
SOME ASPECTS OF BERGMAN KERNELS

M. Engliš

Abstract. We discuss some recent advances, open problems, and new variations in Berezin quantization
on Kähler manifolds and their relationships to the asymptotic behaviour of the Bergman kernel, pseudolocal
estimates on nonsmooth or unbounded pseudoconvex domains, and the Lu Qi-Keng conjecture.

Let Ω be a domain in Cn and ρ > 0 a weight function on Ω. The weighted Bergman space L2
hol(Ω, ρ)

is the subspace of all holomorphic functions in L2(Ω, ρ). Under mild assumptions on ρ (for instance, if
ρ is continuous), this space has a reproducing kernel, the weighted Bergman kernel Kρ(x, y). We shall
assume throughout that Kρ(x, x) > 0 ∀x (this is the case, for instance, whenever ρ ∈ L1(Ω)). Then the
integral operator

Bρf(x) : =
1

Kρ(x, x)

∫
Ω

f(y)|Kρ(x, y)|2ρ(y) dy

= 〈fkx, kx〉L2(Ω,ρ), where kx := Kρ( · , x)/‖Kρ( · , x)‖,

is well defined for (at least) any f ∈ L∞(Ω), and is called the Berezin transform.

Example 1. For Ω = Cn and ρ(x) = (α/π)ne−α|x|2 (where α > 0 is a parameter), we have K(x, y) =
eα〈x,y〉, and Bρf(x) = (α

π )n
∫
f(y)e−α|x−y|2 dy; that is, Bρ is the heat solution operator Bf = e∆/4αf .

Example 2. If Ω = D, the unit disc, and ρ(x) = α+1
π (1 − |x|2)α (where α > −1 is a parameter), then

K(x, y) = (1 − xy)−α−2, and

Bf(x) =
α+ 1
π

∫
D

f(y)
[
(1 − |x|2)(1 − |y|2)

|1 − yx|2
]α+2

dy

(1 − |y|2)2

=
∫
D

f(φ(y)) ρ(y) dy ∀φ ∈ Aut(D) such that φ(0) = x.

The Bergman kernels and the Berezin transform occur in several areas of mathematics, for instance,
in quantization on Kähler manifolds, in the Lu Qi-Keng conjecture, in invariant mean value theorems,
analytic operator models, properties of Toeplitz and Hankel operators, decomposition of tensor products
of representations of Lie groups, etc. In this talk, we want to discuss the first two of these in some detail,
and mention some interesting problems and results relevant to them.

1. Quantization on Kähler manifolds. The original idea of quantization on R2n, as envisaged by
Weyl, Dirac, von Neumann, and others, consisted in assigning to observables (= smooth real-valued
functions f of (p, q) ∈ Rn×Rn) self-adjoint operators Op(f ) on a (separable) Hilbert space in such a way
that the following axioms were satisfied:
(a) f 7→ Op(f) is linear;
(b) (the von Neumann rule) for any polynomial φ : R → R,

Op(φ ◦ f) = φ(Op(f))

(in particular: Op(1) = I);
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(c) [Op(f), Op(g)] = − ih

2π
Op({f, g}), where {f, g} is the Poisson bracket of f and g,

{f, g} :=
n∑

j=1

( ∂f
∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
;

(d) (the Schrödinger representation) the operators corresponding to the coordinate functions pj , qj
(j = 1, . . . , n) are unitarily equivalent to the operators

Op(qj) : f(q) 7→ qjf(q), Op(pj) : f(q) 7→ − ih

2π
∂f(q)
∂qj

on L2(Rn).
More generally, by a quantization of a symplectic manifold (Ω, ω), one means a similar assignment
f 7→ Op(f ), where now f ∈ C∞(Ω), which satisfies the same axioms (a)–(c), except that the Poisson
brackets are taken with respect to ω, as well as (d) if (Ω, ω) = Rn with the standard symplectic form,
and

(e) the assignment is functorial in the sense that for any diffeomorphism φ of one symplectic manifold
(Ω(1), ω(1)) onto another, (Ω(2), ω(2)), there should be a unitary operator Uφ such that

Op(1)(f ◦ φ) = U∗
φ Op(2)(f)Uφ, ∀f.

Unfortunately, it turns out that the above axioms are inconsistent, even for R2n: the operator Op(p2
1q

2
1)

can be computed in two different ways with two different results. There are two standard solutions to
this disappointing situation. Both start by discarding the von Neumann rule (b), except for φ = 1,
i.e. Op(1) = I. The first solution is then to keep all other axioms, but restrict the space of quantizable
observables (the domain of the map f 7→ Op(f)). For instance, on R2n the recipe

Op(f) : ψ 7−→ − ih

2π

( ∑
j

∂f

∂pj

∂ψ

∂qj

)
+

(
f −

∑
j

pj
∂f

∂pj

)
ψ,

where ψ = ψ(q) ∈ L2(Rn), works if f is restricted to be at most linear in the variables pj . For general
symplectic manifolds, similar “restricting to functions depending on only half of the variables” requires
the use of polarizations, and eventually leads to the so-called geometric quantization of Kostant [Ks]
and Souriau [So].

The second solution is to relax (c) to hold only asymptotically as the Planck constant h tends to zero:

(1) [Op(f ), Op(g)] = − ih

2π
Op({f, g}) +O(h2).

The simplest example of such correspondence on R2n is the Weyl calculus from the theory of pseudodif-
ferential operators, given by

Op(f ) =
∫∫

f̂(ξ, η) e2πi(ξ·Op(p)+η·Op(q)) dξ dη =: W (f),

where f̂ is the Fourier transform of f and ξ · Op(p) :=
∑

j ξj Op(pj) with Op(pj) given by the Schrödinger
representation, and similarly for η · Op(q). It can be shown that for sufficiently smooth f and g,
W (f)W (g) = W (f ] g), where the “twisted product” f ] g has an asymptotic expansion

f ] g =
∞∑

j=0

hjCj(f, g) as h→ 0,

where

(2)
C0(f, g) = fg and C1(f, g) − C1(g, f) = − i

2π
{f, g},

Cj(f,1) = Cj(1, f) = 0 ∀j ≥ 1.

Hence f ] g − g ] f = − ih
2π{f, g} +O(h2), and we see that (1) holds for Op(f ) = Wf .
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In fact, for the physical applications it is often not really necessary to have the operators Op(f),
but suffices to have the noncommutative product like ]. This is the basic idea of the deformation

quantization, and the corresponding product is called a star-product. The formal definition runs as
follows. Let C∞(Ω)[[h]] be the ring of all formal power series in h with coefficients in C∞(Ω). A star-
product is an associative C[[h]]-bilinear mapping ∗ such that

f ∗ g =
∞∑

j=0

hjCj(f, g), ∀f, g ∈ C∞(Ω),

where the bilinear operators Cj satisfy (2).
Deformation quantization was introduced in [BF], and subsequently the existence and classification of

star-products was established by various authors [DL] [Fe] [OM] [Kn]. However, there are some drawbacks.
First of all, the star-product is just a formal power series — no convergence is guaranteed for a given
value of h and functions f, g ∈ C∞(Ω). Second, in physical applications one is interested in the (suitably
defined) spectra of the observables, and it turns out that isomorphic star products may lead to different
spectra for the same observable. Hence, it is of interest to have some “natural” or “distinguished” star-
products (e.g. defined canonically in terms of some geometric data of the manifold, etc.). For Kähler
manifolds, it is a notable idea of Berezin that such star-products can be constructed with the aid of
Bergman spaces and the Berezin transform: namely, the Berezin and the Berezin-Toeplitz star-
products.

For simplicity, we consider only domains in Cn (not manifolds). The idea is to find a family ρ = ρh

of weights on Ω, depending on the Planck constant h, so that the corresponding Berezin transforms
Bρh

=: Bh have an asymptotic expansion

(3) Bh = Q0 +Q1h+Q2h
2 + . . . as h→ 0,

where Qj are some differential operators such that

Q0 = I (the identity), Q1 = ∆̃ (the Laplace-Beltrami operator).

Then if cjαβ are the coefficients of Qj, in the sense that

Qjf =
∑

α,β multiindices

cjαβ ∂
α∂βf,

then setting

(4) f ∗ g :=
∞∑

j=0

hjCj(f, g), with Cj(f, g) :=
∑
α,β

cjαβ (∂βf)(∂αg)

gives a star-product. Further, this star-product has some nice additional properties: namely, it is
differential (i.e. Cj are differential operators), it has the property of separation of variables (i.e. f ∗g = fg
if either f or g is holomorphic), and it is not only formal, but for a lot of functions f, g in fact converges.
We may call (4) the Berezin star-product.

To describe the other quantization, recall that the Toeplitz operator T (ρ)
φ corresponding to a function

(called its “symbol”) φ ∈ L∞(Ω) is defined on L2
hol(Ω, ρ) by

T
(ρ)
φ f := Pρ(φf),

where Pρ : L2 → L2
hol(Ω, ρ) is the orthogonal projection. (In other words, T (ρ)

φ is an integral operator on
L2

hol(Ω, ρ) with kernel φ(x)Kρ(y, x).) Now, again, the idea is to find a family of weights ρh such that the
corresponding Toeplitz operators T (ρh) =: T (h) satisfy

(5) T
(h)
f T (h)

g =
∞∑

j=0

hjT
(h)
Cj(f,g) as h→ 0, ∀f, g ∈ C∞(Ω),
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where Cj satisfy (2). Then Cj define a differential star-product with separation of variables, called the
Berezin-Toeplitz star-product.

Here (5) is to be understood in the sense of operators norms, i.e.

∥∥∥T (h)
f T (h)

g −
m∑

j=0

hjT
(h)
Cj(f,g)

∥∥∥ = O(h−m−1), ∀m = 1, 2, . . . .

Of course, the first problem in both cases is how to choose the weights ρh. Here one can take guidance
from the following group-invariance consideration. Assume there is a group G acting on Ω by biholomor-
phic transformations preserving the symplectic form ω. We then want the product ∗ to be G-invariant,
i.e. to satisfy (f ◦ φ) ∗ (g ◦ φ) = (f ∗ g) ◦ φ, ∀φ ∈ G. Working through the definitions of e.g. the Berezin
quantization reveals that this happens if and only if the ratio ρ(φ(x))/ρ(x) is a squared modulus of a
holomorphic function. Writing ρ(x) dx = w(x)ωn(x), where ωn is the (G-invariant) symplectic volume el-
ement on Ω, the last condition translates into w(φ(x)) = w(x)|fφ(x)|2, for some holomorphic function fφ.
Hence, the form ∂∂ logw is G-invariant. But the simplest examples of G-invariant forms — and if G
is sufficiently “ample”, the only ones — are clearly the constant multiples of ω. Thus if ω is not only
symplectic but Kähler (i.e. lies in the range of ∂∂), we are lead to taking

ρh(x) dx = ecΦ(x) · ωn(x),

where Φ is a (real-valued) Kähler potential for ω, and c = c(h) depends only on h. Observe that the
potential Φ is then always strictly plurisubharmonic, i.e. the matrix [∂∂Φ(x)] of mixed second derivatives
is positive definite, for any x ∈ Ω. (Indeed, the Riemannian metric associated to ω is given by ds2 =∑

j,k gjk dzjdzk, where gjk = ∂2Φ/∂zj∂zk, and ωn(x) = det[∂∂Φ(x)]dx.)
Thus our recipes for the Berezin and the Berezin-Toeplitz quantizations run as follows: let Ω be a

domain in CN , Φ a strictly PSH (=plurisubharmonic) function on Ω, Kc(x, y) the Bergman kernel of
L2

hol(Ω, e
cΦωn), Bc and T (c) the associated Berezin transform and Toeplitz operators, respectively, and

see if c = c(h) can be chosen so that the asymptotic expansions (3) or (5) hold.
It turns out that this is indeed often true, and the right choice is c(h) = −1/h. (Thus c → −∞ as

h↘ 0.)
To see how this comes about, note that the asymptotic behaviour of both the Berezin transform Bc

and the Toeplitz operators T (c) clearly depends on the corresponding asymptotics of Bergman kernels Kc.
To unravel the latter, we will study the more general kernels

(6) Km(x, y) := the reproducing kernel of L2
hol(Ω, e

−mΦ−Ψ)

as m → ∞, where Ψ is another (auxiliary) PSH function on Ω. Since ωn = det[∂∂Φ] dx, the required
result will then follow upon choosing Ψ so that

(7) det[∂∂Φ] = em0Φ−Ψ

for some m0 ∈ Z.
Our first result is then as follows. Recall that an almost-analytic extension of a function F (x) on Ω is

a smooth function f(x, y) on Ω × Ω such that f(x, x) = F (x) ∀x and both ∂f/∂x and ∂f/∂y vanish to
an infinite order on the diagonal x = y. It is known that every F ∈ C∞(Ω) has such an extension.

Theorem 1. (kernel asymptotics) Let Ω be a pseudoconvex domain in CN , Φ,Ψ two real-valued PSH
functions on Ω, and let x0 ∈ Ω be a point in a neighbourhood of which Φ and Ψ are C∞ and Φ is
strictly PSH. Then there is a smaller neighborhood U of x0 such that for the Bergman kernels (6), the
asymptotic expansion

Km(x, y) =
mN

πN
emΦ(x,y)+Ψ(x,y)

∞∑
j=0

bj(x, y)
mj

holds uniformly for all x, y ∈ U as m→ ∞, in the sense that for each k > 0,

sup
x,y∈U

∣∣∣e−m(Φ(x)+Φ(y))/2
[
(LHS) −

(
RHS with

N+k−1∑
j=0

)]∣∣∣ = O(m−k) as m→ ∞.
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Here Φ(x, y),Ψ(x, y) are almost-analytic extensions of Φ(x) and Ψ(x), respectively.
Further, the coefficients bj(x, y) are almost-analytic extensions of functions bj(x) on U whose jets at x0

depend only on the jets of Φ and Ψ at x0. In particular, b0 = det[∂∂Φ].

In the situation of the last theorem, fix an integer M ≥ 0 and consider the domain

(8) Ω̃ = {(z1, z2, z3) ∈ Ω × CM × C : eΨ(z1)|z2|2 + eΦ(z1)|z3|2 < 1}.

Theorem 2. (Berezin quantization) Assume that the hypotheses of Theorem 1 are fulfilled, and in addi-
tion Ω̃ is smoothly bounded and of finite type. Then for any f ∈ L∞(Ω) which is C∞ in a neighborhood
of x0, the Berezin transforms have an asymptotic expansion

Bmf(x) =
∞∑

j=0

Qjf(x) ·m−j as m→ ∞,

uniformly for all x in a neighbourhood of x0.
Here Qj are linear differential operators whose coefficients involve only the derivatives of Φ and Ψ,

and Q0 = I and Q1 = ∆̃.

Finally, if Ψ is chosen according to (7), then we have also more explicit information about the opera-
tors Qj:

Theorem 3. If the hypotheses of Theorem 2 are fulfilled, and in addition (7) holds, then the operators
Qm are finite sums of differential operators of the form

f 7→
∑

i1,...,ik,j1,...,jl

Ci1...ikj1...jlf/j1...jli1...ik

with k, l ≤ m, where the slash stands for the covariant differentiation (with respect to the metric induced
by ω) and Ci1...ikj1...jl are tensor fields on Ω, symmetric in i1, . . . , ik and in j1, . . . , jl, that are contrac-
tions of tensor products of the contravariant metric tensor gjk, the curvature tensor Rijkl, and the latter’s
covariant derivatives.

In particular, in addition to Q0 = I and Q1 = ∆̃, we have

Q2 =
1
2
∆̃2 +

1
2

∑
j,k

Ricjk ∂2

∂xj∂xk
,

where Ricjk are the contravariant components of the Ricci tensor.

The first two theorems were first established by Berezin for bounded symmetric domains with the
invariant (Kähler) metric [Be]. Complete proofs of Theorems 1–3 can be found in [E4], [E8] and [E5];
in the last reference, a formula for the operator Q3 is also given. However, we can at least indicate here
the main ingredients.

Sketch of the proofs. The hypotheses of Theorem 1 imply that Ω̃ is pseudoconvex, with x := (x0, 0, e−Φ(x0)/2)
a smooth strictly-pseudoconvex boundary point.

1) By a formula of Ligocka, the (unweighted) Bergman kernel of Ω̃ satisfies

K̃((x1, 0, x3), (y1, 0, y3)) =
∞∑

m=0

(m+M + 1)!
πM+1m!

Km+1(x1, y1) (x3y3)
m.

2) Consider first the case when Ω̃ is bounded. Then by Fefferman’s asymptotic expansion, there exist
functions a, b ∈ C∞(Ω̃ ∪ {x}) with almost-analytic extensions a(x, y), b(x, y) such that

K̃ =
a

rN+M+2
+ b log r,

where r(x, y) is an almost-analytic extension of r(x) = 1 − eΨ(x1)|x2|2 − eΦ(x1)|x3|2.
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3) Next, recall that

∞∑
j=1

jm tj =
{
m! (1 − t)−m−1 +O((1 − t)−m) if m ≥ 0,
(−1)m

m! (1 − t)m log(1 − t) + Cm(D) if m < 0.

4) Combining the last three items, the desired asymptotic formula for Km(x, y) as m → ∞ follows.
(Some care is needed to get the uniformity on U .) This settles Theorem 1 (for Ω̃ bounded).

5) If Ω̃ is in addition C∞-bounded and of finite type, then by a result of Bell, K̃ extends smoothly to
Ω×Ω minus the boundary diagonal. Ligocka’s formula then implies that Km(x, y) decays exponentially,
as m→ ∞, for x 6= y, and it transpires that in the integral defining the Berezin transform

Bmf(y) = Km(y, y)−1

∫
Ω

f(x)|Km(x, y)|2 e−mΦ(x)−Ψ(x) dx

the main contribution comes from a small neighbourhood U of y.
6) Using Theorem 1, the latter contribution reduces to the standard Laplace integral

∫
U
f(x) exp

(
m[Φ(x, y) + Φ(y, x) − Φ(x) − Φ(y)]

)
γ(x) dx

(with some expression γ involving Φ,Ψ and the coefficients bj), whose evaluation gives the asymptotics
of Bmf(y), proving Theorem 2.

7) Analyzing the standard formulas for Laplace integrals (=the method of stationary phase, or WJKB
method) shows that the coefficients in the asymptotic expansion — the operators Qm — must be ex-
pressions of certain special form, involving summations over derivatives of Φ,Ψ at y. Introducing normal
coordinates and using the transformation properties of the quantities involved, it turns out that Qm

indeed come as sums of covariant derivatives as indicated. This proves Theorem 3.
8) Finally, to remove the boundedness assumption made in 2) above, it is enough to extend to

unbounded domains the asymptotic expansion of Fefferman, i.e. to show that for any pseudoconvex
Ω ⊂ Cd, the unweighted Bergman kernel K satisfies K = a/rd+1 + b log r, with a, b ∈ C∞(Ω ∪
{a neighborhood of x}) and −r a defining function near a smooth strictly-pseudoconvex boundary point x.
This, in turn, follows once we can extend to the unbounded case the traditional subelliptic estimates and
pseudolocal estimates. The last, finally, can be established from the corresponding results for the bounded
case by means of a sequence of smoothly bounded finite type domains exhausting Ω. (Some care is needed,
however, since the ∂-Neumann operator on Ω is no longer bounded nor everywhere defined; see [E7] for
the details.) �
Remarks. (1) One can also extend to the unbounded/nonsmooth domains the above result of Bell, i.e. that
K ∈ C∞(

(Ω × Ω) ∪ {a neighbourhood of (x, y)}) for any two distinct smooth boundary points x 6= y of
finite type. As a corollary, it follows that if Ω is any pseudoconvex domain in CN (possibly unbounded and
non-smooth) which has at least one smooth strictly-pseudoconvex boundary point, then L2

hol(Ω) 6= {0}.
(2) If Ω is bounded and Φ,Ψ are assumed to be not only C∞ but Cω near x0, the assertion of Theorem 1

can be substantially sharpened, namely, the factor e−m[Φ(x)+Φ(y)]/2 can be replaced by e−mΦ(x,y):

sup
x,y∈U

∣∣∣e−mΦ(x,y)Km(x, y) − mN

πN
eΨ(x,y)

N+k−1∑
j=0

bj(x, y)
mj

∣∣∣ = O(m−k).

Also, the coefficients bj(x, y) are not merely almost-analytic, but holomorphic in x, y on U × U . All this
follows from the real-analytic extension of Fefferman’s expansion due to Kashiwara and Kaneko. For
x 6= y, the last estimate is better than the original one by an exponential factor.

(3) Theorem 1 fails if Φ is only assumed to be PSH but not strictly PSH at x0. (So that Ω̃ is
pseudoconvex but not strictly.) Indeed, computations for the “ellipsoids” |x1|2 + |x2|2l < 1 seem to
suggest that in that case one gets an asymptotic expansion not in the negative powers of m, but instead
in negative powers of m2/p, where p is the type (assumed to be finite) of the corresponding boundary



SOME ASPECTS OF BERGMAN KERNELS 7

point. Though growth estimates for the Bergman kernel near finite and infinite type points exist [Oh],
[BY], [DH], [KL], they seem insufficient for extending Theorem 1 to this case.

(4) If, on the other hand, Φ is allowed to be −∞ (so that Ω̃ has a cusp), then computations suggest
that Km(x, x) can grow faster then predicted by Theorem 1 (for instance, as c(x)mQemΦ(x) with some
Q > N). In physics, the cusps correspond to allowing Poisson (instead of only symplectic) manifolds.

(5) In a sense, the hypotheses of Theorem 2 are not completely satisfactory, for the following two
reasons. The first is the relation (7): it can be shown that to be able to choose such plurisubharmonic Ψ,
one must have

∃C > 0 : Cgjk(x) − Ricjk(x) is positive definite ∀x ∈ Ω.

This is an unpleasant restriction. Second, the condition of finite type, and even of smooth boundedness,
of the domain Ω̃ in (8) is also rather unsatisfactory, since two standard metrics on Ω — the Bergman and
the Cheng-Yau metric — do not satisfy it in general. Indeed, the Bergman metric corresponds to the
choice Φ(z) = logK(z, z), with K(z, z) the unweighted Bergman kernel of Ω, so that e−Φ is almost never
C∞ up to the boundary, even for Ω strictly pseudoconvex, owing to the presence of the logarithmic term
in Fefferman’s expansion. Similarly, for the Cheng-Yau metric on a strictly pseudoconvex domain, the
potential Φ has a similar logarithmic singularity at the boundary, by a result of Lee and Melrose. Thus
in both cases, Ω̃ fails to be C∞ on the “equator” {(x, 0, 0) : x ∈ ∂Ω} ⊂ ∂Ω̃.

What prevents us from extending Theorem 2 to such situations is the lack of estimates for the “tail”
of the integral defining the Berezin transform,

∫
Ω\a neighborhood of y

f(x)
|Kρ(x, y)|2
Kρ(y, y)

ρ(x) dx.

What is thus needed is a direct proof of the following assertion:

Problem. For Φ,Ψ plurisubharmonic on Ω, and any neighbourhood U of y ∈ Ω there exists δ > 0
such that the Bergman kernels Km(x, y) of L2

hol(Ω, e
−mΦ−Ψ) satisfy

sup
x∈Ω\U

[ |Km(x, y)|2
Km(x, x)Km(y, y)

]1/m

≤ 1 − δ ∀m� 0.

(6) So far, we have assumed that the potential Φ of the Kähler form ω exists globally. This restriction
is easily removed by passing from functions on Ω to sections of holomorphic line bundles. In this setting,
and for Ω a compact Kähler manifold, analogs of Theorem 1 — the asymptotics of Km(x, y) — were
obtained by Zelditch [Ze] (inspired by Tian [Ti]; only for x = y) and Catlin [Ca]. Analogues of Theorem 3
(computation of the first three terms of the asymptotic expansion) in that context was done by Lu [Lu].
(See also Donaldson [Do].) Their method is, however, different from ours: for Theorem 1, it follows the
proof of Bordemann, Meinrenken and Schlichenmaier [BM] using the theory of Fourier integral operators
(or rather Hermite operators [BG]); and for Theorem 3, it uses peak sections.

(7) The limits of Km(x, x) are of interest in the study of Pauli operators with magnetic fields [Er], [R1].

(8) While the boundary behaviour of K̃ at the points of Ω̃ lying above Ω gives the asymptotics of
Km(x, y) as m→ ∞, the behaviour at points on the “equator” {(x, 0, 0) : x ∈ ∂Ω} gives the asymptotics
of Km(x, y) for m fixed and x, y → ∂Ω. The latter has been studied, even for weights rapidly decaying
at the boundary (so that Ω̃ is nonsmooth on the equator), like exp{− exp[α/(1 − |z|2)β ]} on D or
exp[− exp(α|z|β)] on Cn, in [HR] and [Kr]. There is also a strange result of Raikov [R2] for weights e−Φ

on C such that ∆Φ is almost periodic.

(9) Conversely, our Theorem 3 yields formulas for the first coefficients of Fefferman’s asymptotic
expansion for the Hartogs domain Ω̃. For domains in C2 much stronger results of this type have been
obtained by Hirachi, Komatsu and Nakazawa [HK].

We now proceed to the Berezin-Toeplitz quantization. Let us again consider the Bergman spaces
L2

hol(Ω, e
−mΦ det[∂∂Φ]), and denote by T (m)

f the corresponding Toeplitz operators with symbol f ∈ L∞(Ω).
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Theorem 4. (Berezin-Toeplitz quantization) Let Ω be a smoothly bounded strictly pseudoconvex domain
in CN , and Φ : Ω → R a smooth strictly PSH function such that −e−Φ is a defining function for Ω.
Then:

(i) for any f ∈ C∞(Ω), ‖T (m)
f ‖ → ‖f‖∞ as m→ ∞;

(ii) there exist bilinear differential operators Cj (j = 0, 1, 2, . . . ) such that for any f, g ∈ C∞(Ω) and
any integer M ,

∥∥∥T (m)
f T (m)

g −
M∑

j=0

m−jT
(m)
Cj(f,g)

∥∥∥ = O(m−M−1) as m→ ∞.

Further, C0 and C1 satisfy (2), and, hence, f ∗ g :=
∑∞

j=0 h
jCj(f, g) defines a star-product on Ω.

This was first proved for Ω a compact Kähler manifold (and functions replaced by sections of line
bundles) in [BM]. Their proof, however, immediately extends also to the case when only a certain circle
bundle (corresponding to the boundary of the domain Ω̃ below) is compact.

Sketch of proof. Consider this time the domain Ω̃ without the auxiliary function Ψ:

Ω̃ = {(z, t) ∈ Ω × C : |t|2 < e−Φ(z)}.
The hypotheses imply that Ω̃ is smoothly bounded, strictly pseudoconvex, with r(z, t) := |t|2 − e−Φ(z) a
defining function. Consider this time the Szegö kernel on the compact manifold X := ∂Ω̃ with respect

to the measure
J [r]
‖∂r‖ dS, where dS stands for the surface measure on X and J [r] = − det

[
r ∂r
∂r ∂∂r

]
for

the Monge-Ampére determinant of r. It can be shown that (in analogy with Ligocka’s formula)

KSzegö((x, t), (y, s)) =
1
2π

∞∑
m=0

Km(x, y)(st)m,

that the Hardy space H2(X) is the direct sum of the Bergman spaces

(9) H2(X) =
∞⊕

m=N+1

L2
hol(Ω, e

−mΦ det[∂∂Φ]),

and that ∞⊕
m=N+1

T
(m)
f = TF , with F (x, t) := f(x),

where TF denotes the Toeplitz operator on H2(X) with symbol F . Let further D : H2(X) → H2(X)
be the operator which acts as multiplication by m on the m-th summand in (9), for each m. Then
by the ideas of Boutet de Monvel-Guillemin, the Toeplitz operators TF can be defined also for F a
pseudodifferential operator on X , and from an analogue of the symbol calculus for pseudodifferential
operators one can deduce the expansion

TFTG =
∞∑

j=0

D−jTHj

with some functions Hj(z, t) on X depending only on z, i.e. descending to some functions hj(z) = Hj(z, t)
on Ω. Setting Cj(f, g) := hj , one eventually gets the result. See [E8] for the details. �
Remarks. Again, the last theorem does not apply to Φ the potential of the Bergman or of the Cheng-
Yau metric. For this, we would need an extension of the Boutet de Monvel–Guillemin machinery to
noncompact manifolds X . In the special case of X = {(z, t) ∈ CN × C : |t|2 = e−|z|2}, this was
done by Borthwick [Bw]. In general, the main problem is that various smoothing error terms (which
occur everywhere in the theory of Fourier integral operators) need no longer be bounded. (On compact
manifolds, they are automatically even compact.)

Another interesting application of the asymptotics of Km(x, y) is to the Lu Qi-Keng conjecture.
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2. Kernel asymptotics and the Lu Qi-Keng conjecture. Let us keep the scenario from the
preceding section, i.e. let Ω a domain in CN , Φ,Ψ two functions on Ω, which however we now allow
to be only continuous (not necessarily PSH), and let Km(x, y) the Bergman kernel of L2

hol(Ω, e
−mΦ−Ψ).

It follows from Theorem 1 that if Ω is pseudoconvex, Φ,Ψ are PSH, and Φ is strictly-PSH at x, then

Km(x, x)1/m → eΦ(x) as m→ ∞.

What can be said about this limit in general?

Theorem 5. [E1] Let Φ,Ψ be any continuous functions on Ω. Assume that there exists α > 0 such that
e−αΦ−Ψ ∈ L1(Ω). Let

Φ∗(x) : = sup{Re g(x) : g holomorphic on Ω, Re g ≤ Φ},
Φ#(x) : = sup{ψ(x) : ψ PSH on Ω, ψ ≤ Φ}.

(Thus Φ∗ ≤ Φ# ≤ Φ, and Φ# = Φ iff Φ is PSH.) Then

exp(Φ∗(x)) ≤ lim inf
m→∞ Km(x, x)1/m ≤ lim sup

m→∞
Km(x, x)1/m ≤ exp(Φ#(x)).

Since linear functions are holomorphic, the following corollary is immediate.

Corollary 6. If Φ is convex, then limm→∞Km(x, x)1/m = eΦ(x).

It turns out, perhaps a little surprisingly, that as soon as we can handle the limits limm→∞Km(x, x)1/m,
then we can also deal with the limits of Km(x, y)1/m for x 6= y. Obviously, in order to be able to define
the root, we need that K(x, y) be nonvanishing. It turns out that this is the only obstacle!

Theorem 7. Assume that Km(x, x)1/m → eΦ(x) ∀x, and that there exists an open connected set U ⊂ Ω
and a sequence m1,m2, · · · → ∞ such that

Km(x, y) 6= 0 for all x, y ∈ U and m = m1,m2, . . . .

Then Φ(x) extends to a function Φ(x, y) on U × U , holomorphic in x, y, such that Φ(x, x) = Φ(x) and

Kmj (x, y)
1/mj → eΦ(x,y) as j → ∞, ∀x, y ∈ U,

where the branches of the roots are chosen to be positive on the diagonal x = y.

Corollary 8. If Φ is convex on Ω but not real-analytic at some point x0, then Km(x, y) has a zero near
(x0, x0) for all m sufficiently large.

The Lu Qi-Keng conjecture (1958) asserted that for any simply connected domain Ω ∈ Cn, the
Bergman kernel (with respect to the Lebesgue measure) is zero-free. While this is true for planar do-
mains, counterexamples were given by Skwarczynski and Boas for higher dimensions. However, until quite
recently a possibility remained open for the conjecture to hold at least for convex domains. Two coun-
terexamples to the latter were given in [PY] and [BS]. The last Corollary can be used to generate a whole
infinite family of such counterexamples, and to show that in some sense these “counterexamples” are
even generic. See [E6].
Let us conclude by mentioning some open problems related to the last two theorems:
1) In all known examples the limit as m → ∞ of Km(x, x)1/m always exists and equals exp(Φ#(x)).

Is this true in general?
It can be shown that for Ω pseudoconvex, lim sup

m→∞
Km(x, x)1/m = exp(Φ#(x)).

2) More generally, if K#
m is the analogous kernel for Φ replaced by Φ#, is it true that K#

m(x, x) and
Km(x, x) have the same asymptotics as m→ ∞?

3) The sequence of absolute values |K(x, y)|1/m is always locally uniformly bounded on all of Ω × Ω (!)
as m→ ∞. Almost nothing seems to be known about its limiting behaviour.
For smoothly bounded Ω ⊂ C with Φ the potential of the Poincaré metric and Ψ = 1, the author
has shown in [E2] that the limit limm→∞ |K(x, y)|1/m exists for all (x, y) not in the cut locus of Ω
(i.e. such that there is a unique shortest geodesic connecting x to y), while for (x, y) in the cut locus
the sequence can exhibit an oscillatory behaviour as m → ∞. Understanding the limiting behaviour
in general therefore seems to be quite intriguing.
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