
EXAMPLE OF A PLT PAIR OF LOG GENERAL TYPE WITH
INFINITELY MANY LOG MINIMAL MODELS

YOSHINORI GONGYO

Conjecture 0.1. Let π : X → U be a projective morphism of normal quasi-projective
varieties, where X has dimension d. Suppose (X, ∆) be Q-factorial purely log ter-
minal pair over U , KX + ∆ is big over U . Then the set of isomorphism classes

{φ : X 99K Y |φ is the log minimal model over U of (X, ∆)}
is finite.

Remark 0.2. This conjecture for klt pair is true or in the case of KX + ∆ is log
big is true by [BCHM].

But this conjecture is not true for plt pair in general.

Example 0.3. Let S be a K3 surface with infinitely many (−2)-curve (cf. [Kov])
and S ⊂ PN some projectively normal embedding. Let X0 be the cone over it and
φ : X → X0 the blow-up at the vertex. Then the linear projection X0 99K S from the
vertex is decomposed as follows:
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Let H ′ ⊂ X0 be a sufficiently ample divisor which does not contain the origin and
KX0 +H ′ is ample. Let E ⊂ X be the φ-exceptional divisor, and let H be the proper
transform of H ′ in X. Then the pair (X, ∆ = E + H) is purely log terminal. Since
KX + E + H = φ∗(KX0 + H ′) (cf. Propositon 4.38 in [F]) is nef and big, (X, ∆) is
plt and 3-fold of log general type such that KX + ∆ is nef.
Let {Ci} be infinitely many (−2)-curves on E.
We claim that

Claim 0.4. R≥0[Ci] ⊆ NE(X) is an extremal ray with (KX + ∆).Ci = 0 and
(KX + ∆ + δiDi).Ci < 0, where Di is π∗(π(Ci)) and δi is a surfficiently small
positive number.
Morever, let φCi

be extremal contraction associated to R≥0[Ci]. Then φCi
is the

(KX + ∆ + δiDi)-flipping contraction and the (KX + ∆)-flopping contraction.
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Proof. It holds that (KX +∆).Ci = 0 by (KX +∆)|E = KE and (KX +∆+δiDi).Ci <
0 by C2

i = −2.
We prove that R≥0[Ci] ⊆ NE(X) is an extremal. If there is pseudoeffective curves
G1, G2 ∈ NE(X) such that [Ci] = [G1] + [G2], we can see H.Gj = 0. So it holds
that Supp(Gj) ⊆ E. We take semiample divisor Li on S such that Li is a supporting
divisor of the extremal ray R≥0[Ci], i.e. Li satisfies Li.Ci = 0 and Li.G > 0 for any
pseudoeffective curve [G] ∈ NE(E) such that [G] ∈ R≥0[Ci] on E. We identify E
with S. Let Li be a pullbuck of Li by π. We see that Li.Gj = Li|E.Gj = Li.Gj = 0.
So there exists a nonnegative number αj such that Gj = αjCi. We also see that
[Ci] = {Ci} and φCi

is small contraction. ¤
Now, since φCi

is the (KX + ∆ + δiDi)-flipping contraction, its log flip X 99K Xi

exists, which is the log flop for KX +∆. We see that log flop fi : (X, ∆) 99K (Xi, ∆i)
is log minimal model, where ∆i is the strict transform of ∆ on Xi. But it holds that
fi 6' fj (i 6= j).

This example is inspired by that of Hacon and McKernan in Lazić’s paper (cf. [L,
Theorem A.6]).
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