(-, S. Yokoyama) Sharp interface limit for stochastically perturbed mass
conserving Allen-Cahn equation, to appear in Ann. Probab.
Invariant measures in coupled KPZ equations, to appear in proceedings for
the IHP trimester (2017), Springer, 2018
(-, Y. Gao, D. Hilhorst) Convergence of a finite volume scheme for a stochastic
conservation law involving a Q-Brownian motion, to appear in Discrete and
Continuous Dynamical System - B
(C. Denis, -, S. Yokoyama) Curvature motion perturbed by a direction-dependent
colored noise, to appear in the Festschrift volume in honor of Michael
Roeckner, Springer
(-, M. Hoshino) A coupled KPZ equation, its two types of approximations
and existence of global solutions, J. Funct. Anal., 273 (2017) 1165-1204
(J.Y. Wakano, -, S. Yokoyama) Derivation of replicator-mutator equations
from a model in population genetics, Japan J. Ind. Appl. Math., 34 (2017),
473-488
Infinitesimal invariance for the coupled KPZ equations, Memoriam Marc Yor
-- S\'eminaire de Probabilit\'es XLVII, Lect. Notes Math. vol. 2137, Springer
(2015), 37--47
(E. Bolthausen, T. Chiyonobu, -) Scaling limits for weakly pinned Gaussian
random fields under the presence of two possible candidates. J. Math. Soc.
Japan, 67 (2015), 1359--1412, special issue for Kiyosi Ito
(-, J. Quastel) KPZ equation, its renormalization and invariant measures.
Stochastic Partial Differential Equations, Analysis and Computations, 3
(2015), 159--220
(-, M. Ohnawa, Y. Suzuki, S. Yokoyama) Existence and uniqueness of solutions
to stochastic Rayleigh-Plesset equations. J. Math. Anal. Appl., 425 (2015),
20--32
Equivalence of ensembles under inhomogeneous conditioning and its applications
to random Young diagrams. J. Stat. Phys., 154 (2014), 588--609, special
issue for Herbert Spohn
(-, M. Sasada, M. Sauer and B. Xie) Fluctuations in an evolutional model
of two-dimensional Young diagrams. Stoch. Proc. Appl., 123 (2013), 1229--1275
(-, H. Izuhara, M. Mimura and C. Urabe) A link between microscopic and
macroscopic models of self-organized aggregation. Networks and Heterogeneous
Media, 7 (2012), 705--740
Hydrodynamic limit for the $\nabla\varphi$ interface model via two-scale
approach, In: Probability in Complex Physical Systems: In Honour of Erwin
Bolthausen and Jurgen Gartner, Springer, 2012, 463--490
(-, M. Sasada) Hydrodynamic limit for an evolutional model of two-dimensional
Young diagrams. Comm. Math. Phys., 299 (2010), 335--363
(-, T. Otobe) Scaling limits for weakly pinned random walks with two large
deviation minimizers. J. Math. Soc. Japan, 62 (2010), 1005--1041
(E. Bolthausen, - and T. Otobe) Concentration under scaling limits for
weakly pinned Gaussian random walks. Probab. Theory Relat. Fields, 143
(2009), 441--480
Stochastic analysis on large scale interacting systems. In Selected Papers
on Probability and Statistics, Translations, Series 2, 227 (2009), 49--73,
American Mathematical Society
(-, B. Xie) A stochastic heat equation with the distributions of L\'evy
processes as its invariant measures. Stoch. Proc. Appl., 119 (2009), 307--326
A scaling limit for weakly pinned Gaussian random walks. In the Proceedings
of RIMS Workshop on Stochastic Analysis and Applications, German-Japanese
Symposium, RIMS Kokyuroku Bessatsu B6 (2008), 97--109
(-, K. Toukairin) Dynamic approach to a stochastic domination: The FKG
and Brascamp-Lieb inequalities. Proc. Amer. Math. Soc., 135 (2007), 1915--1922
Hydrodynamic limit and nonlinear PDEs with singularities. In the Proceedings
of MSJ-IRI meeting at Sendai "Asymptotic Analysis and Singularity"
(2005) edited by H. Kozono, T. Ogawa, K. Tanaka, Y. Tsutsumi and E. Yanagida,
Advanced Studies in Pure Mathematics, 47-2 (2007), 421-440, Mathematical
Society of Japan
(-, Y. Hariya, F. Hirsch and M. Yor) On some Fourier aspects of the construction of certain Wiener integrals. Stoch. Proc. Appl., 117 (2007), 1--22
(-, Y. Hariya, F. Hirsch and M. Yor) On the construction of Wiener integrals
with respect to certain pseudo-Bessel processes. Stoch. Proc. Appl., 116
(2006), 1690--1711
(-, Y. Hariya and M. Yor) Wiener integrals for centered Bessel and related
processes, II. ALEA (Latin American Journal of Probability and Mathematical
Statistics), 1 (2006), 225--240
(-, Y. Hariya and M. Yor) Wiener integrals for centered powers of Bessel
processes, I. Markov Proc. Relat. Fields, 13 (2007), 21--56
Dichotomy in a scaling limit under Wiener measure with density. Electron.
Comm. Probab. 12 (2007), 173--183
(-, K. Ishitani) Integration by parts formulae for Wiener measures on a
path space between two curves. Probab. Theory Relat. Fields, 137 (2007),
289--321
(-, H. Sakagawa) Large deviations for $\nabla\varphi$ interface model and
derivation of free boundary problems. In the Proceedings of Shonan/Kyoto
meetings "Stochastic Analysis on Large Scale Interacting Systems"
(2002) edited by T. Funaki and H. Osada, Advanced Studies in Pure Mathematics,
39 (2004), 173--211, Mathematical Society of Japan
Zero temperature limit for interacting Brownian particles, I. Motion of a single body. Ann. Probab., 32 (2004), 1201--1227
Zero temperature limit for interacting Brownian particles, II. Coagulation
in one dimension. Ann. Probab., 32 (2004), 1228--1246
Hydrodynamic limit for $\nabla \phi$ interface model on a wall. Probab.
Theory Relat. Fields, 126 (2003), 155--183
Stochastic models for phase separation and evolution equations of interfaces. Sugaku Expositions, 16 (2003), 97--116 (In Japanese: 50 (1998), 68--85)
(-, S. Olla) Fluctuations for $\nabla \phi$ interface model on a wall.
Stoch. Proc. Appl., 94 (2001), 1--27
(-, T. Nishikawa) Large deviations for the Ginzburg-Landau $\nabla \phi$ interface model. Probab. Theory Relat. Fields, 120 (2001), 535--568
Recent results on the Ginzburg-Landau $\nabla \phi$ interface model. Hydrodynamic Limits and Related Topics, edited by S. Feng, A.T. Lawniczak and S.R.S. Varadhan, Fields Institute Communications and Monograph Series, 2000, 71--81
Free boundary problem from stochastic lattice gas model. Ann. Inst. H. Poincar\'e, Probab. Statist., 35 (1999), 573--603
Singular limit for stochastic reaction-diffusion equation and generation of random interfaces. Acta Mathematica Sinica, 15 (1999), 407--438
(P. Biler, -, W.A. Woyczynski) Interacting paticle approximation for nonlocal quadratic evolution problems. Probability and Mathematical Statistics, 19 (1999), 267--286
(-, W.A. Woyczynski) Interacting particle approximation for fractal Burgers equation. Stochastic Processes and Related Topics, In Memory of Stamatis Cambanis 1943-1995, edited by I. Karatzas, B.S. Rajput, M.S. Taqqu, Birkh\"auser, Boston 1998, 141--166
(-, H. Spohn) Motion by mean curvature from the Ginzburg-Landau $\nabla\phi$
interface model. Comm. Math. Phys., 185 (1997) 1--36
Singular limit for reaction-diffusion equation with self-similar Gaussian noise. Proceedings of Taniguchi symposium, New Trends in Stochastic Analysis, edited by Elworthy, Kusuoka and Shigekawa, World Sci., 1997, 132--152
Derivation of variational problems from microscopic interface model. RIMS
Kokyuroku, 1323 (2003), 76--83
Books:
Stochastic Interface Models. In: Lectures on Probability Theory and Statistics, Ecole d'Et\'e de Probabilit\'es de Saint-Flour XXXIII - 2003 (ed. J. Picard), 103--274, Lect. Notes Math., 1869 (2005),
Springer.
(editor: -, H. Osada) Stochastic Analysis on Large Scale Interacting Systems
(2002), the Proceedings of Shonan/Kyoto meetings. Advanced Studies in Pure
Mathematics, 39, Mathematical Society of Japan, 2004, 395+11 pages
Probability Theory, in Japanese. Asakura, 2004 November, viii+263 pages
(-, K. Uchiyama) From Micro to Macro 1, Mathematical Theory of Interface
Models, in Japanese. Springer Tokyo, 2002 April, xii+284 pages
(K. Uchiyama, -) From Micro to Macro 2, Hydrodynamic Limit for Lattice
Gas, in Japanese. Springer Tokyo, 2002 December, xvi+304 pages
(editor: -, W.A. Woyczynski) Nonlinear Stochastic PDEs: Hydrodynamic Limit and Burgers' Turbulence. IMA volumes in Mathematics and its Applications, 77, Univ. Minnesota, Springer, 1995