Cooperation principle and disappearance of chaos in random complex dynamics

Hiroki Sumi (Osaka University) sumi@math.sci.osaka-u.ac.jp, http://www.math.sci.osaka-u.ac.jp/~sumi/

1 Introduction

The details of this talk are included in the author's papers [1,2]. In the usual iteration of a single rational map h with deg $(h) \ge 2$, we always have the "chaotic part" in the Riemann sphere. However, in this talk, we show that in the i.i.d. random complex dynamics of polynomials, for a generic probability measure τ on the space of polynomial maps, (1) the chaos of the averaged system disappears, due to the **automatic cooperation** of the generator maps, (2) there exists a stability of the limit state w.r.t. the perturbation of τ , and (3) the orbit of a Hölder continuous function under the transition operator M_{τ} converges exponentially fast to the finite-dimensional space \mathcal{U}_{τ} of finite linear combinations of unitary eigenvectors of M_{τ} .

Moreover, in the limit state, under certain conditions, we have complex analogues of the devil's staircase. Note that the devil's staircase can be regarded as the function of probability of tending to $+\infty$ with respect to the random dynamics on \mathbb{R} such that at every step we take h_1 with probability 1/2 and h_2 with probability 1/2.

2 Preliminaries

Definition 2.1. We denote by $\hat{\mathbb{C}}(:=\mathbb{C}\cup\{\infty\}\cong\mathbb{CP}^1\cong S^2)$ the Riemann sphere and denote by d the spherical distance on $\hat{\mathbb{C}}$. We set $\operatorname{Rat}:=\{h:\hat{\mathbb{C}}\to\hat{\mathbb{C}}\mid h \text{ is a non-const. rational map}\}$ endowed with the distance η defined by $\eta(f,g):=\sup_{z\in\hat{\mathbb{C}}}d(f(z),g(z))$.We set $\operatorname{Rat}_+:=\{g\in\operatorname{Rat}\mid \deg(g)\geq 2\}$. We set $\mathcal{P}:=\{g:\hat{\mathbb{C}}\to\hat{\mathbb{C}}\mid g \text{ is a polynomial map, } \deg(g)\geq 2\}$ endowed with the relative topology from Rat. Note that Rat and \mathcal{P} are semigroups where the semigroup operation is functional composition. A subsemigroup G of Rat is called a **rational semigroup**. A subsemigroup G of \mathcal{P} is called a **polynomial semigroup**.

Definition 2.2. Let G be a rational semigroup. We set

 $F(G) := \{z \in \mathbb{C} \mid \exists \text{ nbd } U \text{ of } z \text{ s.t. } G \text{ is equicontinuous on } U\}$. This is called the **Fatou set** of G. We set $J(G) := \mathbb{C} \setminus F(G)$. This is called the **Julia set** of G. If G is generated by a subset Λ of Rat, then we write $G = \langle \Lambda \rangle$.

Definition 2.3. For a metric space X, we denote by $\mathfrak{M}_1(X)$ the space of all Borel probability measures on X endowed with the topology such that

" $\mu_n \to \mu$ " \Leftrightarrow "for each bounded continuous function $\varphi : X \to \mathbb{R}, \ \int_X \varphi \, d\mu_n \to \int_X \varphi \, d\mu$."

Remark 2.4. If X is a compact metric space, then $\mathfrak{M}_1(X)$ is a compact metrizable space.

From now on, we take a $\tau \in \mathfrak{M}_1(\operatorname{Rat})$ and we consider the i.i.d. random dynamics on \mathbb{C} such that at every step we choose a map $h \in \operatorname{Rat}$ according to τ . This determines a time-discrete Markov process with time-homogeneous transition probabilities on the phase space \mathbb{C} such that for each $x \in \mathbb{C}$ and for each Borel measurable subset A of \mathbb{C} , the transition probability p(x, A) from x to A is defined as $p(x, A) = \tau(\{g \in \operatorname{Rat} \mid g(x) \in A\})$.

Definition 2.5. Let $\tau \in \mathfrak{M}_1(\operatorname{Rat})$. (1) We set $C(\hat{\mathbb{C}}) := \{\varphi : \hat{\mathbb{C}} \to \mathbb{C} \mid \varphi \text{ is conti.}\}$ endowed with the sup. norm $\|\cdot\|_{\infty}$. (2) Let $M_{\tau} : C(\hat{\mathbb{C}}) \to C(\hat{\mathbb{C}})$ be the operator defined by $M_{\tau}(\varphi)(z) := \int_{\operatorname{Rat}} \varphi(g(z)) d\tau(g), \forall \varphi \in C(\hat{\mathbb{C}}), \forall z \in \hat{\mathbb{C}}$. (3) Let $M_{\tau}^* : \mathfrak{M}_1(\hat{\mathbb{C}}) \to \mathfrak{M}_1(\hat{\mathbb{C}})$ be the dual of M_{τ} . That is, for each $\rho \in \mathfrak{M}_1(\hat{\mathbb{C}})$ and for each $\varphi \in C(\hat{\mathbb{C}}), \int \varphi d(M_{\tau}^*(\rho)) := \int M_{\tau}(\varphi) d\rho$. (Remark: M_{τ}^* can be regarded as the "averaged map" of supp τ). (4) We set $F_{meas}(\tau) := \{ \mu \in \mathfrak{M}_1(\hat{\mathbb{C}}) \mid \exists \text{ nbd } B \text{ of } \mu \text{ in } \mathfrak{M}_1(\hat{\mathbb{C}}) \text{ s.t.} \}$

 $\{(M_{\tau}^*)^n|_B : B \to \mathfrak{M}_1(\hat{\mathbb{C}})\}_{n \in \mathbb{N}} \text{ is equiconti. on } B\}. (5) \text{ Let } \mathcal{U}_{\tau} \text{ be} the space of all finite linear combinations of unitary eigenvectors of } M_{\tau} : C(\hat{\mathbb{C}}) \to C(\hat{\mathbb{C}}), \text{ where an eigenvector is said to be unitary if the absolute value of the corresponding eigenvalue is 1. (6) Let <math>\mathcal{B}_{0,\tau} := \{\varphi \in C(\hat{\mathbb{C}}) \mid M_{\tau}^n(\varphi) \to 0 \text{ as } n \to \infty\}.$ (7) Let $\tilde{\tau} := \bigotimes_{j=1}^{\infty} \tau \in \mathfrak{M}_1((\operatorname{Rat})^{\mathbb{N}}).$ (8) Let G_{τ} be the rational semigroup generated by $\operatorname{supp} \tau$. (9) We say that a non-empty compact subset K of $\hat{\mathbb{C}}$ is a **minimal set** of G_{τ} in $\hat{\mathbb{C}}$ if K is minimal in $\{L \subset \hat{\mathbb{C}} \mid \emptyset \neq L \text{ is compact}, \forall g \in G_{\tau}, g(L) \subset L\}$ w.r.t. \subset . Moreover, we set $\operatorname{Min}(G_{\tau}, \hat{\mathbb{C}}) := \{L \mid L \text{ is a minimal set of } G_{\tau} \text{ in } \hat{\mathbb{C}}\}.$ (10) For a minimal set L of G_{τ} in $\hat{\mathbb{C}}$ and a point $z \in \hat{\mathbb{C}}$, we set $T_{L,\tau}(z) := \tilde{\tau}(\{\gamma = (\gamma_1, \gamma_2, \ldots) \in (\operatorname{Rat})^{\mathbb{N}} \mid d(\gamma_n \cdots \gamma_1(z), L) \to 0 \text{ as } n \to \infty\})$. This is **the probability of tending to** L **starting with the initial value** $z \in \hat{\mathbb{C}}$.

Definition 2.6. Let G be a rational semigroup. We set $J_{\text{ker}}(G) := \bigcap_{h \in G} h^{-1}(J(G))$. This is called the **kernel Julia set** of G.

Let $\tau \in \mathfrak{M}_1(\mathcal{P})$ be such that $\operatorname{supp} \tau$ is compact. If there exists an $f_0 \in \mathcal{P}$ and a non-empty open subset U of \mathbb{C} such that $\{f_0 + c \mid c \in U\} \subset \operatorname{supp} \tau$, then $J_{\ker}(G_{\tau}) = \emptyset$. Thus, we can say that mostly $J_{\ker}(G_{\tau}) = \emptyset$.

3 Results

Theorem 3.1 (Theorem A, Cooperation Principle and Disappearance of Chaos). Let $\tau \in \mathfrak{M}_1(\operatorname{Rat})$ be such that $\operatorname{supp} \tau$ is compact. Suppose $J_{\operatorname{ker}}(G_{\tau}) = \emptyset$ and $J(G_{\tau}) \neq \emptyset$. (note: if $\exists g \in \operatorname{supp} \tau$ with $\operatorname{deg}(g) \geq 2$, then $J(G_{\tau}) \neq \emptyset$.) Then, we have all of the following (1)–(8).

- (1) $F_{meas}(\tau) = \mathfrak{M}_1(\hat{\mathbb{C}})$. (Note: For this statement (1), " $J(G_{\tau}) \neq \emptyset$ " is not needed.)
- (2) $\forall z \in \hat{\mathbb{C}} \ \exists \mathcal{A}_z \subset (\operatorname{Rat})^{\mathbb{N}} \text{ with } \tilde{\tau}(\mathcal{A}_z) = 1 \ s.t. \text{ the following (*) holds.}$
 - (*) $\forall \gamma = (\gamma_1, \gamma_2, \ldots) \in \mathcal{A}_z, \ \exists \delta = \delta(z, \gamma) > 0 \ s.t. \ \text{diam} \gamma_n \cdots \gamma_1(B(z, \delta)) \to 0 \ as \ n \to \infty,$ where diam denotes the diameter w.r.t. the spherical distance.
- (3) $\mathcal{B}_{0,\tau}$ is a closed subspace of $C(\hat{\mathbb{C}})$ and $C(\hat{\mathbb{C}}) = \mathcal{U}_{\tau} \oplus \mathcal{B}_{0,\tau}$.
- (4) $1 \leq \dim_{\mathbb{C}} \mathcal{U}_{\tau} < \infty.$
- (5) For each $\varphi \in \mathcal{U}_{\tau}$ and for each connected component U of $F(G_{\tau})$, $\varphi|_{U}$ is constant.
- (6) $\exists \alpha \in (0,1) \ s.t. \ \forall \varphi \in \mathcal{U}_{\tau}, \ \varphi \ is \ \alpha \text{-Hölder continuous on } \hat{\mathbb{C}}.$
- (7) $1 \leq \# \operatorname{Min}(G_{\tau}, \hat{\mathbb{C}}) < \infty.$
- (8) Let $L \in \operatorname{Min}(G_{\tau}, \hat{\mathbb{C}})$. Then $M_{\tau}(T_{L,\tau}) = T_{L,\tau}$ and $T_{L,\tau} \in \mathcal{U}_{\tau}$. Moreover, for each $z \in \hat{\mathbb{C}}$, $\sum_{L \in \operatorname{Min}(G_{\tau}, \hat{\mathbb{C}})} T_{L,\tau}(z) = 1$.

Remark 3.2. Theorem A describes new phenomena which cannot hold in the usual iteration dynamics of a single $g \in \text{Rat}$ with $\deg(g) \geq 2$. For example, $F_{meas}(\delta_q) \neq \mathfrak{M}_1(\hat{\mathbb{C}})$.

Definition 3.3. Let $\tau \in \mathfrak{M}_1(\operatorname{Rat})$ be such that $\operatorname{supp} \tau$ is compact. We say that τ is **mean stable** if there exist non-empty open subsets U, V of $F(G_{\tau})$ and a number $n \in \mathbb{N}$ such that all of the following (1)–(3) hold. (1) $\overline{V} \subset U \subset \overline{U} \subset F(G_{\tau})$. (2) $\forall \gamma = (\gamma_1, \gamma_2, \ldots) \in (\operatorname{supp} \tau)^{\mathbb{N}}$, $(\gamma_n \circ \cdots \circ \gamma_1)(\overline{U}) \subset V$. (3) $\forall z \in \hat{\mathbb{C}}, \exists g \in G_{\tau} \text{ s.t. } g(z) \in U$.

Remark 3.4. If τ is mean stable, then $J_{\text{ker}}(G_{\tau}) = \emptyset$.

Definition 3.5. Let \mathcal{Y} be a closed subset of Rat. Let $\mathfrak{M}_{1,c}(\mathcal{Y}) := \{\tau \in \mathfrak{M}_1(\mathcal{Y}) \mid \operatorname{supp} \tau \text{ is compact}\}.$ Let \mathcal{O} be the topology in $\mathfrak{M}_{1,c}(\mathcal{Y})$ such that $\tau_n \to \tau$ in $(\mathfrak{M}_{1,c}(\mathcal{Y}), \mathcal{O})$ if and only if (1) $\int \varphi \, d\tau_n \to \int \varphi \, d\tau$ for each bounded continuous function $\varphi : \mathcal{Y} \to \mathbb{R}$, and (2) $\operatorname{supp} \tau_n \to \operatorname{supp} \tau$ with respect to the Hausdorff metric in the space of all non-empty compact subsets of \mathcal{Y} .

Theorem 3.6 (Theorem B, Density of Mean Stable Systems).

- (1) $\{\tau \in \mathfrak{M}_{1,c}(\mathcal{P}) \mid \tau \text{ is mean stable}\}\$ is open and dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$.
- (2) $\{\tau \in \mathfrak{M}_{1,c}(\mathcal{P}) \mid \tau \text{ is mean stable and } \sharp \operatorname{supp} \tau < \infty\}$ is dense in $(\mathfrak{M}_{1,c}(\mathcal{P}), \mathcal{O})$.

We remark that in the study of iteration of a single rational map, we have a very famous conjecture which states that hyperbolic rational maps are dense in the space of rational maps. Theorem B solves this kind of problem in the study of random dynamics of complex polynomials.

Theorem 3.7. The set $\{\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat}_+) \mid \tau \text{ is mean stable }\} \cup \{\rho \in \mathfrak{M}_{1,c}(\operatorname{Rat}_+) \mid \operatorname{Min}(G_{\rho}, \hat{\mathbb{C}}) = \{\hat{\mathbb{C}}\}, J(G_{\rho}) = \hat{\mathbb{C}}\}$ is dense in $(\mathfrak{M}_{1,c}(\operatorname{Rat}_+), \mathcal{O}).$

Definition 3.8. For a $\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat})$ with $J_{\ker}(G_{\tau}) = \emptyset$ and $J(G_{\tau}) \neq \emptyset$, let $\pi_{\tau} : C(\widehat{\mathbb{C}}) \to \mathcal{U}_{\tau}$ be the canonical projection coming from Theorem A.

Theorem 3.9 (Theorem C, Stability). Suppose $\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat})$ is mean stable and $J(G_{\tau}) \neq \emptyset$. Then there exists a neighborhood Ω of τ in $(\mathfrak{M}_{1,c}(\operatorname{Rat}), \mathcal{O})$ such that all of the following (1)(2)(3)hold. (1) For each $\nu \in \Omega$, ν is mean stable (thus Theorem A for ν holds). (2) The maps $\nu \mapsto \pi_{\nu}$ and $\nu \mapsto \mathcal{U}_{\nu}$ are continuous on Ω . (3) The map $\nu \mapsto \sharp \operatorname{Min}(G_{\nu}, \widehat{\mathbb{C}})$ is constant on Ω .

Definition 3.10. For each $\alpha \in (0, 1)$, we set $C^{\alpha}(\hat{\mathbb{C}}) := \{\varphi \in C(\hat{\mathbb{C}}) \mid \|\varphi\|_{\alpha} < \infty\}$, where $\|\varphi\|_{\alpha} := \sup_{z \in \hat{\mathbb{C}}} |\varphi(z)| + \sup_{x,y \in \hat{\mathbb{C}}, x \neq y} |\varphi(x) - \varphi(y)| / d(x, y)^{\alpha}$. (α -Hölder norm.)

Theorem 3.11 (Theorem D, Exponential Rate of Convergence). Let $\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat})$. Suppose that $J_{\ker}(G_{\tau}) = \emptyset$, $J(G_{\tau}) \neq \emptyset$, and for each minimal set L of G_{τ} in $\hat{\mathbb{C}}$, $L \subset F(G_{\tau})$. (Note: if $\tau \in \mathfrak{M}_{1,c}(\operatorname{Rat})$ is mean stable and $J(G_{\tau}) \neq \emptyset$, then all of the above assumptions hold.) Then $\exists \alpha \in (0, 1) \exists C > 0 \exists \lambda \in (0, 1)$ s.t.

for each $\varphi \in C^{\alpha}(\hat{\mathbb{C}})$ and for each $n \in \mathbb{N}$, $\|M_{\tau}^{n}(\varphi - \pi_{\tau}(\varphi))\|_{\alpha} \leq C\lambda^{n}\|\varphi\|_{\alpha}$.

Figure 1: The Julia set of $G = \langle h_1, h_2 \rangle$, where $g_1(z) := z^2 - 1, g_2(z) := z^2/4, h_1 := g_1^2, h_2 := g_2^2$.

Figure 2: The graph of $z \mapsto T_{\infty,\tau}(z)$, where, letting (h_1, h_2) be the element in Figure 1, we set $\tau := \sum_{j=1}^{2} (1/2) \delta_{h_j}$. A devil's colliseum (a complex analogue of the devil's staircase). τ is mean stable. The set of varying points of $T_{\infty,\tau}$ is equal to Figure 1.

References

- H. Sumi, Random complex dynamics and semigroups of holomorphic maps, to appear in Proc. London Math. Soc., http://arxiv.org/abs/0812.4483.
- H. Sumi, Cooperation principle, stability and bifurcation in random complex dynamics, preprint 2010, http://arxiv.org/abs/1008.3995.