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1. Introduction

In this paper, we work over the complex number field C. The fol-
lowing theorems are very well known:

Theorem 1.1. Let X be a projective manifold and A submanifold of
X. Suppose that the normal bundle NA/X is nef. Then X is uniruled
if A is so.

Theorem 1.2. Let X be a projective manifold and A submanifold of X.
Suppose that the normal bundle NA/X is ample. Then X is rationally
connected if A is so.

The above theorems are proved by using the deformation of rational
curves (cf. [AK], [Ko, Chapter IV]). In this paper we consider these
theorems when X is singular and A is codimension 1.

We prove the following theorem:

Theorem 1.3. Let X be a Q-Gorenstein normal projective variety, A
a semi-ample and big Cartier divisor on X such that A is a uniruled va-
riety with only canonical singularities. Suppose that X has Q-factorial
and Cohen–Macaulay around A. Then X is uniruled.

Theorem 1.4. Let X be a Q-factorial Cohen–Macaulay normal pro-
jective variety and A an ample Cartier divisor on X such that A is a
rationally connected variety with only canonical singularities. Then X
is rationally connected.

Theorem 1.3 has concern with [Kop] and [PSS] which study about the
relation of Kodaira dimensions of X and A. It is difficult to show that
X is uniruled if κ(X) = −∞. So it dose not seem to show Theorem 1.3
directly from [Kop] and [PSS]. On the other hand, [P] studied about the
uniruledness of X. In this paper, Peternell generalized Theorem 1.1 in

Date: 2010/7/31, version 1.05.
2000 Mathematics Subject Classification. 14M22, 14M20, 14J26, 14E30.
Key words and phrases. rationally connected, uniruled.

1



2 YOSHINORI GONGYO

the case where X, A have only canonical singularities, codimA(XSing ∩
A) ≥ 0, A is not of general type and NA/X is ample. However our proof
is quite different from these papers.
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2. Preliminaries

In this section, we introduce notations.

Definition 2.1. Let X be a normal variety and ∆ an effective Q-Weil
divisor on X such that KX + ∆ is a Q-Cartier divisor. Let ϕ : Y → X
be a log resolution of (X, ∆). We set

KY = ϕ∗(KX + ∆) +
∑

aiEi,

where Ei is a prime divisor. The pair (X, ∆) is called kawamata log
terminal (klt, for short) if ai > −1 for all i. Moreover, we call X a log
terminal variety when (X, 0) is klt. In particular we say that X has
only canonical singularities if it holds for (X, 0) that ai > 0 for all i.

Definition 2.2. Let X be a normal and proper variety. A dominant
rational map π : X 99K W is called a rationally chain connected fi-
bration (RCC-fibration, for short) if there exist open sets X0 ⊆ X and
Z0 ⊆ Z such that π0 := the restricton of π on X0 satisfies the following;

(1) π0 is a proper morphism from X0 to Z0.
(2) every fiber of π is connected rationally chain connected .

In paticular, RCC-fibration π : X 99K W is called a maximal rationally
chain connected fibration (MRCC-fibration, for short) if π′ : X 99K W ′

is any RCC-fibration then there is a rational map τ : W ′ 99K W such
that π = π′ ◦ τ . Moreover, we say that π is a maximal rationally
connected fibration (MRC-fibration, for short) if π−1

0 (z) is a rationally
connected variety for general z ∈ Z0.

Theorem 2.3 ([F, Theorem 10.4]). Let X be a normal quasi-projective
variety and B a boundary R-divisor on X such that KX + B is R-
Cartier. In this case, we can construct a projective birational morphism
f : Y → X from a normal quasi-projective variety Y with the following
properties.

(i) Y is Q-factorial.
(ii) a(E,X,B) ≤ −1 for every f -exceptional divisor E on Y .
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(iii) We put

BY = f−1
∗ B +

∑
E:f-exceptional

E.

Then (Y,BY ) is dlt and

KY + BY = f ∗(KX + B) +
∑

a(E,X,B)<−1

(a(E,X,B) + 1)E.

In particular, if (X,B) is lc, then KY + BY = f∗(KX + B).
Moreover, if (X,B) is dlt, then we can make f small, that is,
f is an isomorphism in codimension one.

3. Uniruledness

Proof of Theorem 1.3. By the assumptption, it holds that (KX+A)|A =
KA. This implies that X has only log terminal singularities around A
by the inversion of adjunction ([KoM, Theorem 5.50]). We take a bi-
rational map ϕ : Y → X as in Theorem 2.3 for (X, 0). Then ϕ is
isomorphic around A by Q-factoriality and log terminalicity around A.
We may assume that X is Q-factorial log terminal variety by replacing
X with Y . From the uniruledness and canonicalicity of A, we see that
κ(KA) = −∞

This implies that

(1) H0(X,m(KX + A) − A) ≅ H0(X,m(KX + A))

for a sufficiently large and divisible positive integer m.

Claim 3.1. It holds that H0(X,m(KX + A)) = 0.

Proof of Claim 3.1. If there exists a positive integer m such that

H0(X,m(KX + A)) ̸= 0,

A is contained in the base locus of the complete linear system |m(KX +
A)| by (1). Then there exist an effective Z-divisor Dm and a positive
integer l such that

m(KX + A) ∼Z Dm + lA and SuppA ̸⊆ SuppDm

Since A is semi-ample, there exists a positive integer k such that |kA|
is free. We take an effective Z-divisor Bk ∈ |kA| such that SuppA ̸⊆
SuppBk. Thus it holds that

km(KX + A) ∼Z kDm + lBk.

This is contradiction from (1). Hence we see that H0(X,m(KX +A)) =
0 for a sufficiently large and divisible positive integer m. ¤
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We take an effective Q-Cartier divisor H such that H ∼Q A and
(X,H) is klt. Since H is big, KX + H is not pseudo-effective by the
non-vanishing theorem ([BCHM, Theorem D]) and Claim 3.1. Thus
we can work some minimal model program and get a Mori fiber space
for (X,H) by [BCHM, Corollary 1.3.3]. Hence X is uniruled.

¤

4. Rationally connecterdness

Definition 4.1. Let X be a normal variety and A R-Cartier R-Weil
divisor on X. We say that A is strictly nef around A if there exists
a Zariski open set U ⊆ X such that SuppA ⊆ U and it holds that
(C.A) > 0 for any proper curve C ⊆ X such that C ∩ U ̸= ∅.

Lemma 4.2. Let X be a normal projective uniruled variety and A
Cartier divisor on X. Suppose that A is strictly nef around A and A is
a rationally connected variety with only log terminal singularities. If X
has Q-factorial and Cohen–Macaulay around A, then X is rationally
connected.

Proof. By the same arguments of proof of Theorem 1.3, we may assume
that X is a Q-factorial variety with only log terminal singularities. We
take a maximal rationally chain connected fibration π : X 99K W .
Then π is a maximal rationally connected fibration by [HM, Corollary
1.5 (2)]. Hence we see that W is not uniruled by [GHS, Corollary
1.4] and dimW < dimX by the uniruledness of X. As A is strictly
nef around A, SuppA dominates W . This implies that W is a point
from rationally connectedness of A. Thus we see that X is a rationally
connected varieties by [HM, Corollary 1.5 (2)]. ¤

By Theorem 1.3 and Lemma 4.2, we see Theorem 1.4.

Remark 4.3. For a singular proper variety X, we take maximal ratio-
nally connected fibration W of a smooth model Y of X. Then X 99K W
may not almost holomorphic (the condition (1) in Definition 2.2). For
example, let X be the projective cone over a smooth cubic curve E in
P2. Of course, X is rationally chain connected but is not rationally
connected. We take π : P(OE ⊕ OE(−1)) → E as a smooth model of
X. Then π is maximal rationally connected fibration. Hence X 99K E
is a linear projection from the vertex. This is not almost holomorphic.
So we have to treat MRC-fibration delicately for a singular variety.
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