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1 Preliminary and main theorem

This talk is based on [1]. Let D be a connected domain in Rd. We define the set Nx of inward unit
normal vectors at the boundary point x ∈ ∂D by

Nx = ∪r>0Nx,r (1)

Nx,r =
{
n ∈ Rd | |n| = 1, B(x− rn, r) ∩D = ∅

}
, (2)

where B(z, r) = {y ∈ Rd | |y − z| < r}, z ∈ Rd, r > 0. Note that

n ∈ Nx,r ⇐⇒ For any y ∈ D̄, (y − x,n) +
1

2r
|y − x|2 ≥ 0. (3)

Let us recall what Skorohod problem is.

Definition 1 (Skorohod Problem). Let w = w(t) (0 ≤ t ≤ T ) be a continuous path on Rd with w(0) ∈ D̄.
The pair of paths (ξ, ϕ) on Rd is a solution of a Skorohod problem associated with w if the following
properties hold.

(i) ξ = ξ(t) (0 ≤ t ≤ T ) is a continuous path in D̄ with ξ(0) = w(0).

(ii) It holds that ξ(t) = w(t) + ϕ(t) for all 0 ≤ t ≤ T .

(iii) ϕ = ϕ(t) (0 ≤ t ≤ T ) is a continuous bounded variation path on Rd such that ϕ(0) = 0 and

ϕ(t) =

∫ t

0

n(s)d∥ϕ∥[0,s] (4)

∥ϕ∥[0,t] =

∫ t

0

1∂D(ξ(s))d∥ϕ∥[0,s]. (5)

where n(t) ∈ Nξ(t) if ξ(t) ∈ ∂D.

In the above, ∥ϕ∥[0,t] stands for the total variation of ϕ on [0, t]. When the solution ξ is unique, we denote
ξ = Γ(w) and we call the mapping Γ a Skorohod map. We also denote L(w) = Γ(w) − w(= ϕ) which
corresponds to the local time at the boundary ∂D.

Example 2. Let D = (0,∞) ⊂ R. Then

ϕ(t) = − min
0≤s≤t

(w(s) ∧ 0) = max
0≤s≤t

{(−w(s)) ∨ 0} . (6)

In particular,

|Γ(w)t − Γ(w′)t| ≤ 2 max
0≤s≤t

|w(s) − w′(s)|. (7)

This implies the Skorohod map on the half space D in Rd is Lipschitz continuous in C([0, T ] → Rd). Also
an explicit form of Γ in the case of D = (0, a) was obtained in [5].
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In this talk, we consider domains whose boundary may not be smooth. More precisely, we consider
the following conditions (A), (B), (C), (C’) on domains following [10] and [6].

Definition 3. (1) Condition (A) (uniform exterior sphere condition). There exists a constant r0 > 0
such that

Nx = Nx,r0 ̸= ∅ for any x ∈ ∂D. (8)

(2) Condition (B). There exist constants δ > 0 and β ≥ 1 satisfying:
for any x ∈ ∂D there exists a unit vector lx such that

(lx,n) ≥ 1

β
for any n ∈ ∪y∈B(x,δ)∩∂DNy. (9)

(3) Condition (C). There exists a C2
b function f on Rd and a positive constant γ such that for any

x ∈ ∂D, y ∈ D̄, n ∈ Nx it holds that

(y − x,n) +
1

γ
((Df)(x),n) |y − x|2 ≥ 0. (10)

(4) Condition (C’). There exists a C2
b function f on Rd and a positive constant γ′ such that for any

x ∈ ∂D and n ∈ Nx it holds that

((Df)(x),n) ≥ γ′. (11)

Remark 4. (1) (A) with any r0 > 0 holds for any convex domain. (B) holds for any bounded convex
domain in Rd and convex domain in R2.

(2) (A) and (C’) =⇒ (C) with γ = 2r0γ
′

(3) (C’)=⇒ (B)

(4) (C) holds for any convex domain with f ≡ 0.

(5) (A) and (C’) hold on any bounded domain with piecewise smooth boundary and convex angles.

Theorem 5 ([10]). Assume conditions (A) and (B). Then there exists a unique solution to the Skorohod
problem for any continuous path w. Moreover the Skorohod mapping Γ : w 7→ ξ is 1/2-Hölder continuous
map in the uniform norm: Consider two Skorohod equations ξ = w + ϕ, ξ′ = w′ + ϕ′. Then

|ξ(t) − ξ′(t)|2 ≤
{
|w(t) − w′(t)|2 + 4

(
∥ϕ∥[0,t] + ∥ϕ′∥[0,t]

)
max
0≤s≤t

|w(s) − w′(s)|
}

exp
{(

∥ϕ∥[0,t] + ∥ϕ′∥[0,t]
)
/r0

}
, 0 ≤ t ≤ T. (12)

Let us explain the meaning of reflecting SDE. Let (Ω,F , P ) be a complete probability space and Ft be
the right-continuous filtration with the property that Ft contains all null sets of (Ω,F , P ). Let B = B(t)
be an Ft-Brownian motion on Rn. Let σ ∈ C(Rd → Rn⊗Rd), b ∈ C(Rd → Rd) be continuous mappings.
We consider an SDE with reflecting boundary condition on D̄:

X(t) = x +

∫ t

0

σ(X(s))dB(s) +

∫ t

0

b(X(s))ds + Φ(t), (13)

where x ∈ D̄. We denote this SDE by SDE(σ, b) simply. A pair of Ft-adapted continuous processes
(X(t),Φ(t)) is called a solution to (13) if the following holds. Let

Y (t) = x +

∫ t

0

σ(X(s))dB(s) +

∫ t

0

b(X(s))ds (14)

Then (X(·, ω),Φ(·, ω)) is a solution of the Skorohod problem associated with Y (·, ω) for almost all ω ∈ Ω.
If X(t) is a measurable function of {B(s) | 0 ≤ s ≤ t}, then the solution (X,Φ) is called a strong solution
of the SDE. The following result is due to Saisho who improved the result in Lions-Sznitman [6] and
Tanaka [13].
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Theorem 6. Assume D satisfies conditions (A) and (B) and σ and b are bounded and global Lipschitz
maps. Then there exists a unique strong solution to (13).

Assume σ ∈ C2
b and b ∈ C1

b . Let N ∈ N. We define the Wong-Zakai approximation XN to the

solution X of the SDE(σ, b̃), where b̃(x) = b(x) + 1
2 tr(Dσ)[σ(x)·](·) as the solution to the reflecting ODE:

XN (t) = x +

∫ t

0

σ(XN (s))dBN (s) +

∫ t

0

b(XN (s))ds + ΦN (t), (15)

where

BN (t) = B(tNk−1) +
∆NBk

∆N
(t− tNk−1) tNk−1 ≤ t ≤ tNk , (16)

∆NBk = B(tNk ) −B(tNk−1), ∆N = T/N, tNk =
kT

N
. (17)

The solution to the above reflecting ODE exists uniquely by Theorem 6. Actually, we can prove the
following.

Proposition 7 ([1]). Assume the same assumptions as in Theorem 6. Let w = w(t) be a continuous
bounded variation path on Rn. Then there exists a unique continuous bounded variation path x(t) on Rd

satisfying the reflecting ODE:

x(t) = x +

∫ t

0

σ(x(s))dw(s) +

∫ t

0

b(x(s))ds + Φ(t). (18)

Proof. This can be proved by the Euler-Peano approximation of x, the continuity of Γ and Arzela and
Ascoli’s theorem.

The following is our main theorem.

Theorem 8 ([1]). Assume σ ∈ C2
b , b ∈ C1

b and conditions (A), (B) and (C). Let X be the solution to

SDE(σ, b̃), where b̃ = b + 1
2 tr(Dσ)(σ). Let 0 < θ < 1. There exists a positive constant CT,θ such that for

all N ∈ N,

E

[
max
0≤t≤T

|XN (t) −X(t)|2
]
≤ CT,θ∆

θ/6
N . (19)

To prove this theorem, we need Euler-Peano approximation.

2 Euler-Peano approximation

For 0 ≤ k ≤ N , set tNk = kT/N . Let us define XN
E (t) (0 ≤ t ≤ T ) as the solution to the Skorohod

problem inductively which is given by XN
E (0) = x ∈ Rd and

XN
E (t) = XN

E (tNk−1) + σ(XN
E (tNk−1))(B(t) −B(tNk−1)) + b(XN

E (t))(t− tNk )

+ ΦN
E (t) − ΦN

E (tNk−1) tNk−1 ≤ t ≤ tNk . (20)

In other words, XN
E satisfies

XN
E (t) = x +

∫ t

0

σ(XN
E (πN (s)))dB(s) +

∫ t

0

b(XN
E (πN (s)))ds + ΦN

E (t), (21)

where πN (t) = max{tk | tk ≤ t}. Define

Y N
E (t) = x +

∫ t

0

σ(XN
E (πN (s)))dB(s) +

∫ t

0

b(XN
E (πN (s)))ds. (22)
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Then by the definition of the solution of the SDE, it holds that

XN
E (t) = Γ

(
Y N
E

)
(t). (23)

We have

Theorem 9. Assume the same assumptions as in Theorem 6 and condition (C). Then for any p ≥ 1,
there exists Cp > 0 such that

E

[
max
0≤t≤T

|XN
E (t) −X(t)|2p

]
≤ Cp∆p

N . (24)

To prove this theorem, we need the following estimates. In the following, we use the oscillation and
the total variation of the path:

∥w∥∞,[s,t] = max
s≤u≤v≤t

|w(u) − w(v)|, (25)

∥w∥[s,t] = sup
∆

N∑
k=1

|w(tk) − w(tk−1)|, (26)

where ∆ = {s = t0 < · · · < tN = t} is a partition of the interval [s, t].

Lemma 10. Assume the same assumptions as in Theorem 6. Let p ≥ 1. There exists a positive constant
Cp such that

E[∥X∥2p∞,[s,t]] ≤ Cp|t− s|p, (27)

E[|Φ∥2p[s,t]] ≤ Cp|t− s|p. (28)

E[∥XN
E ∥2p∞,[s,t]] ≤ Cp|t− s|p, (29)

E
[
∥ΦN

E ∥2p[s,t]
]
≤ Cp|t− s|p. (30)

To prove the above moment estimates, we need an estimate on the total variation of the local time
terms Φ and ΦN

E .

Lemma 11 ([10, 1]). Assume (A) and (B). Let us fix 0 < θ < 1. Then there exist positive constants
C1, C2, C3 such that

∥ϕ∥[s,t] ≤ C1

(
1 + ∥w∥C2

H,[s,t],θ(t− s)
)
eC3∥w∥∞,[s,t]∥w∥∞,[s,t], (31)

where

∥w∥H,[s,t],θ = sup
s≤u<v≤t

|w(v) − w(u)|
|u− v|θ

. (32)

The constants Ci depend only on r0, β, δ in conditions (A) and (B).

Proof. This is a quantative version of the estimate in Proposition 3.1 and Theorem 4.2 in [10].

3 Proof of main theorem

For simplicity, we may denote ∆NBk, ∆N , tNk by ∆Bk, ∆, tk. By the definition, it holds that

XN (t) = XN (tk−1) +

∫ t

tk−1

σ(XN (s))
∆Bk

∆
ds +

∫ t

tk−1

b(XN (s))ds

+ ΦN (t) − ΦN (tk−1) tk−1 ≤ t ≤ tk. (33)
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Clearly, XN (tk−1) is Ftk−1
-measurable. Let

Y N (t) = x +

∫ t

0

σ(XN (s))dBN (s) +

∫ t

0

b(XN (s))ds. (34)

Then XN = Γ(Y N ) and ΦN = L(Y N ).
We have the following moment estimates.

Lemma 12. Assume σ ∈ C2
b , b ∈ C1

b and coditions (A) and (B). Let p ≥ 1. There exists a positive
number Cp which is independent of N such that for all 0 ≤ s ≤ t ≤ T ,

E[∥Y N∥2p∞,[s,t]] ≤ Cp|t− s|p, (35)

E[∥XN∥2p∞,[s,t]] ≤ Cp|t− s|p, (36)

E[|ΦN∥2p[s,t]] ≤ Cp|t− s|p. (37)

In the proof of the above moment estimates, we use estimates for the total variation of local time
term in Lemma 11. Further, we need the following Lemma 13 which is used for the estimate of the total
variation of ΦN on the small interval I, where |I| = O(∆N ). The estimate in Lemma 11 is not good for
such estimates, because the estimate in Lemma 11 contains the exponential term1.

Lemma 13 ([1]). Assume condition (A) and the existence of the solution ξ to the Skorohod problem for
a continuous bounded variation path w. Then the total variation of the solution ξ has the estimate:

∥ξ∥[s,t] ≤ 2(
√

2 + 1)∥w∥[s,t] (38)

Remark 14. Under the admissibility of the domain, Lions and Sznitman proved that ∥ϕ∥[s,t] ≤ ∥w∥[s,t]
which implies ∥ξ∥[s,t] ≤ 2∥w∥[s,t]. Our proof does not use the admissibility but use the following estimate
in Lemma 2.3 (i) in [10].

|ξ(t) − ξ(s)|2 ≤ |w(t) − w(s)|2 +
1

r0

∫ t

s

|ξ(u) − ξ(s)|2d∥ϕ∥[0,u] + 2

∫ t

s

(w(t) − w(u), dϕ(u)) . (39)

The following is a key lemma for the proof of Lp convergence of Wong-Zakai approximation.

Lemma 15 ([1]). Assume the same assumption as in Theorem 8. Let XN
E be the Euler-Peano approxi-

mation to SDE(σ, b̃), where b̃ = b+ 1
2 tr(Dσ)(σ). Then for any 0 < θ < 1, there exists a positive constant

Cθ such that for all N ,

sup
0≤k≤N

E
[
|XN (tNk ) −XN

E (tNk )|2
]
≤ Cθ · ∆

θ/2
N . (40)

Remark 16. The rate of convergence in (40) is, roughly speaking, half of that of the Wong-Zakai
approximation to the SDE without reflection term. However, this bound may not be so bad. Assume
(A) and (B) hold. By (12), we obtain

E[|Γ(B)t − Γ(BN )t|2] ≤ C∆
θ/2
N , (41)

where 0 < θ < 1. By examining the proof in [10], one can replace the term ∥ϕ∥[0,t] + ∥ϕ′∥[0,t] in (12) by
∥ϕ− ϕ′∥[0,t]. I am not sure whether or not this estimate gives better estimates than the above. Also we
note that this rate of convergence appeared in the study of the Euler approximation in [11, 12]. Actually
S lomiński obtained more precise estimates containing logN in the Euler and Euler-Peano approximation.
Of course, if D is a half space (or convex polyhedron, see [3]) in a Euclidean space, then Γ is Lipschitz
continuous and the upper bound in (41) is O(∆θ

N ). Also, it seems that the calculation in [2] also gives the
convergence speed O(∆θ

N ) for Wong-Zakai approximations of general reflecting SDEs in the half space
case. However, to my knowledge, I do not know examples of reflecting SDE for which the slow convergence

speed ∆
θ/2
N really appear.

1When D is convex, the exponential term vanishes. So we may not need Lemma 13 in the convex case.
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Lemma 17. Assume the same assumptions in Lemma 15 and consider the same SDE. Let 0 < θ < 1.
Then there exists a positive constant CT,θ such that

E

[
max
0≤t≤T

|XN (t) −XN
E (t)|2

]
≤ Cp,T,θ∆

θ/6
N . (42)

Proof. This can be proved by Lemma 15 and the moment estimates for XN
E , XN (Lemma 10 and

Lemma 12).

Proof of main theorem. The proof follows from Theorem 9 and Lemma 17.
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