
Height fluctuations of the one-dimensional KPZ equation

��� ���
( ������	
��	����	
����� ��	 ���
���� )

The Kardar-Parisi-Zhang equation is a well-known equation (nonlinear stochas-

tic partial differential equation) to describe surface growth phenomena. For the

one-dimensionanl case it reads

∂th(x, t) = 1
2
λ(∂xh(x, t))2 + ν∂2

xh(x, t) +
√

Dη(x, t). (1)

Here x ∈ R is a space coordinate, t ≥ 0 is time and h ∈ R is the surface height

at t and x. In addition η(x, t) is a Gaussian white noise with 〈η(x, t)η(x′, t′)〉 =

δ(x − x′)δ(t − t′). λ, ν, D > 0 are the parameters of the equation. ν represents

the strength of the diffusive relaxation, λ the nonliearity and D the noise.

In the long time asymptotic regime, a renormalization group argument sug-

gests that the height fluctuations scale like O(t1/3). This exponent 1/3 is be-

lieved to be universal for a wide class of growth processes (KPZ universality).

The KPZ equation itself has not been studied so much compared to similar

lattice models like the asymmetric simple exclusion process (ASEP). One reason

would be that there was a difficulty of the definition of the equation itself due

to the irregular behaviors of h(x, t).

In the mean time, the studies of fluctuation propeties of ASEP and related

models have progressed greatly using the connection to the techniques from

integrable systems such as random matrix theory and Bethe ansatz.

In this presentation, we show that the fluctuations of the height of the KPZ

equation is written as an integral of the Fredholm determinant [1–4]. This is

done by combining a plausible regulaization procedure of the equation proposed

by Bertini and Giacomin using the Cole-Hopf transformation some time ago,

and a contour integration formula for the distribution of a particle position in

ASEP by Tracy and Widom.

We consider the droplet growth in which the macroscopic height is given by

h(x, t) =







−x2/2λt for |x| ≤ λt/δ ,

(λ/2δ2)t − |x|/δ for |x| > λt/δ,

with δ � 1. This corresponds to the narrow wedge initial conditions:

h(x, 0) = −|x|/δ.
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Let ξt have the probability density,

ρt(s) =

∫

∞

−∞

γte
γt(s−u) exp

[

− eγt(s−u)
]

×
(

det(1 − Pu(Bt − PAi)Pu) − det(1 − PuBtPu)
)

du

where γt = 2−1/3α4/3t1/3, PAi(x, y) = Ai(x)Ai(y), Pu is the projection onto

[u,∞) and the kernel Bt is

Bt(x, y) = KAi(x, y) +

∫

∞

0

dλ(eγtλ − 1)−1

×
(

Ai(x + λ)Ai(y + λ) − Ai(x − λ)Ai(y − λ)
)

.

Thm. For h(x, t) described by the KPZ equation (1) with the above initial

conditions, one has

(λ/2ν)h(x, t/2ν)
d
= −x2/2t − 1

12
γ3

t + 2 log α + γtξt (2)

where α = (2ν)−3/2λD1/2.

Let ξTW obeys the GUE Tracy-Widom distributions;

P[ξTW ≤ s] = det(1 − PsKAiPs)

where KAi is the Airy kernel

KAi(x, y) =

∫

∞

0

dλAi(x + λ)Ai(y + λ).

This distribution describes the largest eigenvalue distribution of GUE random

matrices in the limit of large matrix dimension. It also appears as the limiting

distribution for the height fluctuations of several growth models. By using the

formula (2) it is easy to show limt→∞ ξt = ξTW in distribution. With this one

could say that the KPZ equation is in the KPZ universality class.

The presentation is based on collaborations with H. Spohn, T. Imamura.
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