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The following is an exposition of the joint work with Massimiliano Pontecorvo (Rome
III). The detail will appear elsewhere.

The purpose is to construct via twistor method a family of anti-self-dual hermitian
metrics on Inoue surfaces with positive second betti number. We shall give statements and
an outline of the proofs here. In the first section we recall the definition of anti-self-dual
metrics and the associated twistor spaces and state our main result in the second section.
In the third section we explain the method of Donaldson-Friedman [3]and its variation,
which actually are our fundamental methods. In the fourth section we shall set up the
situation where Inoue surfaces arise in the previous framework. Finally in the fifth section
we sketch how to complete the proof by using Joyce twistor spaces.

1 Anti-self-dual metric and twistor space

1.1. (Anti-)self-dual metrics
Let M be an oriented 4-dimensional C∞ manifold, and g a Riemannian metric on M .

Then the Riemannian curvature tensor R of g is naturally decomposed as a sum of two
tensors

R = W + ρ,
where W is the Weyl conformal curvature tensor of g and ρ is a tensor determined by the
Ricci tensor of g. This really holds true in any dimension, but as a special phenominon in
4-dimension, W further decomposes in two parts

W = W+ +W−.

where W+ and W− are called respectively the anti-self-dual part and the self-dual part of
W .

Definition (Atiyah-Hitchin-Singer [1]) When W+ ≡ 0 (resp. W− ≡ 0), the Riemannian
metric g is called self-dual (resp. anti-self-dual) metric and (M, g) the self-dual (resp. anti-
self-dual) manifold.
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Remark. 1) In general W ≡ 0 if and only if g is conformally flat, namely g is locally
written as a product of a positive function and the Euclidian metric with respect to suitable
local coordinates. In particular if g is conformally flat, it is both self-dual and anti-self-dual.

2) W and W± depends only on the conformal class [g] of g Hence, the (anti-)self-duality
is the notion defined for a conformal manifold (M, [g])．

3) If we change the oritentation of M , W±, and hence also the self-duality and the anti-
self-duality, are interchanged. In this manuscript, we consider the case where M is the
(underlying C∞ manifold) of a complex surface S and construct anti-self-dual hermitian
metrics on M with respect to its natural oritentation.

1.2. Twistor spaces
Now here we do not deal the metric directly, but study a complex geometric object called

a twistor space. Namely the following is known.

Theorem (Penrose correspondence) (cf. [1]) Let (M, [g]) be an anti-self-dual manifold.
Then there exists a 3-dimensional complex manifold Z, called the twistor space of (M, [g]),
with the following properties: 1) Z has the structure of a C∞ fiber bundle t : Z → M
(twistor fibration) over M such that each fiber Lx := t−1(x), x ∈M , is a complex partman-
ifold of Z which is isomorphic to the complex projective line P 1. Moreover, the normal
bundle NLx/Z is isomorphic to O(1) ⊕ O(1). (Lx are called twistor lines.)

2) There exists a fixed-point-free anti-holomorphic involution σ of Z, σ2 = idZ , which
preserves each fiber of t; σ(Lx) = Lx, x ∈M . (σ is called the real structure of Z.)

Conversely, given a pair (t : Z → M,σ) with the above properties, an anti-self-dual
conformal class [g] on M is naturally determined.

Example. 1. Suppose that M is a 4 dimensional sphere S4 and, the metric is the
canonical metric g = gstd. In this case g is conformally flat, and hence anti-self-dual．If we
identify S4 with the quaternionic projective line P 1(H) = H ∪ {∞}, the twistor fibration
is given by

t : P 3 = (C4 − {0})/C∗ = (H2 − {0})/C∗ → (H2 − {0})/H∗ =: P 1(H),

where H = {quaternionion} and H∗ = H − {0}.)
2. With respect to the identification S4 = R4 ∪ {∞}, g is conformal to the Euclidian

metric geucl and on R4 the induced map t : P 3−L∞ → R4 is the twistor fibration associated
to (R4, geucl). P 3 −L∞ is identified with the total space of the vector bundle O(1)⊕O(1)
over P 1.

3. Over S4 −{0,∞} = R4 −{0}, the metric is further conformally equivalent to geucl/ρ
2

with ρ the distance from the origin 0．This metric descends to the Hopf surface (R4 −
{0})/ < r >∼= S1 × S3 (r > 1) 上に and gives a conformally flat metric there. The metrics
in 2 and 3 are considered as an anti-self-dual hermitian metric with respect to a suitable
complex structure.
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2 Main Result

2.1. Inoue surfaces

First we recall some basic facts about Inoue surfaces．A compact complex analytic surface
is called a surface of class VII if its first betti number b1(S) is equal to 1. In particular it
non-Kähler.

Example 1) The most typical surfaces of class VII are the (primary) Hopf surfaces Sα,β

determined for any pair of complex numbers α, β ∈ C with 1 < |α|, |β| by

S = Sα,β := (C2 − {0})/〈g〉, g : (z, w) → (αz, βw), (z, w) ∈ C2 − {0}.

S is thus diffeomorphic to S1 × S3 and hence the second betti number b2(S) = 0.
2) A blown-up Hopf surface S is surface obtained by blowing-up a Hopf surface at a

finite number of points. In this case we have b2(S) > 0, but S is not minimal．
3). The first minimal examples with b2(S) > 0 are one of the surfaces in the following

three families of Inoue surfaces:
a) parabolic Inoue surfaces, b) hyperbolic Inoue surfaces, c) half (hyperbolic) Inoue

surfaces.

It is known that these surfaces are characterized by the curves which exist on them. We
shall state this in the following:

Theorem (Nakamura [14]) Let S be a minimal surface of class VII. Then the following
holds.

a) S is parabolic ⇔ there exist on S a nonsingular elliptic curve E = Eω and a cycle of
nonsingular rational curves.

b) S is hyperbolic ⇔ there exist two cycles of nonsingular rational curves on S.
c) S is half hyperbolic ⇔ there exist a cycle of nonsingular rational curves on S whose

number of irreducible components coincides with the second betti number of S.

Here, by a cycle of nonsingular rational curves we mean a curve C = C1 ∪ . . . ∪Ck with
irreducible components Ci, 1 ≤ i ≤ k, such that Ci

∼= P 1 (complex projective line), Ci

and Ci+1 (1 ≤ i ≤ k, Ck+1 := C1) intersect transversally at one point and that Ci ∩ Cj =
∅, |i− j| ≥ 2. When k = 1, we understand that C is just a rational curve with one node.
If we set ai = C2

i (selfintersection number), the sequence of weights a(C) = (a1, . . . , ak) is
an invariant of the cycle．

In Case a) the surface admits a continuous parameter corresponding to the period ω,
Im ω > 0 of the elliptic curve E；S = Sω, while in Cases b), c) they have only discrete
parameters．Correspondingly, in the latter cases their deformation as Inoue surfaces are
rigid. In the parabolic case we always have ai = −2 (∀i), and the number k of irreducible
components of the cycle of rational curves is its unique discrete invariant． In the cases
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of hyperbolic or half-hyperbolic cases, the weight sequence of the cycles gives the discrete
parameter in question. The characterization of these weights is also given by Nakamura.

2.2. Now our main theorem is stated as follows.

Main Theorem.
1) On every hyperbolic or half hyperbolic Inoue surface there exists a continuous family

of anti-self-dual hermitian metric.
2) On any “real ”parabolic Inoue surface Sω with a sufficiently large Im ω there exists a

continuous family of anti-self-dual hermitian metrics.

That Im ω is sufficiently large means that Eω is a small deformation of a rational curve
with a node. We omit the explanation of the meaning of “real ” here. In our method, there
also arises a certain real constraint on the period ω and we have the anti-self-dual metrics
on Sω only for a certain real one-dimensional family of ω． This reality is not yet identifed
explicitly, but one plausible answer would be that the period ω would be pure imaginary
or of absolute value one.

2.3. Known results

We next say a few words as to why we consider the surfaces of class VII．Let (S, h) be a
compact anti-self-dual hermitian surface. In this case obviously we have the following two
cases.

Case A. h is conformally equivalent to some Kähler metric k.
Case B. h is never conformally equivalent to any Kähler metric.
In general for a Kähler metric k it is known that

anti-self-dual ⇔ scalar curvature ≡ 0
Hence the following relation holds:

Calabi-Yau (Ricci-flat) Kähler metric ⇒ anti-self-dual Kähler metric
⇒ Calabi’s extremal Kähler metric.

The importance of the study of Case A is thus clear．
On the other hand, in Case B of our interest, the significance of the anti-self-dual metrics

are not yet clear enough. In any case in this case the surface S is non-Kähler and its
plurigenera all vanish. In particular S is a surface of class VII (Boyer [2]). This is the
reason why we consider the surface of class VII．

Now on the existence of anti-self-dual hermitian metrics on surfaces of class VII very
little is known so far.

1) Case b2(S) = 0 ：
For the Hopf surface S = Sα,β , suppose that |α| = |β|. Then, the hermitian metric

h̃ := (dz · dz̄ + dw · dw̄)/(|z|2 + |w|2), (1)

on C2 −{0} induces a conformally flat, and hence, anti-self-dual hermitian metric h on S.
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Conversely, if an anti-self-dual metric exists on the surface S of class VII with b2(S) = 0,
then we necessarily have S ∼= Sα,β, |α| = |β| with the metric conformally equivalent to the
above one (Pontecorvo)．Here we just note that the condition |α| = |β| is considered a
reality constraint on the “period” of S.

2) The unique example known so far in the case b2(S) > 0 is the example given by
LeBrun [10]. They are constructed explicitly by using the socalled Hyperbolic Ansatz．
The surface S is a blown-up Hopf surface, or more concretely S is a surface obtained by
blowing-up a Hopf surface Sr := Sr,r, r > 0, at a finite number of points on the nonsingular
elliptic curve E = {z = 0}/〈h〉．The method of LeBrun can also be applied to parabolic
Inoue surfaces Sω with ω pure imaginary [10].

3 Method of Donaldson-Friedman

Hereafter all the manifolds are assumed compact．

3.1. Method of Donaldson-Friedman
Given two compact anti-self-dual manifolds (Mi, [gi]), i = 1, 2, Donaldson-Friedman [3]

discovered a method of constructing a new anti-self-dual structure [g] on the connected
sum M1#M2 of the two manifolds1. When the metric is conformally flat, such a theory
is classical. They interpreted this method in the conformally flat in terms of the twistor
space, and then generalized the latter in the case of anti-self-dual metrics. The method is
as follows.

Let Zi, i = 1, 2, be the twistor spaces of (Mi, [gi]). Take points xi ∈Mi as above and blow-
up Zi with center the twistor lines Li := Lxi

. Let µi : Z̃i → Zi be the blowing-down map.
The exceptional set Qi := µ−1(Li)⊆Z̃i is, by the relation NLi/Zi

∼= O(1)⊕O(1) isomorphic
to P 1 ×P 1, and µi|Qi : Qi → Li is identified with the first projection p1 : P 1 ×P 1 → P 1．
The real structure σi of Zi lifts to Z̃i, which we shall still denote by σi．Now fix a (σ1, σ2)-
equivariant isomorphism ϕ : Q1 → Q2 which interchanges the first and the second factors
of the both spaces. Moreover, identifying subspaces Qi of Zi by ϕ we obtain a new space
Ẑ := Z1 ∪ϕ Z2. Ẑ is a compact complex space which has only normal crossings along the
subspace Q which is the identifed Q1

∼= Q2.
Now we consider the Kuranishi family (semiuniversal deformation) of Ẑ {f : Z →

T, o ∈ T, Zo
∼= Ẑ}． (Thus in particular Z, T is a complex space, f is a proper and flat

holomorphic map, and T is identified with the germ it defines at the base point o．Moreover,
Zo = f−1(o).) Then the main result of [3] is stated as follows.

Theorem(Donaldson-Friedman). Suppose that H2(Zi,Θi) = 0, i = 1, 2, where Θi is the

1Take a point xi on Mi and a small open ball Bi around xi for each i, then identify M1−B1 and M2−B2

along the two boundaries bBi
∼= S3. The resulting space, after a suitable smoothing, is the connected sum

M1#M2.
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sheaf of holomorphic vector fields on Zi. Then T is nonsingular, and for a general point
t of T the fiber Zt := f−1(t) of f is nonsingular. Moreover, for any real point t, Zt is the
twistor space associated to some anti-self-dual metric on M1#M2.

Remark. We omit the precise formulation of the ‘real point’ here for the brevity of the
exposition. The real structure σi of Zi induces a real structure σ̂i of Ẑ．If the Kuranishi
family above is universal, the latter in turn induces the real structure on T and the real
points are precisely its fixed points on T . However, in many cases of interest Ẑ admits a
positive dimensional automorphism group, and therefore f is not universal.

3.2. The Hermitian condition on the metric

The above construction, however, in general gives little information on the properties
of the anti-self-dual metrics and the corresponding twistor spaces thus constructed. To
remedy this point various variations of the method of [3] has been considered. In order
to explain the necessary variation in our case we first explain the condition on the twistor
space for the resulting anti-self-dual metric to be hermitian.

Let (M, [g]) be the anti-self-dual manifold, and Z the corresponding twistor space. Let
S be the complex surface embedded in Z. In general the intersection number Lx · S is
positive, and when Lx · S = 1, we call S elementary. Then S̄ := σ(S) also is anelementary
complex surface. In this case the following is known:

Proposition (Poon [15]) An elementary surface S is nonsingular. We have two types
according as S contains a twistor line L or not.

Type 1: ∃L⊆S. Then twistor line L contained in S is unique, and for its self-
intersection number in S we have L2 = 1. (Hence S is isomorphic to a blown-up complex
projective plane P 2 and L is a proper transform of a line.) Furthermore S ∩ S̄ = L and
the intersection is transversal.

Type 2: ∀L 6⊆ S. Then t|S gives an oritentation preserving diffeomorphism S →M and
(t|S)∗g becomes an anti-self-dual hermitian metric on S (∼= M).

Conversely, any anti-self-dual hermitian metric on M with respect to some complex struc-
ture on M is obtained from some naturally determined elementary surface S in Z as above.

Thus the elementary surfaces of Type 2 are of our main interest, but actually in our
construction the elementary surface of Type 1 also play an important role. Namely, here
by a suitable variation of the method of [3] we try to produce from a twistor space which
contains an elementary surface of Type 1 a twistor space which contains elementary surface
of Type 2. The method below is a variation of the method of [8].

3.3. A variation of the method of Donaldson-Friedman

One of the main points is, instead of considering the connected sum of two manifolds,
to consider, the self connected sum of one manifold M . Namely, we delete two points
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xi, i = 1, 2 from M and a small 4dimensional open ball Bi with center xi, and identify on
M −B1 −B2 the two boundaries bBi

∼= S3 via a suitable diffeomorphism bB1 → bB2; then
the resulting manifold is called the self connected sum of M .

Let (M, [g]) be an anti-self-dual manifold, and Z the corresponding twistor space. We
assume that Z contains an elementary surface S of Type 1. If we put L1 = S ∩ S̄, then by
the proposition above, L1 is a twistor line. If we take any twistor line L2 other than L1,
then again by the above proposition L2 intersect with S (resp. S̄) exactly at one point p
(resp. p̄) and transversally. We now blow up Z along the disjoint union L1∪L2 : µ : Z̃ → Z.
In the same way as above we have Qi := µ−1(Li) ∼= P 1×P 1 and then we fix an σ-invariant
isomorphism ϕ : Q1 → Q2 which interchanges the first and the second factors. Idenfitying
Q1 and Q2 via ϕ denote by Ẑ the resulting complex space, which has normal crossing
singularities along a complex surface Q which is isomorphic to Qi.

Let S̃ and ˜̄S be the proper transforms in Z̃ of S and S̄ respectively. Since L1 = S ∩ S̄ is

the center of the blowing-up, S̃ does not intersect with ˜̄S. Therefore, their images Ŝ and
ˆ̄S in Ẑ have no common points Ŝ and ˆ̄S．Here σ induces a real structure σ̂ on Ẑ with
ˆ̄S = σ(Ŝ).

Now we put more restictions on ϕ．The natural map µS : S̃ → S is nothing but the
blowing-up at the point p.

If we put E = µ−1
S (p), then we have E = S̃ ∩Q2, and E is a fiber of the first projection

defined on Q2
∼= P 1 ×P 1. On the other hand, since L̃ := S̃ ∩Q1 is mapped isomorphically

onto L1 by µS, it is a fiber of the second projection．The situation is the same for Ē :=

σ(E) = ˜̄S ∩ Q2 and ¯̃L =: σ(L̃) = ˜̄S ∩ Q1．Hence, we may impose on ϕ the additional
condition that ϕ(L) = E, ϕ(L̄) = Ē．(Namely such a ϕ exists.)

With this assumed, we now consider the Kuranishi family of the pair of the complex

spaces (Ẑ, Ŝ
∐ ¯̂
S)

{f : (Z,S ∐ S̄) → T, o ∈ T, (Zo, So
∐
S̄o) ∼= (Ẑ, Ŝ

∐ ˜̂
S)},

where Z → T and S ∐ S̄ → T are proper flat holomorphic maps and Zo, So and S̄o are the
fibers over o. Then as an analogue of [3] we obtain the following:

Theorem 1. Suppose that H2(Z,Θ(− log(S ∪ S̄)) = 0, where Θ(− log(S ∪ S̄)) is the
sheaf of holomorphic vector fields on Z which are tangent to both S and S̄ (which is locally
free since the intersection S ∩ S̄ is transversal). Then T is nonsingular, and for a general
point of T the corresponding fiber Zt, St and S̄t are all nonsingular．Moreover, if t is a
“real point”, Zt is the twistor space associated to some anti-self-dual metric g over the
self-connected sum M , of which St is an elementary surface of Type 1. Hence in particular
Zt becomes a twistor space associated to some anti-self-dual hermitian metric on St, which
is a surface of class VII.

Example . Suppose that M = S4 and Z = P 3 as in Example of 1.2. We may take S
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to be a plane P 2 containing L∞. Then S̃ becomes the Hirzebruch surface Σ1 of degree 1.
Then if we choose ϕ suitably, in the above smoothing Ŝ → St, St is isomorphic to the Hopf
surface Sr. Thus Zt turns out to be the twistor space of the Hopf surface Sr.

4 How to obtain Inoue surfaces

We would like to consider the case where the surface St of class VII surface obtained in
Theorem 1 becomes one of the Inoue surfaces mentioned in §2. In the notation of 3.3,
the curves L̃ and E in S̃ have selfintersection numbers +1 and −1 respectively. Hence
Ŝ is obtained from the rational surface S̃ by identifying a (+1)-curve and a (−1)-curve
which are mutually disjoint in it, and moreover, St is obtained as a smoothing of Ŝ. The
deformation Σ1 → Sr in the above example coincides with the famouse example by Kodaira
[9]．More generally a general method to obtain a surface of class VII from a rational surface
has been developped by Nakamura [11], [13]. More precisely, let us call a rational surface
S̃ admissible when it contains mutually disjoint nonsingular rational curves C+ and C−
with C2

+ = +1 and C2
− = −1. Then given an admissible surface as above, by a small

deformation of the non-normal rational surface Ŝ with a double curve C (∼= C+
∼= C−)

obtained by identifying C+ and C− via some isomorphism ψ : C+ → C− in S̃ one obtains
a surface of class VII containing a global spherical shell．Conversely, every such surface is
obtained from some admissible rational surface in this way. In particular starting from a
toric rational surface and using the method of toric degeneration Nakamura [12] constructed
Inoue surfaces. Here, with the relation to twistor spaces in mind, we work in a slightly
different formulation.

Let S be a nonsingular toric rational surface. In particular S admits an effective algebraic
C∗2-action. If U is the open orbit, its complement C := S − U is a cycle of nonsingular
rational curves. Write this as C = C1 ∪ . . . ∪ Ck, Ci

∼= P 1. Let pi = Ci ∩ Ci+1, 1 ≤ i ≤
k − 1, Ck ∩ C1 = pk be the intersection points of the irreducible components of C. We
assume the following:

(A) Among Cj there exists an irreducible component Ci with C2
i = 1.

We may then assume that C2
1 = 1 changing the numbering if necessary．Let ν : S̃ → S be

the blowing-up of the point pj ∈ S (j 6= 1, k) and E = ν−1(pj) the exceptional (−1)-curve.
Then S̃ is again a toric surface, and clearly is admissible in the sense defined above. Denote
by C̃i the proper transform of Ci in S̃.

Now we take an isomorphism ψ：C̃1 → E such that

a)ψ(p1) = pj−1, ψ(pk) = pj or b) ψ(p1) = pj , ψ(pk) = pj−1.

By ψ we identify C1 and E and obtain from S̃ a non-normal surface Ŝ := S/ψ. If we
denote by Ĉi the image of C̃i in Ŝ, Ŝ contains two disjoint cycles Ĉ2 ∪ . . . ∪ Ĉj−1 and
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Ĉj+1 ∪ . . . ∪ Ĉk−1 of nonsingular rational curves. We denote the union of these two cycles

by Ĉ, which is Cartier divisor on Ŝ. Then the following hold．

Proposition 2. Consider the Kuranishi family (h : (S, C) → T, o ∈ T, (So, Co) =
(Ŝ, Ĉ)) of the pair (Ŝ, Ĉ) of the complex surface Ŝ and the curve Ĉ on it. Then the
following hold:

1) dim T = 1 and T is nonsingular.
2) For t 6= o Ŝt is nonsingular.
3) If we assume further that

(B) if C2
l = −1, then l = j or j = ±1,

then the following hold.
In Case (a):
(1) If j = 2 or k − 1, St, t 6= o, is a parabolic Inoue surface.
(2) Otherwise St, t 6= o, is a hyperbolic Inoue surface．Then St, t 6= o, are all isomorphic.

Further any hyperbolic Inoue surface is obtained from a toric surface by the above method．
In Case (b): St, t 6= o, is a half Inoue surface. Then St, t 6= o, are all isomorphic.

Moreover, every half Inoue surface is obtained from some toric surface by the above method.

Remark. In the general case where (B) does not hold true, St is a non-minimal surface
obtained from an Inoue surface by blowing-up some nodes of cycle of nonsingular rational
curves.

5 Joyce twistor space

By Proposition 2 and Theorem 1, the remaining task for the proof of the main theorem is
to find for any toric surface S satisifyng the condition (A) a twistor space Z which contains
S as an elementary surface of Type 1 and for which we have H2(Z,Θ(− log(S∪ S̄)) = 0. In
fact In this case in the course of the construction (Z, S) → (Ẑ, Ŝ) the construction S → Ŝ
is precisely as in the previous section, the vanishing of the cohomology groups implies that
the smoothing Ŝ → St in Proposition 2 is extendible to the smoothing Ẑ → Zt of Zt with
respect to the inclusion Ŝ⊆Ẑ．Hence Main Theorem follows from Theorem 1.

Let S be a toric surface satisifying the condition (A). We take as Z a Joyce twistor space.
First we shall explain this．Let M = mP 2 := P 2# . . .#P 2, m ≥ 0, be the connected sum
of m copies of complex projective plane P 2, where we understand 0P 2 = S4. We consider
the two-dimensional torus K := S1×S1 as a compact Lie group and fix a smooth action on
M．(Each time we fix m there are up to diffeomorphisms only a finite number of choices.)
Let m′ = max(m, 1). Then the following hold.

Theorem (Joyce [7]) There exists K-invariant self-dual structures [g] = [g]s on M
depending on m′-dimensional continuous real parameter.
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Denote by M̄ the manifold M with oritentation reversed. [g] is then an anti-self-dual
structure on M̄ . We call any of the corresponding twistor spaces Z a Joyce twistor space.
Z then admits the induced bi-holomorphic action of G := C∗2. The structure of Z has
been studied in detail in [5]. From the results in [?] it is not difficult to deduce 1) of the
following theorem.

Theorem 3. Let S be a toric surface satisifying the condition (A)．Set m = b2(S) − 1.
Then there exists a unique smooth K-action on mP 2 such that

1) any of the associated Joyce twistor spaces Z contains S as an elementary surface of
Type 1, and

2) H2(Z,Θ(− log(S ∪ S̄)) = 0.

The vanishing result in 2) holds in general for any Moishezon twistor space Z and an
elementary surface S contained in it (which is necessarily of Type 1). In fact, the latter
follows easily from the vanishing theorem H2(Z,Θ(−(S+ S̄)) = 0 shown under this general
assumption in [6].

Remark. 1) The above description actually is a bit simplified, and for a rigorous treatment

it is necessary to consider the deformation of the triple (Ẑ, Ŝ
∐ ˆ̄S, Ĉ

∐ ˆ̄C) of complex spaces
studied by Honda in [4].

2) By the above method we can show that anti-self-dual hermitian metrics exist even on
many surfaces of class VII other than Inoue surfaces

3) Joyce twistor spaces are known to have rich structures and from this a number of
interesting problems arise; for instance it seems quite likely that the anti-self-dual metrics
constructed by our method coincides with those constructed by LeBrun [10] (cf. (2.3, 2)).
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