve, C∩(Vk−B) 6=∅
C.

Cy ∩ PPy is irreducible and linearly non-degenerate in PPy. It follows by induction that
each Vk is irreducible. Since P is integrable Vk − B is contained in Λ(y) for all k. There
is some positive integer N such that VN+1 = VN . We claim that VN contains Λ(y) as an
open set, from which Lemma 6.1.2 follows. Otherwise dim(VN ) < dim(Λ(y)). For a smooth
point w ∈ VN − B, the union of vectors tangent to P-minimal rational curves span Pw

linearly. Hence, there exists a P-minimal rational curve C through w lying outside VN , and
VN ( VN+1, a contradiction. �

For simplicity, set a = ` − 2 − r so that the rank of P is 4(`− 2 − r) = 4a. For a given
x ∈ X0−B, let N = exp(h0)·x ∼= S2,r+2 be the submanifold through x as defined in Corollary
5.3.4. Note rank(P)+dimS2,r+2 = dimS2,`. By the action of the group exp(h0) ⊂ Aut(X0),
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we see that the foliation P is defined everywhere in a neighborhood of N and is transversal
to N . From Lemma 6.1.2 we can produce a holomorphic fiber bundle, as follows.

Lemma 6.1.3. For each w ∈ N denote by Vw the leaf of P|X0−B passing through w, and
by Pw ∈ X0 the projective variety which is the topological closure of Vw in X0. Then, there
is a locally trivial holomorphic fiber bundle µ : Y → N , together with a canonical birational
morphism f : Y → X0, such that f maps any fiber µ−1(w) biholomorphically onto Pw ⊂ X0.

Proof. Write Θ = exp(h0) and Φ = exp(h0
−2 ⊕ h0

−1 ⊕ h0
0) in the notation of (5.3). Then Θ

is isogenous to Sp(r + 2), Φ ⊂ Θ is maximal parabolic, and N = Θ(x) ∼= Θ/Φ. Θ acts
transitively on the space {[Pw] : w ∈ N} of such projective subvarieties, with isotropy at
the point [Px] given by Φ ⊂ Θ. Define R = {(y, θ) ∈ X0 × Θ : y ∈ θ(Px)}. Θ acts on
R by θ(y, ψ) = (θ(y), θ ◦ ψ). The quotient Y := R/Φ admits a canonical projection onto
N = Θ/Φ, giving a locally trivial holomorphic fiber bundle µ : Y → N whose fiber over
w ∈ N corresponds to Pw. Furthermore, there is a canonical map f : Y → X0 defined by the
projection X0 × Θ → X0 which is a birational morphism. �

Note that blowing-down in f : Y → X0 occurs precisely when points of X0 lies on a
positive-dimensional algebraic family of leaves Pw. Since X0 is of Picard number 1, this
shows

Lemma 6.1.4. For any w ∈ N , the leaf Vw cannot contain a complete curve.

Since X0 is of Picard number 1 and the projective submanifold N ⊂ X0, N ∼= S2,r+2 is
disjoint from B, we have proven

Lemma 6.1.5. The set B is of codimension ≥ 2 in X0.

(6.2) Let us study the leaf Vx more carefully. It is a quasi-projective complex manifold whose
tangent bundle can be written as the tensor product of a vector bundle U of rank 2 and a
vector bundle Ker(ν) of rank 2a. This means that it has the G-structure modelled on the
Grassmannian. Let us recall some basic facts about the geometry of the Grassmannian.

Let V be a vector space and G(2,V) be the Grassmannian of 2-planes in V. For a point
[W] ∈ G(2,V) corresponding to a 2-plane W ⊂ V, an Euler vector field at [W] is a vector
field inducing a C∗-action on G(2,V) with an isolated fixed point at [W] such that the isotropy
action on T[W](G(2,V)) is the identity. This is an analogue of the characteristic vector field
in (4.3). A choice of an Euler vector field at [W] corresponds to a choice of a complementary
subspace U ⊂ V,W⊕U = V, which is the eigenspace decomposition of the induced C∗-action
on V. Recall that a choice of U determines an affine open set U ⊂ G(2,V) consisting of
2-planes transversal to U. This U has a natural vector space structure with the origin at [W],
canonically isomorphic to W∗ ⊗ U. An open subset of this type will be called a standard

open set. This way, a choice of an Euler vector field on the Grassmannian corresponds to a
choice of a standard open set and a point on the standard open set.
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On a complex manifold M , a vector bundle W of rank 2, another vector bundle Q of rank
2a and a fixed isomorphism of W⊗Q with the tangent bundle T (M) is called a G-structure

on M modelled on G(2,C2+2a). Clearly, the Grassmannian itself has such a G-structure
where W and Q correspond to the dual universal bundle and the dual universal quotient
bundle. The G-structure onM is said to be flat if there exists an unramified holomorphic map
δ : M → G(2,C2+2a), called a developing map such that the vector bundles W, Q and the
isomorphism W ⊗Q ∼= T (M) are pull-backs of those on the Grassmannian. Given such a G-
structure onM , there exist canonically defined sections of SjT ∗(M)⊗T (M)⊗Λ2T ∗(M), j ≥ 0,
called curvature tensors ([HM1, Proposition 2]) such that the G-structure is flat if and only
if the curvature tensors vanish. For the Grassmannian, the following lemma is well-known.

Lemma 6.2.1. For a standard open set U ⊂ G(2,C2+2a), any biholomorphic automorphism
of U preserving the G-structure is an affine transformation of U .

We have the following result for the G-structure on the leaves of P.

Lemma 6.2.2. The G-structure modelled on G(2,C2+2a) on Vx is flat. In other words, there
exists a developing map δ : Vx → G(2,C2+2a), which is an unramified holomorphic map such
that the G-structure on Vx is the pull-back of that of G(2,C2+2a) by δ.

Proof. By Proposition 5.2.1, for any point y ∈ Vx, there exists a C∗-action on Vx

preserving the G-structure with an isolated fixed point at y, which acts on the tangent space
Tx(Vx) by homothety. The curvature tensors of the G-structure are holomorphic sections of
SjT ∗(Vx) ⊗ T (Vx) ⊗ Λ2T ∗(Vx), j ≥ 0. Thus under the C∗-action the curvature tensors must
be multiplied by nontrivial scalars at y. Since the curvature tensors are invariants of the
G-structure, this implies that the curvature tensors vanish. �

(6.3) Let us study the compactified leaves Pw of P more precisely. Our first aim is to prove
that it is smooth by realizing it as a fixed point set of a C∗-action in Aut(X0). Since P
is invariant under the group exp(L0) of automorphisms, germs of leaves Λ(y) at y ∈ N are
mapped to each other under elements of exp(L0). In particular, the C∗-action exp(CEw)
defined by a characteristic vector field Ew at w ∈ N must preserve the germ of the leaf
through w. We claim

Lemma 6.3.1. Denote by V the open subset µ−1(X0 −B) in Y . Then µ|V : V → N carries
the structure of a holomorphic vector bundle of rank 4a, with fibers again denoted by Vw.
Furthermore, the fibers Rw of µ : Y → N over w ∈ N are smooth compactifications of the
vector spaces Vw.

Proof. Under the developing map δ : Vw → G(2,C2+2a), a characteristic vector field Ey

at y ∈ Vw in the sense of (5.2) is sent to one of the Euler vector fields of G(2,C2+2a). Since
orbits of the C∗-action exp(CEy) are sent to orbits of the Euler vector field, the image of Vw

must cover a standard open set of G(2,C2+2a). Moreover δ sends open pieces of P-minimal
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rational curves on Vw to open pieces of minimal rational curves on G(2,C2+2a). This implies
that δ defines a rational map Pw 99K G(2,C2+2a) by [HM4, Proposition 4.3]. Thus δ(Vw) is a
constructible set containing a standard open set U . Suppose δ(Vw) contains a point outside
U . Then the complement of δ(Vw) is of codimension ≥ 2 in G(2,C2+2a) which implies that Vw

contains a complete curve, a contradiction to Lemma 6.1.4. Thus the image of Vw is exactly
one standard open set. Since a standard open set is simply connected, the developing map
δ : Vw → U is biholomorphic. By δ, Vw has a natural vector space structure inherited from
U with center δ(w). This vector space structure is uniquely determined independent of the
choice of the developing map because of Lemma 6.2.1.

To prove that Pw ⊂ X0 is smooth it suffices to identify it as an irreducible component
of the zero set of some C∗-vector field on X0. From the structure of µ|V : V → N as a
holomorphic vector bundle there is a C∗-action on V corresponding to multiplication by C∗

on the fibers. Write E′ for an infinitesimal generator of this C∗-action so that for a constant
vector field u on Vx, x ∈ N, we have [E′|Vx

, u] = u. The holomorphic vector field E′ is defined
on V ∼= X0 − B, and must therefore descend to a vector field on X0 by Hartogs’ extension,
since B ⊂ X0 is of codimension ≥ 2, by Lemma 6.1.5. Define now E] = Ew − E′ where Ew

is a characteristic vector field at w in the sense of (5.2). Then, E] vanishes at w, and the
first-order term ρw(E]) is semi-simple with 0-eigenspace Pw = Uw⊗Ker(νw). Thus Pw ⊂ X0

is an irreducible component of the zero set of E].
It remains therefore to show that E] = Ew − E′ generates a C∗-action. Since both

{exp(λEw), λ ∈ C} and {exp(λE′), λ ∈ C} have minimal period 2π, it is sufficient to show
that the two vector fields commute. But exp(CEw) respects the vector bundle structure and
exp(CE′) is the scalar multiplication. So they must commute.

Since the above holds for any w ∈ N , we have proven that µ : Y → N is a holomorphic
fiber bundle with isomorphic smooth fibers Rw which are smooth compactifications of Vw

∼=
C4a. �

Lemma 6.3.2. For each w ∈ N , the compactified leaf Pw ⊂ X0 of P passing through w is
biholomorphic to the Grassmannian G(2,C2+2a) of 2-planes in C2+2a, such that Vw ⊂ Pw

agrees with a standard open subset of G(2,C2+2a).

Proof. We know that the developing map defines a birational map δ : Pw 99K G(2,C2+2a)
sending Vw to a standard open set U of the Grassmannain and open pieces of minimal
rational curves on Vw to open pieces of minimal rational curves of the Grassmannian. Write
J = G(2,C2+2a) − U resp. H = Pw − Vw for the divisors at infinity. J is irreducible but H
may be reducible. Let H = H0 ∪H1 ∪ · · · ∪Hq be the decomposition of H into its irreducible
components.

We claim that the strict image δ−1(J ) must be an irreducible component of H, say H0.
Suppose not. Then δ−1(H) is of codimension ≥ 2 in Pw. All minimal rational curves of
the Grassmannian intersect J . Thus a general minimal rational curve of Pw must intersect
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δ−1(J ). But a general minimal rational curve on the smooth variety Pw can be deformed to
be disjoint from any given set of codimension ≥ 2 (c.f. [HM2, proof of Proposition 12]). This
is a contradiction.

By the above claim, there exists a subvariety A ⊂ J , A of codimension ≥ 2 in G(2,C2+2a),
such that δ−1 is a holomorphic map outside A and sends J −A dominantly over H0. Thus,
δ−1 gives a biholomorphism G(2,C2+2a) − A ∼= Pw − (H1 ∪ · · · ∪ Hq) − I for some proper
subvariety I ⊂ H0, I 6⊂ (H1∪· · ·∪Hq). From Hartogs’ extension for the G-structure modelled
on the Grassmannian ([HM2, Proposition 1]), δ can be extended across general points of I
as an unramified holomorphic map. Thus we may assume that I = ∅.

Suppose A 6= ∅. Choose a family of minimal rational curves {ls : s ∈ ∆} on G(2,C2+2a)
such that l0 intersects A but is not contained in A; all ls with s 6= 0 are disjoint from A and
are the strict images of a family of minimal rational curves Cs on Pw. Then the limit C0 is an
irreducible curve because C0 has degree 1 with respect to the ample line bundle on X0. Thus
the strict image of C0 must be l0, implying C0∩(H1∪· · ·∪Hq) 6= ∅. So C0 ·(H1∪· · ·∪Hq) > 0.
But Cs, s 6= 0, is disjoint from H1 ∪ · · · ∪ Hq, a contradiction. We conclude that A = ∅ and
Pw

∼= G(2,C2+2a). �

Summarizing, we have proved

Proposition 6.3.3. Let π : X → ∆ be a regular family of projective manifolds, Xt := π−1(t),
such that Xt

∼= S = S2,` for t 6= 0. Suppose the antisymmetric form ν on X0 as in (5.3) has
rank 2r, 1 ≤ r < `− 2 at general points of X0. Then,

1. there exists a subvariety B ⊂ X0 of codimension ≥ 2 and a projective submanifold
N ⊂ X0 −B biholomorphic to the symplectic Grassmannian S2,2+r;

2. X0 −B can be realized as the total space of a holomorphic vector bundle µo : V → N of
rank 4a, a = `− r − 2, with N ⊂ X0 −B identified as the zero section;

3. µo : V → N can be compactified to a holomorphic fiber bundle µ : Y → N ∼= S2,r+2

of Grassmannians G(2,C2+2a) equipped with a birational morphism f : Y → X0, which
sends each fiber Yw of µ biholomorphically to Pw.

(6.4) Using the vector bundle structure on X0 −B in Proposition 6.3.3, we will find a special
submanifold in X0, which will lead to the contradiction we want.

We need to recall the geometry of G(2,V) when dim V = 4. Let U ⊂ G(2,V) be a
standard open set determined by a choice of a subspace U of codimension 2. Since dim V = 4,
U itself is a point of G(2,V). It is easy to check that the point [U] is the unique singular
point of the hypersurface G(2,V) − U . Now suppose we are given a point [W] ∈ U . The
isotropy subgroup P[W] of PGL(V) has a Levi factor isogenous to P (GL(W) × GL(U)). In
fact, a choice of the standard open set containing [W] determines a Levi factor of P[W]. From
this description, the following is obvious.
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Lemma 6.4.1. For a standard open set U and a point [W] ∈ U of the 4-dimensional Grass-
mannian G(2,V), dimV = 4, a Levi factor of the isotropy subgroup P[W] preserving U is
also a Levi factor of the isotropy subgroup at the unique singular point of the hypersurface
G(2,V) − U .

Proposition 6.4.2. In the notation of Proposition 6.3.3, there is a complex submanifold
X ′ ⊂ X0, with the following properties:
(1) X ′ − B ⊂ X0 − B ∼= V is canonically identified with the total space of a holomorphic

vector subbundle V ′ ⊂ V,
(2) the compactification Y ′ of f−1(X ′ − B) ∼= f−1(V ′) is the total space µ′ : Y ′ → N of a

bundle of Grassmannians G(2,C4) for µ′ = µ|Y ′ ; where each fiber V ′
w ⊂ Y ′

w is a standard
neighborhood of G(2,C4).

(3) the holomorphic map f ′ := f |Y ′ : Y ′ → X ′ is a modification of the projective manifold
X ′, such that, writing Γ ⊂ Y ′ −V ′ for the section of µ′ consisting of the unique isolated
singularity Γw of Y ′

w − V ′
w, f ′(Γ) is a single point ι ∈ X ′.

Proof. Note V ∼= U ⊗ Ξ as a homogeneous vector bundle on N under the action of exp(h0)
where Ξ is the vector subbundle of Q|N whose fiber Ξw ⊂ Qw is the kernel of νw at w ∈ N .
Since the isotropy subgroup exp(h0

−2⊕h0
−1 ⊕h0

0) at w acts trivially on Ξw from the definition
of h0

0 in (5.3), Ξ is a trivial vector bundle on N . Let now Ξ′
w ⊂ Ξw be any choice of a

2-dimensional vector subspace, and Ξ′ ⊂ Ξ be the corresponding trivial holomorphic vector
subbundle. Define V ′ := U ⊗ Ξ′ as a subbundle of V. For any fiber V ′

w over a point w ∈ N ,
P(V ′

w) ∼= P(Uw ⊗Ξ′
w) ∼= P1×P1, so that the closure of V ′

w in Yw is biholomorphic to G(2,C4),
giving a holomorphic fiber bundle µ|Y ′ : Y ′ → N of Grassmannians G(2,C4). Define now
X ′ = f(Y ′).

To show that X ′ ⊂ X0 is smooth, we will find a C∗-action on X0 with X ′ as a component
of the fixed point set. Since Ξ is a trivial holomorphic vector bundle, we can identify Ξ with
Ξw × N . Choose a trivial subbundle Ξ′′ ⊂ Ξ complementary to Ξ′, i.e., Ξw = Ξ′

w ⊕ Ξ′′
w.

For λ ∈ C∗ we have automorphisms ψλ of the vector bundle µo : V → N corresponding to
assigning (q′, q′′) ∈ Ξ′ ⊕ Ξ′′ to (q′, λq′′). This gives a C∗-action on V which is the homothety
on Uw ⊗Ξ′′

w and fixes V ′
w = Uw ⊗Ξ′

w at each w ∈ N . The corresponding vector field descends
to X0 − B to give a holomorphic vector field E\ extendible to X0 by Hartogs. Then E\

generates a C∗-action whose fixed point set contains X ′ as an irreducible component.
Properties (1) and (2) are immediate from the definition of X ′. For (3), note first of all

that f ′ : Y ′ → X ′ must contract the hypersurface Y ′ − V ′ because X ′ ∩B is of codimension
≥ 2 in X ′ as in Lemma 6.1.5. Moreover the scalar multiplication on the vector bundle V ′

induces C∗-actions on Y ′ and X ′ with respect to which f ′ is equivariant. The restriction
of this C∗-action on each fiber Y ′

w of µ′ is equivalent to the one induced by an Euler vector
field on G(2,C4) and has an isolated fixed point at Γ′

w. As noted in (6.1), blowing-down
in f ′ : Y ′ → X ′ occurs precisely when points of X ′ lie on a family of cycles {f ′(Y ′

ws
)} for
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some holomorphic arc {ws ∈ N : s ∈ ∆}. Thus f ′(Γw0) ∈ P ′
ws

:= f ′(Y ′
ws

) for all s ∈ ∆,
implying that f ′(Γw0) must be a fixed point of P ′

ws
for all s ∈ ∆. Since Γw ∈ Y ′

w − V ′
w is an

isolated fixed point of the C∗-action, f ′(Γw0) = f ′(Γws
) for small s. Thus f ′|Γ has positive

dimensional fibers. But Γ ∼= S2,r+2 has Picard number 1, so the image must be one point. �

End of Proof of Theorem 3.1.1. We are ready to get a contradiction. First note that
dim(N) = 4r + 3, dim(Y ′) = dim(X ′) = dim(N) + dim(G(2,C4)) = 4r + 7.

We proceed to consider isotropy representations at ι ∈ X ′. Aut(N) embeds as a Lie
subgroupG′ of Aut(X ′). G′ is isogenous to Sp(r+2) and acts canonically and holomorphically
on Y ′. G′ preserves the vector bundle µ|V′ : V ′ → N as a group of bundle maps. Hence it
preserves the total space of µ′ : Y ′ → N . As a consequence, G′ preserves the section Γ
of singular points of Y ′ − V ′. By Proposition 6.4.2, f(Γ) = ι, so that the point ι ∈ X ′

is fixed under the action of G′ on X ′. As a result, we obtain an isotropy action of G′ on
Tι(X ′) ∼= C4r+7.

Next we will augment the group of the isotropy action at Tι(X ′). Since V ′ ∼= U ⊗ Ξ′ as
vector bundles on N and Ξ′ is a trivial vector bundle of rank 2 on N , SL(2) ∼= SL(Ξ′

z) for a
base point z ∈ N acts on V ′ as vector bundle automorphisms. This action can be extended
to Y ′ and hence descends to an action on X ′ fixing ι. The latter action clearly commutes
with the action of G′, giving an action of SL(Ξ′

z) ×G′ on X ′.

Both SL(Ξ′
z) and G′ act non-trivially on Tι(X ′) by [BB, Lemma 2.4 ]. Thus we have a

representation of SL(2)×Sp(r+2), which is isogenous to SL(Ξ′
z)×G′, on Tι(X ′) where both

factors act non-trivially. But any irreducible SL(2) × Sp(r + 2)-representation space where
both factors act non-trivially is a tensor product R1⊗R2 where R1 is a nontrivial irreducible
SL(2)-representation space and R2 is a nontrivial irreducible Sp(r+2)-representation space.
We have dimR1 ≥ 2 and dimR2 ≥ 2r+4, so that dim(R1⊗R2) ≥ 4r+8. But this contradicts
with the fact that Tι(X ′) is of dimension 4r+7. The proof of Theorem 3.1.1 is complete. �

Chapter III. Rigidity of the homogeneous space of type (F4, α1)

§7. Geometry of the homogeneous space of type (F4, α1)

(7.1) In Chapter III, S denotes the 15-dimensional F4-homogeneous space associated to the
short simple root α1 where the numbering of the short roots {α1, α2, α3, α4} of F4 is chosen
such that α1 and α2 are short and the highest long root is of the form 2α1 +4α2 +3α3 +2α4.

Let Υ be the 16-dimensional E6-Hermitian symmetric space of compact type. Regard Υ
as a submanifold of P26 by the minimal E6-equivariant embedding. The semi-simple part of
the isotropy subalgebra of E6 at a base point o ∈ Υ is so(10) and the isotropy representation
is the 16-dimensional spin representation. Υ is covered by lines and the variety of minimal
rational tangents of Υ at a base point o ∈ Υ corresponds to the 10-dimensional spinor variety
S5 ⊂ P15, which is the highest weight orbit of the spin representation of so(10). Note that all
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smooth (resp. singular) hyperplane sections of S5 ⊂ PTo(Υ) are conjugate under the action of
Spin(10) because the number of orbits of the isotropy representation of Spin(10) on PT ∗

o (Υ)
is 2, the rank of the symmetric space Υ ([Ts, Lemma 2.4]).

It is well-known that S is a smooth hyperplane section of Υ (e.g. [Za, p.59]). Minimal
rational curves on S are lines of Υ that lie on the hyperplane. Thus the variety of minimal
rational tangents Co at a base point o ∈ S is a smooth hyperplane section of S5. Note that
c1(S5) = 8 and S5 is a 10-dimensional Fano manifold of coindex 3 in the sense of [Mu]. Thus
Co is a 9-dimensional Fano manifold of coindex 3.

Proposition 7.1.1. Given any projective and smooth morphism M → ∆ from a complex
manifold M to the unit disc, if one of the fiber is biholomorphic to Co, then any other fiber
is also biholomorphic to Co. In particular, H1(Co, T (Co)) = 0.

Proof. By [Mu], any projective and smooth deformation of Co must be a hyperplane
section of S5 and so biholomorphic to Co because all smooth hyperplane sections of S5 are
conjugate to each other. The vanishing of H1(Co, T (Co)) follows from the fact that deforma-
tions of Fano manifolds are unobstructed because H2(Co, T (Co)) = Hn−2(Co,Ω1 ⊗KCo

) = 0
by Kodaira-Nakano vanishing. �

Proposition 7.1.2. Co ⊂ PTo(S) is linearly normal and the variety of tangential lines to Co

is non-degenerate in PΛ2To(S).

Proof. The linear normality is a consequence of Zak’s linear normality theorem [Za]
because Co ⊂ PTo(S) ∼= P14 and dim Co = 9. The second statement follows from [HM3, Proof
of Proposition 1.3.2], which is a consequence of Zak’s theorem on tangencies. �

Proposition 7.1.3. The Lie algebra of infinitesimal linear automorphisms aut(C̃o) has di-
mension 31.

Proof. Since all infinitesimal linear automorphisms of Co induce linear transformations
of To(S), it suffices to show h0(Co, T (Co)) = 30. Consider the exact sequence associated to
the realization of Co as a hyperplane section of S5

0 −→ H0(Co, T (Co)) −→ H0(Co, T (S5)|Co
) −→ H0(Co,O(1)) −→ H1(Co, T (Co)).

Note H1(Co, T (Co)) = 0 from Proposition 7.1.1 and h0(Co,O(1)) = 15 because Co ⊂ PTo(S)
is linearly normal by Proposition 7.1.2. Thus it suffices to show h0(Co, T (S5)|Co

) = 45. Using
the long exact sequence associated to the short exact sequence on S5

0 −→ T (S5) ⊗O(−1) −→ T (S5) −→ T (S5)|Co
−→ 0

and the vanishing
H0(S5, T (S5) ⊗O(−1)) = H0(S5,Ω9(7)) = 0
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H1(S5, T (S5) ⊗O(−1)) = H1(S5,Ω9(7)) = 0

from [Sn, Theorem 3.4], we get h0(Co, T (S5)) = h0(S5, T (S5)) = dim so(10) = 45. �

(7.2) The grading on the Lie algebra g of type F4 induced by the parabolic subalgebra p

associated to the simple root α1 is

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

with
dim g2 = dim g−2 = 7

dim g1 = dim g−1 = 8

dim p = dim(g−2 ⊕ g−1 ⊕ g0) = 37.

By the identification To(S) = g1 ⊕ g2, the subspace g1 defines a distribution D on
S = G/P,G = exp g, P = exp(p). Proposition 4.1.1, Proposition 4.3.1 and Corollary 4.3.2
hold for S.

g0 is reductive with semi-simple part isomorphic to so(7). As g0-modules, g1 is isomor-
phic to the spin representation of so(7) and g2 is isomorphic to the basic representation of
so(7). Thus there are exactly two orbits on Pg1 (resp. Pg2) consisting of a smooth hyper-
quadric Qo (resp. Ro) of dimension 6 (resp. 5) and its complement. The variety of minimal
rational tangents Co ⊂ PTo(S) cannot contain g1 or g2. Thus

Co ∩ Pg1 = Qo

Co ∩ Pg2 = Ro.

A conformal structure on a vector space V means a choice of a smooth hyperquadric in
PV . Denote by co(V ) the Lie algebra of infinitesimal linear automorphisms of the affine cone
of the smooth hyperquadric. g2 has a conformal structure given by Ro ⊂ Pg2. It is easy to
check that dim co(g2) = 22. aut(C̃o) preserves Do ⊂ To(S) inducing a homomorphism

χo : aut(C̃o) → End(To(S)/Do).

Proposition 7.2.1. Let no be the nil-radical of Ker(χo). Then Ker(χo)/no is 1-dimensional
and represented by homotheties on Do. By the homomorphism ρo : g−1 → aut(C̃o), arising
from Proposition 4.1.1, g−1

∼= no and by the homomorphism χo ◦ ρo : g0 → End(To(S)/Do),
g0

∼= co(To(S)/Do). In particular, the image of χo is co(To(S)/Do).

Proof. The action of g−1 ⊕ g0 on To(S) ∼= g1 ⊕ g2 is effective by [Ya, Lemma 3.2]. Thus
it is effective on Co by the non-degeneracy of Co. It follows that

g−1 ⊕ g0 ⊕ CidTo(S) ⊂ aut(C̃o).
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The inclusion is in fact an equality because both sides have the same dimension by Proposition
7.1.3. Since g−1 is the nil-radical of the graded Lie algebra g−1⊕g0 mod g−2, it acts trivially
on the irreducible p-module To(S)/Do(S). Thus we have no

∼= g−1 and the statement about
Ker(χo)/no is obvious. By the definition of the conformal structure on To(S)/Do, the image
of χo ◦ ρo : g0 → End(To(S)/Do) is in co(To(S)/Do). Since this is injective by the above
description of Ker(χo), it is an isomorphism because dim g0 = dim co(g2). �

Proposition 7.2.2. aut(C̃o)(2) = 0 and there is a natural inclusion aut(C̃o)(1) ⊂ (To(S)/Do)∗.

Proof. The vanishing of aut(C̃o)(2) is a direct consequence of Theorem 1.1.2. By the
linear normality of Co in Proposition 7.1.2, Theorem 1.1.3 induces an injection aut(C̃o)(1) ⊂
T ∗

o (S). By Proposition 2.3.1, for each A ∈ aut(C̃o)(1), there exists λ ∈ T ∗
o (S) such that

Aαα =< λ, α > α for each α ∈ C̃o. The restrictions of elements of aut(C̃o)(1) to Do
∼= g1

define elements of the first prolongation of the spin representation of so(7), which vanishes
by Corollary 1.1.5 because the spin representation of so(7) is not the semi-simple part of the
isotropy of a Hermitian symmetric space. Thus λ annihilates Do. It follows that the value of
A is determined by its values on To(S)/Do, inducing an injection of aut(C̃o)(1) into the first
prolongation of the standard representation of so(7) on To(S)/Do. By Theorem 1.1.3, this
can be regarded as a subspace of (To(S)/Do)∗. �

Recall that for any vector field v vanishing at o, ρo(v) ∈ End(To(S)) is the endomorphism
induced by the first jet of v at o. If ρo(v) = 0, let %o(v) ∈ S2T ∗

o (S) ⊗ To(S) be the element
induced by the 2-jet of v at o. Denote by χo the projection aut(C̃o) → co(To(S)/Do). The
following Proposition can be proved using Propositions 7.2.1 and 7.2.2 in the same way as
the proof of Proposition 4.2.3. In particular, the inclusion aut(C̃o)(1) ⊂ (To(S)/Do)∗ in
Proposition 7.2.2 is an equality.

Proposition 7.2.3. Denoting by εo(v) the value of a vector field v on S at the base point
o ∈ S and by ςo the projection To(S) → To(S)/Do, we have isomorphisms

ςo ◦ εo : g2 → To(S)/Do

εo : g1 → Do.

By taking 1-jets at o of vector fields vanishing at o, we have the homomorphism ρo : g0⊕g−1 →
aut(C̃o). Then ρ0 is injective and induces isomorphisms

χo ◦ ρo : g0 → co(To(S)/Do)

and
ρo : g−1 → no.

By taking 2-jets at o of vector fields vanishing to order ≥ 2 at o, we get an isomorphism

%o : g−2 → aut(C̃o)(1) = (To(S)/Do)∗.
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§8. Proof of the rigidity

(8.1) The aim of this section is to prove the following rigidity.

Theorem 8.1.1. Let π : X → ∆ be a smooth and projective morphism from a complex
manifold X to the unit disc ∆. Suppose for any t ∈ ∆ − {0}, the fiber Xt := π−1(t) is
biholomorphic to S, the homogeneous space of type (F4, α1). Then the central fiber X0 is also
biholomorphic to S.

From Proposition 7.1.1, the following counterpart of Proposition 3.5.1 is immediate.

Proposition 8.1.2. In the notation of Theorem 8.1.1, choose a section σ : ∆ → X of π such
that x0 := σ(0) is a general point of X0. Let ν : M → ∆ be the family where Mt := ν−1(t)
is the normalized Chow space of minimal rational curves through xt := σ(t). Then Mt

∼= Co

for each t ∈ ∆.

Using Proposition 7.1.2 in place of Proposition 3.4.2, the following Proposition can be
proved in exactly the same way as Proposition 3.5.2.

Proposition 8.1.3. In the situation of Theorem 8.1.1, the variety of minimal rational tan-
gents Cx ⊂ PTx(X0) at a general point x ∈ X0 is isomorphic to Co ⊂ PTo(S) at a base point
o ∈ S.

(8.2) By Proposition 8.1.3, there exists a subvariety B ⊂ X0 such that Cx ⊂ PTx(X0) is
isomorphic to Co ⊂ PTo(S) for each x ∈ X −B. We assume that B is the smallest subvariety
with this property. Denote by D the distribution on X −B defined by the linear span of the
subvariety of Cx corresponding to Qo = Co ∩ Pg1 for each x ∈ X −B.

For the relative tangent bundle Tπ of π : X → ∆ write T π for the associated relative
tangent sheaf and L for the direct image π∗(T π). L is a locally free sheaf with fiber at t 6= 0,

Lt ∼= the Lie algebra of holomorphic vector fields on Xt
∼= g.

As in (5.1), L0 is the Lie algebra of limit vector fields onX0. Choose a section {xt ∈ Xt, t ∈ ∆}
with x0 6∈ B. For v ∈ Lt, let εxt

(v) ∈ Txt
(Xt) be the evaluation at xt. When εxt

(v) = 0,
let ρxt

(v) be the endomorphism of Txt
(Xt) given by the first jet of v. As in (5.1), define, for

each t ∈ ∆,

J t := {v ∈ Lt : εxt
(v) = 0, ρxt

(v)|Dxt
≡ µ · id for some µ ∈ C}

It := {v ∈ Lt : εxt
(v) = 0, ρxt

(v)|Dxt
≡ 0}

Ht := {v ∈ Lt : εxt
(v) = 0, ρxt

(v) = 0}.
These are subalgebras of the Lie algebra Lt for each t ∈ ∆.

For x ∈ X −B, Tπ
x /Dx has the conformal structure conjugate to that of To(S)/Do. Let

χx : aut(C̃x) → co(T π
x /Dx) be the natural projection and nx be the nil-radical of Ker(χx).

Using Proposition 7.2.3, the next Proposition can be proved in a similar manner as Proposi-
tion 5.1.1.
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Proposition 8.2.1. The homomorphism defined by 2-jets of vector fields at xt

%xt
: Ht → aut(C̃xt

)(1) ∼= (T π
xt
/Dxt

)∗

is an isomorphism for each t ∈ ∆. The homomorphism defined by 1-jets of vector fields at xt

ρxt
: It → nxt

is an isomorphism for each t ∈ ∆. The homomorphism defined by 1-jets of vector fields at xt

χxt
◦ ρxt

: J t/It → co(T π
xt
/Dxt

)

is injective and has image zxt
, the 1-dimensional center of co(T π

xt
/Dxt

) for each t ∈ ∆. In
particular,

{Ht ⊂ It ⊂ J t, t ∈ ∆}

form a subbundle of the locally free sheaf L on ∆.

From Corollary 4.3.2 and Proposition 8.2.1 we deduce the extension of characteristic
vector fields to X0 as in Proposition 5.2.1:

Proposition 8.2.2. Let xt = σ(t) be a section of π : X → ∆ with x0 /∈ B. There exists a
family of C∗-vector fields Et on Xt with an isolated zero at xt for all t ∈ ∆ such that Et is a
characteristic vector field at xt for each t 6= 0.

Let us fix a family Et of characteristic vector fields as in Proposition 8.2.2. For each
t 6= 0, we have the eigenspace decomposition of the adjoint action of Et on Lt,

Lt = Lt
−2 ⊕ Lt

−1 ⊕ Lt
0 ⊕ Lt

1 ⊕ Lt
2

which is conjugate to g = g−2⊕g−1⊕g0⊕g1⊕g2. For each i,−2 ≤ i ≤ 2, the i-eigenspace L0
i of

L0 under the adjoint action of E0 must have dimension at least dimLt
i. Since dimL0 = dimLt,

we have the eigenspace decomposition

L0 = L0
−2 ⊕ L0

−1 ⊕ L0
0 ⊕ L0

1 ⊕ L0
2.

The next Proposition can be proved as Proposition 5.2.2 and Proposition 7.2.3.

Proposition 8.2.3. Let L0 = L0
−2 ⊕ L0

−1 ⊕ L0
0 ⊕ L0

1 ⊕ L0
2 be the eigenspace decomposition

associated to a choice of a family of characteristic vector fields Et along xt as above. Denoting
by εx the evaluation of vector fields on X0 at x = x0 ∈ X0 and denoting by ςx the projection
Tx(X0) → Tx(X0)/Dx, we have two isomorphisms

ςx ◦ εx : L0
2 → Tπ

x (X0)/Dx
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εx : L0
1 → Dx.

By taking 1-jets at x = x0 of vector fields vanishing at x, we have homomorphisms ρx :
L0

0 ⊕ L0
−1 → aut(C̃x) which is injective and induces isomorphisms

χx ◦ ρx : L0
0 → co(Tx(X0)/Dx)

ρx : L0
−1 → nx.

By taking 2-jets at x of vector fields vanishing to order ≥ 2 at x, we get an isomorphism

%x : L0
−2 → aut(C̃x)(1) ∼= (T π

x /Dx)∗.

Choose a family of characteristic vector fields Et, xt = σ(t) as in Proposition 8.2.3,
inducing the eigenspace decomposition Lt = Lt

−2 ⊕ Lt
−1 ⊕ Lt

0 ⊕ Lt
1 ⊕ Lt

2. For t 6= 0, let
ht
1 = Lt

2, h
t
0 = Lt

0 and ht
−1 = Lt

−2. Then ht = ht
−1 ⊕ ht

0 ⊕ ht
1 is a subalgebra of Lt.

Let g = so(9) and g = g−1 ⊕ g0 ⊕ g1 be the gradation of g regarded as the Lie algebra
of holomorphic vector fields on the 7-dimensional hyperquadric Q7. Then it is easy to check
that the Lie algebra ht = ht

−1 ⊕ ht
0 ⊕ ht

1 is isomorphic to g for each t ∈ ∆ − {0}. Applying
Proposition 4.1.4 and Proposition 4.1.5 to g, the following counterpart of Proposition 5.3.3
holds.

Proposition 8.2.4. The graded Lie subalgebra h0 defined above is isomorphic to ht ∼= g.

Proof. Let h1 be a 7-dimensional vector space with a conformal structure, h0 = co(h1)
and h−1 = h∗

1. By fixing a trivialization of the family

{Cxt
, t ∈ ∆} ∼= Co × ∆,

we get natural identifications of (T π/D)xt
with h1 for all t preserving the conformal structure.

We have a family of vector space isomorphisms ϕt : ht → h = h−1 ⊕ h0 ⊕ h1 arising from
Proposition 8.2.3. For a fixed t1 6= 0, the vector space isomorphism ψt : ht1 → ht defined by
ψt := ϕ−1

t ◦ ϕt1 preserves the Lie algebra structure, by the same argument as in the proof of
Proposition 5.3.3. By continuity, we get a Lie algebra isomorphism ψ0 : ht1 ∼= h0. �

Corollary 8.2.5. The orbit of x under exp(h0) ⊂ Aut(X0) is isomorphic to Q7.

(8.3) To prove Theorem 8.1.1, we assume that X0 � S and get a contradiction from this
assumption.
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Proposition 8.3.1. In the notation of Proposition 8.2.3, if all vector fields on X0 are limit
vector fields, i.e., L0 = H0(X0, T (X0)), then X0

∼= S. If L0 6= H0(X0, T (X0)), there exists a
C∗-vector field E ∈ H0(X0, T (X0)) − L0 with εxt

(E) = 0 and ρxt
(E) = idTx0 (X0).

Proof. Since X0 is Fano, Hi(X0, T (X0)) = 0 for all i ≥ 2. Thus if h0(X0, T (X0)) =
h0(Xt, T (Xt)) for t 6= 0, then h1(X0, T (X0)) = h1(Xt, T (Xt)) = 0 by the local rigidity of S
and we get X0

∼= S. Since

52 = dim g = dimL0 ≤ h0(X0, T (X0)) ≤ dimS + dim aut(C̃o) + dim aut(C̃o)(1) = 53,

L0 6= H0(X0, T (X0)) implies the existence of a vector field E vanishing at x0 with ρx0(E) =
idTx0 (X0) ∈ aut(C̃x0). By taking Zariski closure of the analytic subgroup exp(CE), we can
choose E to be a C∗-vector field not contained in L0. �

By Proposition 8.3.1, a C∗-vector field E with isolated zero at x0 and ρx0(E) = id exists
for each choice of the section {xt ∈ Xt : x0 6∈ B}.

Lemma 8.3.2. The distribution D is integrable on X0.

Proof. The distribution D is invariant under the vector field E because the fiber sub-
bundle C ⊂ PT (X0 − B) is invariant under Aut(X0). Let F : Λ2D → T (X0 − B)/D be the
Frobenius bracket tensor of the distribution. On the one hand, Fxo

is invariant under the
isotropy action of {exp(λE) : λ ∈ C} by the invariance of the distribution D. On the other
hand, Fx0 is multiplied by λ−1 by the action of exp(λE) because it acts on Tx0(X0) as the
multiplication by λ. Thus Fx0 = 0. Since x0 can be chosen to be any point of X0 − B, we
get F ≡ 0. �

As in Lemma 6.1.2, we have

Lemma 8.3.3. For any y ∈ X0−B the leaf of D|X0−B passing through y is closed in X0−B,
and its topological closure is a projective subvariety of X0.

Proof. On X0 a minimal rational curve C not lying on B and tangent to D on C −B will be
called a D-minimal rational curve. By Proposition 8.2.2, at each point y ∈ X0−B, there exists
a characteristic vector field Ey which is the limit of characteristic vector fields on Xt, t 6= 0.
The orbital curves of Ey through y are rational curves and by the invariance of D under
{exp(λEy), λ ∈ C}, those tangent to Dy ⊂ Cy at y are D-minimal rational curves. Thus the
tangent vectors to D-minimal rational curves through y are precisely those corresponding to
Qo ⊂ Co, which is exactly Cy ∩ PDy. The rest of the proof is identical with Lemma 6.1.2. �

A conformal structure on a complex manifold M means a fiber subbundle R ⊂ PT (M)
whose fibers are smooth hyperquadrics. This is the G-structure modelled on the quadric
Qn, n = dimM . It has similar properties as the G-structure modelled on the Grassmannian
in (6.2). For example, there exists an unramified holomorphic map δ : M → Qn such that the
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conformal structure onM coincides with the pull-back of the conformal structure on Qn under
δ if and only if a naturally defined tensor (the Weyl tensor) of type T ∗(M)⊗T (M)⊗Λ2T ∗(M)
vanishes.

The foliation D is transversal to N ∼= Q7, the orbit of x0 under exp h0. The leaves of
D have conformal structures given by Cy ∩ PDy at y ∈ X0 − B. This conformal structure is
invariant under {exp(λE), λ ∈ C}. Using this conformal structure in place of the G-structure
modelled on G(2,C2+2a) the arguments in (6.2) and (6.3) work verbatim to give the following.
Let us just mention that a standard open set on the quadric Qn means the complement of
a singular hyperplane section. Such an open set is biregular to the affine space Cn and an
analogue of Lemma 6.2.1 holds.

Proposition 8.3.4. Let π : X → ∆ be a regular family of projective manifolds, Xt := π−1(t),
such that Xt

∼= S for t 6= 0. Suppose X0 � S. Then,
1. there exists a subvariety B ⊂ X0 of codimension ≥ 2 and a projective submanifold
N ⊂ X0 −B biholomorphic to the 7-dimensional hyperquadric Q7;

2. X0 −B can be realized as the total space of a holomorphic vector bundle µo : V → N of
rank 8 with N ⊂ X0 −B identified as the zero section;

3. µo : V → N can be compactified to a holomorphic fiber bundle µ : Y → N ∼= Q7 of
8-dimensional hyperquadrics Q8 equipped with a birational morphism f : Y → X0, which
sends each fiber Yw of µ biholomorphically to a submanifold Pw of X0 compactifying the
fiber Vw ⊂ X0 −B of µo such that Vw ⊂ Yw corresponds to a standard open set in Q8.

End of Proof of Theorem 8.1.1. From the geometry of Q8, the hypersurface Yw −Vw has
a unique singular point Γw defining a section Γ ⊂ Y − V of µ. By the same reasoning as in
Proposition 6.4.2, f(Γ) should be a single point ι ∈ X0.

We proceed to consider the isotropy representations at ι ∈ X ′. Aut(N) embeds as a Lie
subgroup G′ of Aut(X0). G′ is isogenous to SO(9) and arguing as in (6.3), the point ι ∈ X ′ is
fixed under the action of G′ on X ′. As a result, we obtain an isotropy action of G′ on Tι(X0).
By [BB, Lemma 2.4], this is a non-trivial representation of G′. Since an irreducible represen-
tation of so(9) with dimension ≤ 15 = dimX0 is isomorphic to the standard representation
of dimension 9, there must be a unique G′-submodule U ⊂ Tι(X0) of dimension 9 equivalent
to the standard representation and a 6-dimensional trivial representation complementary to
U . For a point w ∈ N , the semisimple factor of the isotropy subgroup G′

w is isogenous to
SO(7) and its action on Tw(Rw) is the spin representation. The isotropy action of G′

w on
Tι(Pw) is also the spin representation in analogy with Lemma 6.4.1. In particular, Tι(Pw) is
contained in the non-trivial G′-module U ⊂ Tι(X0) for any choice of w ∈ N .

Now consider the C∗-subgroup G[ ⊂ Aut(X0) corresponding to the scalar multiplication
of the vector bundle V. G[ commutes with G′ because elements of G′ induce vector bundle
homomorphisms of V. We claim that the action of G[ on Tι(X0) has at least two distinct
weights. Suppose not. Then orbital curves of G[ on X0 through ι have distinct tangent
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vectors at ι by Lemma 3.3.7. Since general orbital curves lie in Pw for general w ∈ N , this
implies that {Tι(Pw) : general w ∈ N} span Tι(X0), a contradiction to Tι(Pw) ⊂ U .

Thus we have the isotropy representation of G[ × G′ on Tι(X0) such that G[ has two
distinct weights and the action of G′ has 9-dimensional irreducible module U . This forces
the dimension of Tι(X0) to be at least 2 × 9 = 18, a contradiction to dimX0 = 15. �
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