JENSEN’S INEQUALITY ON CONVEX SPACES
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1. p-UNIFORM CONVEXITY

Definition 1.1 (p-Uniformly Convex Space; cf. Naor-Silberman [4]). A metric space (Y, d)
is called p-uniformly convex with parameter k > 0 if (Y, d) is a geodesic space and for any
three points x,y, z € Y, any minimal geodesic v := (7¢)ejo,1) in Y with v9 = 2, 71 =y, and
all t € 0, 1],

(1.1) dP(z,v) < (1 —=t)dP(z,z) + tdP(z,y) — gt(l —t)d?(z,y).

By definition, putting z = ~;, we see k €]0,2] and p € [2,00[. The inequality (1.1)
yields the (strict) convexity of Y 3 & +— dP(z,z) for a fixed z € Y. Any closed convex
subset of a p-uniformly convex space is again a p-uniformly convex space with the same
parameter. Any LP space over a measurable space is p-uniformly convex with parameter
k=2 (”%})p’1 provided p > 2, and it is 2-uniformly convex with parameter k£ = 2(p — 1)

4P p2
provided 1 < p < 2. Every CAT(0)-space is a p-uniformly convex space with parameter
k= 252171 for p > 2 (we can take k = 2 for p = 2), because R? is isometrically
4Pp? N p

embedded into LP([0,1]) for p > 1 (see [1],[4]) and any LP-space of maps into CAT(0)-space
is again p-uniformly convex for p > 2. Ohta [5] proved that for x > 0 any CAT(k)-space Y
with diam(Y') < R, /2 is a 2-uniformly convex space with parameter {(m — 2y/ke) tan \/ke}
for any ¢ €]0, R, /2 — diam(Y)].

Lemma 1.1 (Projection Map to Convex Set). Let (Y, d) be a complete p-uniformly convex
space with parameter k €]0,2]. The the following hold:

(1) Let F be a closed convex subset of (Y,d). Then, for each x € Y, there exists a unique
element mp(x) € F such that d(x, F) = d(mp(z),z) holds. We call g : Y — F the
projection map to F'.

(2) Let F be as above. Then mp satisfies

(1.2) dP(z,mp(2)) + gdp(WF(z)7w) <dP(z,w), forzeY,wekF

Definition 1.2 (Vertical Geodesics). Let (Y, d) be a geodesic space. Take a geodesic n with
a point py on it and another geodesic v through pg. We say that v ¢s vertical to n at pgy
(write v L,, 0 in short) if for any x € v and y € n, d(z,po) < d(z,y) holds.

Let (Y, d) be a complete p-uniformly convex space with parameter k €]0,2]. We consider
the following conditions:

(A) For any closed convex set F in (Y,d), the projection map np : Y — F satisfies
d(rp(x),y) <d(z,y) forzeY, yeF.

(B) Let v and 7 be minimal geodesic segments such that + intersects 7 at py. Then
v Lp, m imlies n L, 7.



Lemma 1.2. (B) implies (A).

Lemma 1.3 (Stability of (B) under Product). Let (Y;,d;) (i = 1,2) be p-uniformly convex
spaces with the common parameter k €]0,2] satisfying (B) and (Y, d) the p-product metric
space defined by the following:

P
Y=Y x Yy :={(x1,22) | 1 € V1,22 € Y5},
d(w,y) = (d} (x1,91) + df (22,92)) """ for @ = (21,22), y = (y1,52) € Y.
Then (Y, d) is a p-uniformly convex space with parameter k €]0,2] and it satisfies (B).

2. p-BARYCENTER

Let (Y, d) be a metric space and for p > 0 let PP(Y") be the family of all Borel probability
measures on Y having p-th moment.

Definition 2.1 (p-Barycenter; cf. [4]). Fix p > 2. For p € PP(Y), if z — [, d?(z,z)p(dx)

has a minimizer b,(n) € Y, then we call b,(u) the p-barycenter, or p-center of mass of
u € PP(Y). For u € PP~L1(Y) and w € Y, we consider the following function F,:

(2.1) Fo(2) = /Y(dp(z,ac)—dp(w,x))u(dx).

We easily see
|Fu(2)] < pd(%w)/ (d(z,2) + d(w,z))"~" p(dz) < co.
Y
IfY 5 z — F,(z) admits a minimizer b,(u) independent of w in the sense that F,(z) >
Fuy(bp(p)) if and only if F,,(z) > F,(by(p)) for all z,w,v € Y, we call it p-barycenter, or
p-center of mass of u € PP~H(Y). If the p-barycenter of u € PP(Y) exists, then it is a
p-barycenter of u € PP~1(Y).

Lemma 2.1 ([4],[3]). Let (Y,d) be complete p-uniformly convex space with some parameter
k €]0,2]. Then u € PP=1(Y) admits the unique p-barycenter.

For any metric space (Y, d), we easily see b,(0,) =z forx € Y.

Proposition 2.1. Let (Y,d) be a complete p-uniformly convex space with a parameter k €
10,2]. Forz,y €Y andt € [0,1], we have

7T
bp((l - t)(s:r + téy) = Vazy ( ) )

5T 4 (1 — )T

where 5y is the unique minimal segment joining x to y.

Remark 2.1. Let (Y, d) be a complete p-uniformly convex space with a parameter k €]0, 2].
(1) Let (Y,d) be a complete CAT(0)-space. In this case, we can consider p-barycenter
bp(u) of p € PP=H(Y) for any p > 2. For p > 2, b,(11) # ba(u) in general.
(2) For any probability measure p € P(H) over a real Hilbert space H with inner
product (-, )z, b2(p) is nothing but the mean [, zu(dz) of p, that is,

i)y = [ (o b gutds) for e B,

But for p € PP~1(H) with p > 2, o = by () is the unique solution of
[y lz —aP2(z — a)u(dz) = 0.



3. JENSEN’S INEQUALTY ON p-UNIFORMLY CONVEX SPACES
Our Jensen’s inequality is the following:

Theorem 3.1 (Jensen’s Inequality on p-Uniformly Convex Space).

Let (Y,d) be a complete p-uniformly convex with some parameter k €]0,2]. Suppose that
(Y,d) satisfies (B). Let ¢ be a lower semi-continuous convex function on Y and p €
PP=YY). Suppose ¢ € LP~Y(Y;u). Then we have

(3.1) @(bp(1)) < bp(aps).

Here @, p is the image (or push-forward) measure of p by ¢ on R and by(psp) is the p-
barycenter of p.pu € PPL(R) by regarding that R is a p-uniformly conver space.

Corollary 3.1 (Jensen’s Inequality on 2-Uniformly Convex Space).

Let (Y,d) be a complete 2-uniformly convex with some parameter k €]0,2]. Suppose that
(Y, d) satisfies (B). Let ¢ be a lower semi-continuous convex function on'Y and u € P(Y).
Suppose ¢ € L' (Y; ). Then we have

(3.2) o(ba(i) < / (@) (dz).

Y

Corollary 3.2 (Fundamental Contraction Property). Let (Y,d) be a complete 2-uniformly
convex with some parameter k €]0,2]. Suppose that (Y,d) is a NPC space in the sense of
Busemann and satsifies (B). Let p,v € PL(Y). Then

d(ba (1), b2 (¥)) < dw (s, v),

where dys1 (u,v) is the Kantorovich-Rubinstein/L'-Wasserstein distance between p and v
defined by

dy(u,v) := inf / d(z,y)m(dzdy).
mell(pn,v) Jy xy

Here II(p,v) :={mr e PY xY) | n(AXY) = pu(A),n(Y x B) =v(B) for A,B € B(Y)}.
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