Pluricanonical representations and abundance conjecture

Yoshinori Gongyo

University of Tokyo, Graduate School of Mathematical Sciences Advisor: Prof. Hiromichi Takagi

A My research interest

I am interested in birational geometry and Hodge theory. Especially in the minimal model theory and canonical bundle formulae.

Research motivation

The following corollary also seems to be important:

Corollary [cf. Keel–Matsuki–McKernan, '94]

Here and the Here and Here and

 \Rightarrow Abundance conj. for lc pairs in dim. *n*.

In studies on higher dimensional algebraic verieties, the

following conjecture is very important:

Abundance conjecture

X: proj. mfd.

if K_X is nef then K_X is semi-ample.

We sometimes need to generalize it for more bad singularities or log pairs (e.g. klt, lc, etc...) for approach to it for even smooth varieties.

♦ Our results

This is a joint work with O. Fujino at Kyoto University.

We work over the complex number field \mathbb{C} .

Known Results on Main Thm.

• Kawamata, Abramovich–Fong–Kollár–M^cKernan'92 in dim. 2

• Fujino'00 in dim. 3

 \circ G'10 when $K_X + \Delta \equiv 0$

& Key Thm. in the proof of Main Thm.

It's sufficient to show the following by Fujino'00's argements and Birkar–Cascini–Hacon–M^cKernan's MMP:

 $\begin{array}{l} \text{Main Theorem [Fujino-G, '11]} \\ (X, \Delta): \text{ proj. slc pair,} \end{array}$

 ν : $(X', \Theta) \rightarrow (X, \Delta)$:the noramalization, where $\nu^*(K_X + \Delta) = K_{X'} + \Theta$. Then $K_X + \Delta$ is semi-ample if so is $K_{X'} + \Theta$.

Definition[Semi-log canonical]

X: red., *S*₂, pure dim., and n.c. in codim. 1. $\Delta \ge 0$: Q-div. s.t. $K_X + \Delta$ is Q-Car.

Theorem

 (X, Δ) : proj. lc pair with base point free line

bundle $m(K_X + \Delta)$.

Then $\rho_m(Bir(X, \Delta))$ is a finite group

,where

Definition[Log pluricanonical representation]

 (X, Δ) : pair.

prop. bir. map $f : (X, \Delta) \dashrightarrow (X, \Delta)$ is *B-birational* $\Leftrightarrow \exists$ resol. $\alpha, \beta : W \to X$ such that $\alpha^*(K_X + \Delta) = \beta^*(K_X + \Delta)$ and $\alpha = f \circ \beta$. Bir $(X, \Delta) := \{\sigma \mid \sigma : (X, \Delta) \dashrightarrow (X, \Delta) \text{ is } B\text{-birational } \}.$

 $X := \bigcup X_i$: irr. decom.,

 $\nu : X' := \coprod X'_i \to X = \bigcup X_i$: normalization. Define Θ by $K_{X'} + \Theta = \nu^* (K_X + \Delta)$.

 $\Theta_i := \Theta|_{X'_i}.$

 (X, Δ) is semi-log canonical (slc) $\Leftrightarrow (X'_i, \Theta_i)$: lc for every *i*.

We believe that the above main theorem is one of the important steps of approaching the abundance conjecture.

 $\rho_m : \operatorname{Bir}(X, \Delta) \to \operatorname{Aut}_{\mathbb{C}}(X, \mathfrak{m}(K_X + \Delta))$

a log pluricanonical representation of $(X.\Delta)$.

Remarks

• For klt pairs, Theorem is true for the bigger group than $Bir(X, \Delta)$ without the assumption that $K_X + \Delta$ is semi-ample. And we need the generalization for proving Theorem for lc pairs.

GAeL XIX, Berlin, 2011