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We first introduce some notations: Let X̄ be an algebraic surface, and
let D ⊂ X̄ be a divisor with simple normal crossings only. We call the pair
(X̄, D) a log surface and denote X = X̄\D. Let T ∗X̄ be its cotangent bundle
and T̄ ∗X its log cotangent bundle. We denote qX̄ = dimCH0(X̄, T ∗X̄) its
irregularity and q̄X = dimCH0(X̄, T̄ ∗X) its log irregularity. It is called of
log general type if its log canonical bundle K̄X =

∧2 T̄ ∗X is big. Finally let
αX : X → AX be the quasi-Albanese map. It is a holomorphic map which
extends to a rational map ᾱX : X̄ → ĀX (Iitaka ’76 [8]).

It is known that for any log surface such that q̄X > 2, any entire holo-
morphic curve f : C → X is algebraically degenerated (i.e. contained in a
proper algebraic subvariety of X̄). More generally, by results of Noguchi ’81
[10] and Noguchi-Winkelmann ’02 [11] one has:

Theorem 1 (Noguchi, Noguchi-Winkelmann) Let X̄ be a compact Käh-
ler manifold and D be a hypersurface in X̄. If q̄X > dimX̄, then entire
holomorphic curve f : C→ X is analytically degenerated.

In the following we are interested in the case of log surfaces (X̄, D) with
q̄X = 2.

Theorem 2 Let (X̄, D) a log surface of log general type with log irregularity
q̄X = 2. Furthermore, in the case qX̄ = 0, suppose that ᾱX : X̄ → ĀX is a
morphism or that D has at most 3 irreducible components. Then any entire
holomorphic Brody curve f : C→ X is algebraically degenerated.

Corollary 3 If X doesn’t contain any non-hyperbolic algebraic curve and
if D is hyperbolically stratified (i.e. every irreducible component of D mi-
nus all the others is a hyperbolic curve), then X is complete hyperbolic and
hyperbolically imbedded.
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Remark 4 It is very likely that the last condition in the theorem is not
needed. In fact, without this condition one still gets in the case qX̄ = 0 that

rankZZNS(X̄) ≥ rankZZ{c1(Di)}ki=1 = k − 2

where D1, ..., Dk are the irreducible components of D and NS(X̄) denotes the
Neron-Severi group of X̄. This is easily obtained from Hodge theory due to
Deligne [3] and from Catanese ’84 [2]. But there does not seem to be an easy
way to profit from this, unless one assumes some bounds on this Neron-Severi
group of X̄.

Remark 5 However, the condition that the log surface is of log general type
is essential: Let X̄ = (P1)

2 and X = X̄ \ D = (C∗)2. Then q̄X = 2 and
ᾱX : (P1)

2 → (P1)
2 is the identity, but K̄X = 0 is trivial. The curve

f : C→ (C∗)2; t→ (et, eat) with a ∈ IQ \ IR

is Brody w.r.t. the Fubini-Study metric of (P1)
2, but not algebraically degen-

erated.

Remark 6 Much is known already about the hyperbolicity of particular log
surfaces, e.g. about log tori or log surfaces having small Neron-Severi groups,
under the additional condition that all irreducible components Di of D are
ample (Noguchi-Winkelmann ’02 [11]). The case where X̄ is the projective
plane is particularily well understood (e.g. Demailly-ElGoul [4], [7]).

In the following we sketch a proof of Theorem 2.

Basic Proof Idea of Theorem 2: We prove that under the conditions
of the theorem f ′(C) is a leaf of a log foliation of X̄, i.e. there exists a
hypersurface Y1 ⊂ P(T̄X) which is generically one to one over X̄, such that

P(f ′)(C) ⊂ Y1 ⊂ P(T̄X) (1)

This is easy to prove in the case that qX̄ = 2, which includes the compact case
(i.e. if D = ∅), but not so easy to obtain in the non-compact case because
of the possible presence of points of indeterminacy of the map ᾱX . Then we
conclude the proof by results of McQuillan [9] and ElGoul [7], which state
that under condition (1) f is algebraically degenerated.

(I) The case qX̄ = 2: In this case the Albanese map is a morphism. The
euclidean metric of the universal cover C2 of the Albanese torus AX̄ descends
to a metric h on it. So we have:

C
f→ (X̄, g)

αX̄→ (AX̄ , h)← (C2, eucl.)
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Now since f is a Brody curve, we have g(f ′) ≤ C, and by composing with
the Albanese map, we get

h((αX̄ ◦ f)′) ≤ C ′

After lifting to C2, the components of (αX̄ ◦ f)′ are bounded holomorphic
functions. Hence, by Liouville’s theorem, they are constant. So we have

P((αX̄ ◦ f)′) ⊂ C2 × [v0] ⊂ C2 ×P(C2) = P(TC2) (2)

By trivializing TAX̄ with the trivialization obtained by the one of TC2, we
obtain from (2):

Y1 AX̄ × [v0] C2 × [v0]

∩ ∩ ∩

P(TX̄)
P(α′

X̄
)

− → P(TAX̄) ← P(TC2)

↓ ↓ ↓

X̄
αX̄→ AX̄ ← C2

Here Y1 ⊂ P(TX̄) is the pull back of the (linear) foliation AX̄ × [v0] by the
dominant rational map P(α′

X̄), hence it is itself a foliation s.th. P(f ′)(C) ⊂
Y1. 2

(II) The case where ᾱX : X̄ → ĀX is a morphism: The compactification
ĀX of the quasi Albanese torus involves projective spaces. In order to obtain
the linearity of the differential of the map ᾱX ◦f we need the following result
due to Bertheloot-Duval ’01 [1]:

Theorem 7 (Bertheloot-Duval) A Brody curve f : C → (C∗)t ⊂ Pt is
linear w.r.t. the coordinates coming from the universal cover Ct → (C∗)t.

This result suffices to treat the case qX̄ = 0: In this case we have AX = (C∗)2

and ĀX = (P1)
2 or = P2 (where we have to distinguish these two possibilities

since there is no dominant morphism between these two different compact-
ifications). As in (I), we have that (αX̄ ◦ f)′ is bounded w.r.t. the Fubini
Study metric on ĀX. After lifting to the universal cover C2 → (C∗)2 and by
Theorem 7, the components of αX̄ ◦ f are linear. Hence, the components of
(αX̄ ◦ f)′ are constant.

Next, we treat the case qX̄ = 1: Then ĀX is a P1-bundle over the torus
AX̄ , and we cannot apply Theorem 7 directly. But we have the following
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result due to Noguchi-Winkelmann ’02 [11], which states that the transition
functions of the P1-bundle ĀX can be chosen to be isometries w.r.t. the
Fubini-Study metric on P1:

Proposition 8 (Noguchi-Winkelmann) There exists a metric h on ĀX

s.th. the universal cover

(C×P1, eucl.× FS)→ (ĀX, h)

is a local isometry.

As in (I), (αX̄ ◦f)′ is bounded w.r.t. h. So after lifting to C×P1, we get that
the components of (αX̄ ◦f)′ are holomorphic and bounded (for the C-factor)
resp. constant (for the P1-factor w.r.t. to the universal cover C → C∗,
again by Theorem 7). Hence, they are constant, w.r.t. the coordinates on
the universal cover C2 → ĀX .

We conclude as in (I), replacing the tangent bundles by the log tangent
bundles, taking into account that the coordinates of the universal cover C2 →
(C∗)2 trivialize the log tangent bundle T̄AX (see e.g. Dethloff-Lu ’01 [5],
where this was shown more generally in the case of jet bundles). 2

(III) The case qX̄ = 1: We have the following diagram:

C
f→ X̄

ᾱX− → ĀX

αX̄↘ ↓

AX̄

Like in (I), we get that αX̄ ◦ f is linear w.r.t. the coordinates from the
universal covering C→ AX̄ . Denote Φ : C→ C∗ ⊂ P1 the fiber component
of the map ᾱX ◦ f , i.e. (after lifting to the universal cover C × P1 → ĀX)
we have ᾱX ◦ f = (αX̄ ◦ f, φ).

Let I ⊂ D ⊂ X̄ be the (finite) set of points of indeterminacy of ᾱX ,
U ⊂ AX̄ a small neighborhood of αX̄(I), V = α−1

X̄
(U) and W = f−1(V ).

ᾱX is a morphism on the compact set X̄\V , so (ᾱX ◦f)′ is bounded on C\W .
As in (II), we get: After lifting to the universal cover (C × P1) → ĀX , the
differential Φ′ is holomorphic and bounded on C\W . But we cannot use any
more Theorem 7. Hence, our strategy will be to estimate Φ′ not pointwise,
but in the integral mean, and then to get the claim by a generalization of a
proof of Theorem 7 for the special case P1.
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Brody curves are of order ≤ 2 (in the sense of Value Distribution Theory).
Rational maps preserve order ≤ 2 (see e.g. Dethloff-Schumacher-Wong ’95
[6]). Hence, Φ : C → C∗ ⊂ P1 is of order ≤ 2, so Φ(z) = [1 : eP (z)] with
degP ≤ 2. If degP ≤ 1, we finish the proof as before. Assume degP = 2.
We get, by a linear coordinate change in C, that

P (z) = a0 + ib0 + z2 , a0, b0 ∈ IR

Since U ⊂ AX̄ is a small neighborhood of the finite number of points αX̄(I)
and the map αX̄ ◦ f is linear, so it reproduces the fundamental domains of
ĀX with constant dilation, only, there exists a sequence on the diagonal

(zv = xv + ixv)v→∞ ⊂ C \W with xv →∞

We have

|Φ′|FS(z) =
|2z|ea0+x2−y2

1 + e2(a0+x2−y2)

and hence, since Φ′ is bounded on C \W :

C ≥ |Φ′|FS(zv) =
|2zv|ea0

1 + e2a0
→∞

This is a contradiction. 2

(IV) The case qX̄ = 0 and pr1 ◦ ᾱX a morphism: This means

C
f→ X̄

ᾱX− → (P1)
2

↘
pr1↓

P1

As in (II), pr1 ◦ ᾱX is linear w.r.t. the coordinates coming from the universal
cover C→ C∗. Now we ague as in (III). 2

(V) The case qX̄ = 0 and D = D1...Dk with k ≤ 3: Our proof idea is
as follows: We observe that by a suitable choice of the basis of H0(X̄, T̄ ∗X),
either

ᾱX : X̄ → P2

becomes a morphism or
pr1 ◦ ᾱX : X̄ → P1

becomes a morphism. In the first case the proof is finished by (II), in the
second case it is finished by (IV).
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Proposition 9 (e.g. Noguchi-Winkelmann ’02, [11]) We can choose a
basis ω1, ω2 ∈ H0(X̄, T̄ ∗X) s.th. for all irreducible component Dj of D there
exist a1j , a2j ∈ ZZ s.th. aij is the residue of ωj along Di. The matrix obtained
like that has rank 2:

D1 D2 ... Dk

ω1 a11 a12 ... a1k

ω2 a21 a22 ... a2k

(3)

Let φi : X → C∗ be the component of αX corresponding to ωi. It extends
to a rational function φ̄i : X̄ → P1. Let e.g. P ∈ D1 (resp. P ∈ D1 ∩ D2)
and let z1, z2 be local coordiantes around P s.th. D1 = {z1 = 0} (resp.
D1 = {z1 = 0} and D2 = {z2 = 0}). Then there exists a holomorphic
function h : U(P )→ C∗ on a neighborhood U(P ) of P s.th.

φ̄i(z1, z2) = zai1
1 h(z1, z2)

(resp. φ̄i(z1, z2) = zai1
1 zai2

2 h(z1, z2)

Proposition 10 .
i) (see Noguchi-Winkelmann ’02 [11]) φ̄i : X̄ → P1 is a morphism outside
the points of intersection of the irreducible components of D.

ii) φ̄i : X̄ → P1 is a morphism iff aij1aij2 ≥ 0 for all irreducible components
Dj1, Dj2 s.th. Dj1 ∩Dj2 6= ∅. This is certainly the case if in the matrix (3)
all entries of the i-th line have the same sign.

iii) We add a third line to the matrix (3): For j = 1, ..., k, let a3j =
min(0, a1j, a2j):

D1 D2 ... Dk

ω1 a11 a12 ... a1k

ω2 a21 a22 ... a2k

a31 a32 ... a3k

(4)

Then the map αX = (φ1, φ2) : X → (C∗)2 extends to a morphism to P2 iff
for any couple of irreducible components Dj1, Dj2 s.th. Dj1 ∩ Dj2 6= ∅, the
3 × 2 matrix which consists of the j1-th and the j2-th column of the matrix
(4) has the following property: Its third line is either identically zero or it is
equal to the first or it is equal to the second line. This is certainly the case
if this is true for any couple of indices (j1, j2).

By a change of basis over ZZ, we always can obtain one of the cases (ii)
or (iii) of Proposition 10. 2
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Département de Mathématiques
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