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There are two classical constructions of analytic cohomology, namely Čech
and Dolbeault. In some applications, however (for example, concerned with
the Penrose transform and certain representations), it is convenient to use
some nonclassical constructions.

Consider, for example, the cohomology of Cn \ Rn. For Čech cohomology,
it is best to use a Stein covering. There are many choices of such coverings
and, in this particular case though not at all in general, finite Stein coverings
are available. Such finite coverings, however, are not so symmetric. Perhaps
the most natural Stein covering is by tubes of over the general half-space:–

Zξ = {x + iy ∈ C
n s.t. 〈ξ, y〉 > 0} ⊂ C

n \ R
n.

Certainly, one could use this cover to construct Čech cohomology in the usual
manner but this construction ignores the fact that the parameter space,

Ξ = Sn−1 = {ξ ∈ R
n s.t. |ξ| = 1}

for this covering, is a smooth manifold rather than just a discrete set. Instead,
in the spirit of de Rham cohomology versus simplicial cohomology, one might
expect to construct a complex of differential forms

ω(z, ξ, dξ), a smooth form in ξ depending holomorphically on z

with differential being exterior derivative in ξ and, having done this, find that
Hr(Cn \Rn,O) is realised as the rth cohomology of this complex. This is the
construction suggested in [4]. Our aim is to make precise and generalise this
construction but, before doing so, it is worth remarking that this realisation
of Hn−1(Cn\R

n,O) is well adapted to Sato’s theory of hyperfunctions [7]. In
this theory, suitably well-behaved functions f on Rn are represented inside
Hn−1(Cn\Rn,O). Writing the Fourier inversion formula in polar coördinates,

f(x) =

∫
Rn

f̂(ξ)ei〈ξ,x〉dξ =

∫
ξ∈Sn−1

(∫ ∞

r=0

f̂(rξ)eir〈ξ,x〉rn−1dr

)
dΩ
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where dΩ is the volume form on the unit sphere, suggests replacing x by
z = x + iy in the integrand of this expression, to obtain

ω(z, ξ, dξ) =

(∫ ∞

r=0

f̂(rξ)e−r〈ξ,y〉+ir〈ξ,x〉rn−1dr

)
dΩ

as a representative differential form. Certainly, this expression is holomorphic
in z provided 〈ξ, y〉 > 0.

This prototype, though not yet well-formulated, suggests a construction of
the analytic cohomology of a complex manifold Z based on a double fibration
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M

Ξ

�
�	

@
@R

η τ

in which the fibres of τ are Stein manifolds. It turns out, however, that the
parameter space Ξ is unnecessary in the general formulation, as follows.

A mixed manifold M of type (m, n) is a smooth manifold of dimension m+2n
equipped with a Levi flat CR structure of codimension m. In other words, M
is equipped with a foliation of dimension 2n with smoothly varying complex
structure on the leaves. These are manifolds locally modelled on R

m × C
n

with transition functions of the form

(t, z) 7→ (s(t), w(t, z)),

where w(t, z) is holomorphic in z. Partially holomorphic functions on a mixed
manifold are smooth functions whose restriction to the leaves of the foliation
are holomorphic. Write Œ for the sheaf of germs of partially holomorphic
functions. The partially holomorphic hull K̂ of a compact subset K ⊂ M is
defined to be

K̂ = {x ∈ M s.t. |f(x)| ≤ sup
K

|f | ∀f ∈ Γ(M, Œ)}.

A Cartan manifold in the sense of Jurchescu is a mixed manifold satisfying
the following three conditions:–

• if K ⊂ M is compact, then so is K̂;

• the partially holomorphic functions on M separate points;

• the partially holomorphic functions on M provide local coördinates.
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In particular, a Cartan manifold of type (0, n) is a Stein manifold.

Suppose Z is a complex manifold whose cohomology Hr(Z,O) we wish to
describe. Suppose we have a Cartan manifold M and a partially holomorphic
submersion η : M → Z with contractible fibres.

Theorem There is a complex of sheaves Œ(B•) on M so that

Hr(Z,O) ∼= Hr(Γ(M, Œ(B•))).

If we take M to be Z as a smooth manifold, then we arrive at Dolbeault
cohomology. At the other extreme, we may always take M to be Stein:
this is the holomorphic realisation of [2]. The smoothly parameterised Čech
cohomology of [3] and occurring in our prototype is another special case.

To formulate this theorem more precisely, let Λ1
M denote the bundle of

complex-valued 1-forms on M and Λ1,0
M denote the sub-bundle annihilating

the (0, 1)-vectors of the CR structure. Then, the ingredients of the proof
may be gathered into the following commutative diagram of vector bundles
on M with exact rows and columns.

0 0
↑ ↑

η∗Λ0,1
Z → Λ0,1

M

↑ ↑
0 → η∗Λ1

Z → Λ1
M → Λ1

η → 0
↑ ↑ ↑

0 → η∗Λ1,0
Z → Λ1,0

M → B1 → 0
↑ ↑
0 0

In particular, η∗Λ1
Z ↪→ Λ1

M is precisely that η is a submersion and the middle
row defines Λ1

η. That η is partially holomorphic then gives η∗Λ1,0
Z ↪→ Λ1,0

M

and the bottom row defines B1. The theorem is a consequence of spectral
sequences obtained from this diagram. One of these collapses owing to a
theorem of Buchdahl [1]. It allows us to deduce a spectral sequence

Ep,q
1 = Hq(M, Œ(Bp)) =⇒ Hp+q(Z,O)

computing the analytic cohomology of Z. When M is a Cartan manifold,
Jurchescu’s vanishing theorem [5] implies that

Hq(M, Œ(Bp)) = 0 for q ≥ 1
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and the spectral sequence collapses to the isomorphism stated in the theorem.

As another example of this theorem, we may construct the cohomology of

Z = {[z1, z2, z3] ∈ CP2 s.t. |z1|2 + |z2|2 > |z3|2}
in terms of the complex manifold

M = {(z, ζ) ∈ CP2 s.t. z 6= ζ and the line joining them lies entirely in Z}.
It is shown in [2] that M is Stein and η : M → Z defined by (z, ζ) 7→ z is a
submersion with contractible fibres. Notice that the natural group action of
SU(2, 1) on Z lifts to an action on M . It is shown in [2] that this is quite a
general phenomenon: representations on cohomology such as H1(Z,O) can
often be expressed in a purely holomorphic language. This language is well
adapted to the Penrose transform. One may easily deduce, for example, the
isomorphism

H1(Z,O(−2)) '−→ Γ(W,O(−1))

where
W = {[w1, w2, w3] ∈ CP

∗
2 s.t. |w1|2 + |w2|2 < |w3|2}.

This isomorphism may be regarded as either a simple example of the Penrose
transform, a complex analogue of the Radon transform, or an instance of
projective duality due to Martineau [6].

As a final example, consider

Z = {z = x + iy ∈ C
3 s.t. y1

2 + y2
2 > y3

2},
a tube over a non-convex cone in R3. Let

M = {(θ, z) ∈ S1 × Z s.t. |y1 cos θ + y2 sin θ| > |y3|}
with η : M → Z given by η(θ, z) = z. It is easily verified that M is a
Cartan manifold of type (1, 3). The typical fibre of η is a semicircle, therefore
contractible. The complex Γ(M, Œ(B•)) is

Γ(M, Œ(B0)) 3 f 7−→ ∂f

∂θ
dθ ∈ Γ(M, Œ(B1))

where f is a smooth function of (θ, z) ∈ M holomorphic in z. This suggests
that elements of H1(Z,O) should have boundary values on R3, formally given
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by boundary values of ω(θ, z) dθ integrated over θ ∈ S1. For a construction
of Hr(Z,O) better suited to the natural action of SO(2, 1), we may take

M =

{
(θ, φ, x + iy) ∈ S1 × S1 × C

3 s.t.
y1 cos θ + y2 sin θ > y3,

y1 cosφ + y2 sin φ > −y3

}
.
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