JENSEN'S INEQUALITY ON CONVEX SPACES

KAZUHIRO KUWAE

1. p-Uniform Convexity

Definition 1.1 (p-Uniformly Convex Space; cf. Naor-Silberman [4]). A metric space (Y, d) is called p-uniformly convex with parameter $k>0$ if (Y, d) is a geodesic space and for any three points $x, y, z \in Y$, any minimal geodesic $\gamma:=\left(\gamma_{t}\right)_{t \in[0,1]}$ in Y with $\gamma_{0}=x, \gamma_{1}=y$, and all $t \in[0,1]$,

$$
\begin{equation*}
d^{p}\left(z, \gamma_{t}\right) \leq(1-t) d^{p}(z, x)+t d^{p}(z, y)-\frac{k}{2} t(1-t) d^{p}(x, y) \tag{1.1}
\end{equation*}
$$

By definition, putting $z=\gamma_{t}$, we see $\left.\left.k \in\right] 0,2\right]$ and $p \in[2, \infty[$. The inequality (1.1) yields the (strict) convexity of $Y \ni x \mapsto d^{p}(z, x)$ for a fixed $z \in Y$. Any closed convex subset of a p-uniformly convex space is again a p-uniformly convex space with the same parameter. Any L^{p} space over a measurable space is p-uniformly convex with parameter $k=\frac{8}{4^{p} p^{2}}\left(\frac{p-1}{p}\right)^{p-1}$ provided $p>2$, and it is 2-uniformly convex with parameter $k=2(p-1)$ provided $1<p \leq 2$. Every CAT(0)-space is a p-uniformly convex space with parameter $k=\frac{8}{4^{p} p^{2}}\left(\frac{p-1}{p}\right)^{p-1}$ for $p \geq 2$ (we can take $k=2$ for $p=2$), because \mathbb{R}^{2} is isometrically embedded into $L^{p}([0,1])$ for $p>1$ (see [1],[4]) and any L^{p}-space of maps into CAT(0)-space is again p-uniformly convex for $p \geq 2$. Ohta [5] proved that for $\kappa>0$ any CAT(κ)-space Y with $\operatorname{diam}(Y)<R_{\kappa} / 2$ is a 2-uniformly convex space with parameter $\{(\pi-2 \sqrt{\kappa} \varepsilon) \tan \sqrt{\kappa} \varepsilon\}$ for any $\left.\varepsilon \in] 0, R_{\kappa} / 2-\operatorname{diam}(Y)\right]$.

Lemma 1.1 (Projection Map to Convex Set). Let (Y, d) be a complete p-uniformly convex space with parameter $k \in] 0,2]$. The the following hold:
(1) Let F be a closed convex subset of (Y, d). Then, for each $x \in Y$, there exists a unique element $\pi_{F}(x) \in F$ such that $d(x, F)=d\left(\pi_{F}(x), x\right)$ holds. We call $\pi_{F}: Y \rightarrow F$ the projection map to F.
(2) Let F be as above. Then π_{F} satisfies

$$
\begin{equation*}
d^{p}\left(z, \pi_{F}(z)\right)+\frac{k}{2} d^{p}\left(\pi_{F}(z), w\right) \leq d^{p}(z, w), \quad \text { for } z \in Y, w \in F . \tag{1.2}
\end{equation*}
$$

Definition 1.2 (Vertical Geodesics). Let (Y, d) be a geodesic space. Take a geodesic η with a point p_{0} on it and another geodesic γ through p_{0}. We say that γ is vertical to η at p_{0} (write $\gamma \perp_{p_{0}} \eta$ in short) if for any $x \in \gamma$ and $y \in \eta, d\left(x, p_{0}\right) \leq d(x, y)$ holds.

Let (Y, d) be a complete p-uniformly convex space with parameter $k \in] 0,2]$. We consider the following conditions:
(A) For any closed convex set F in (Y, d), the projection map $\pi_{F}: Y \rightarrow F$ satisfies $d\left(\pi_{F}(x), y\right) \leq d(x, y)$ for $x \in Y, y \in F$.
(B) Let γ and η be minimal geodesic segments such that γ intersects η at p_{0}. Then $\gamma \perp_{p_{0}} \eta$ imlies $\eta \perp_{p_{0}} \gamma$.

Lemma 1.2. (B) implies (A).
Lemma 1.3 (Stability of (B) under Product). Let $\left(Y_{i}, d_{i}\right)(i=1,2)$ be p-uniformly convex spaces with the common parameter $k \in] 0,2]$ satisfying (\mathbf{B}) and (Y, d) the p-product metric space defined by the following:

$$
\left\{\begin{array}{l}
Y:=Y_{1} \stackrel{p}{\times} Y_{2}:=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in Y_{1}, x_{2} \in Y_{2}\right\} \\
d(x, y)=\left(d_{1}^{p}\left(x_{1}, y_{1}\right)+d_{2}^{p}\left(x_{2}, y_{2}\right)\right)^{1 / p} \quad \text { for } x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in Y .
\end{array}\right.
$$

Then (Y, d) is a p-uniformly convex space with parameter $k \in] 0,2]$ and it satisfies $\mathbf{(B)}$.

2. p-BaRyCENTER

Let (Y, d) be a metric space and for $p>0$ let $\mathcal{P}^{p}(Y)$ be the family of all Borel probability measures on Y having p-th moment.
Definition 2.1 (p-Barycenter; cf. [4]). Fix $p \geq 2$. For $\mu \in \mathcal{P}^{p}(Y)$, if $z \mapsto \int_{Y} d^{p}(z, x) \mu(d x)$ has a minimizer $b_{p}(\mu) \in Y$, then we call $b_{p}(\mu)$ the p-barycenter, or p-center of mass of $\mu \in \mathcal{P}^{p}(Y)$. For $\mu \in \mathcal{P}^{p-1}(Y)$ and $w \in Y$, we consider the following function F_{w} :

$$
\begin{equation*}
F_{w}(z):=\int_{Y}\left(d^{p}(z, x)-d^{p}(w, x)\right) \mu(d x) \tag{2.1}
\end{equation*}
$$

We easily see

$$
\left|F_{w}(z)\right| \leq p d(z, w) \int_{Y}(d(z, x)+d(w, x))^{p-1} \mu(d x)<\infty
$$

If $Y \ni z \mapsto F_{w}(z)$ admits a minimizer $b_{p}(\mu)$ independent of w in the sense that $F_{w}(z) \geq$ $F_{w}\left(b_{p}(\mu)\right)$ if and only if $F_{v}(z) \geq F_{v}\left(b_{p}(\mu)\right)$ for all $z, w, v \in Y$, we call it p-barycenter, or p-center of mass of $\mu \in \mathcal{P}^{p-1}(Y)$. If the p-barycenter of $\mu \in \mathcal{P}^{p}(Y)$ exists, then it is a p-barycenter of $\mu \in \mathcal{P}^{p-1}(Y)$.

Lemma 2.1 ([4],[3]). Let (Y, d) be complete p-uniformly convex space with some parameter $k \in] 0,2]$. Then $\mu \in \mathcal{P}^{p-1}(Y)$ admits the unique p-barycenter.

For any metric space (Y, d), we easily see $b_{p}\left(\delta_{x}\right)=x$ for $x \in Y$.
Proposition 2.1. Let (Y, d) be a complete p-uniformly convex space with a parameter $k \in$ $] 0,2]$. For $x, y \in Y$ and $t \in[0,1]$, we have

$$
b_{p}\left((1-t) \delta_{x}+t \delta_{y}\right)=\gamma_{x y}\left(\frac{t^{\frac{1}{p-1}}}{t^{\frac{1}{p-1}}+(1-t)^{\frac{1}{p-1}}}\right),
$$

where $\gamma_{x y}$ is the unique minimal segment joining x to y.
Remark 2.1. Let (Y, d) be a complete p-uniformly convex space with a parameter $k \in] 0,2]$.
(1) Let (Y, d) be a complete $\operatorname{CAT}(0)$-space. In this case, we can consider p-barycenter $b_{p}(\mu)$ of $\mu \in \mathcal{P}^{p-1}(Y)$ for any $p \geq 2$. For $p>2, b_{p}(\mu) \neq b_{2}(\mu)$ in general.
(2) For any probability measure $\mu \in \mathcal{P}^{1}(H)$ over a real Hilbert space H with inner product $\langle\cdot, \cdot\rangle_{H}, b_{2}(\mu)$ is nothing but the mean $\int_{H} x \mu(d x)$ of μ, that is,

$$
\left\langle b_{2}(\mu), h\right\rangle_{H}=\int_{H}\langle x, h\rangle_{H} \mu(d x) \quad \text { for } h \in H .
$$

But for $\mu \in \mathcal{P}^{p-1}(H)$ with $p>2, \alpha=b_{p}(\mu)$ is the unique solution of $\int_{H}|x-\alpha|^{p-2}(x-\alpha) \mu(d x)=0$.

3. Jensen's inequalty on p-UNIFORMLY CONVEX SPACES

Our Jensen's inequality is the following:
Theorem 3.1 (Jensen's Inequality on p-Uniformly Convex Space).
Let (Y, d) be a complete p-uniformly convex with some parameter $k \in] 0,2]$. Suppose that (Y, d) satisfies (B). Let φ be a lower semi-continuous convex function on Y and $\mu \in$ $\mathcal{P}^{p-1}(Y)$. Suppose $\varphi \in L^{p-1}(Y ; \mu)$. Then we have

$$
\begin{equation*}
\varphi\left(b_{p}(\mu)\right) \leq b_{p}\left(\varphi_{*} \mu\right) . \tag{3.1}
\end{equation*}
$$

Here $\varphi_{*} \mu$ is the image (or push-forward) measure of μ by φ on \mathbb{R} and $b_{p}\left(\varphi_{*} \mu\right)$ is the p barycenter of $\varphi_{*} \mu \in \mathcal{P}^{p-1}(\mathbb{R})$ by regarding that \mathbb{R} is a p-uniformly convex space.

Corollary 3.1 (Jensen's Inequality on 2-Uniformly Convex Space).
Let (Y, d) be a complete 2 -uniformly convex with some parameter $k \in] 0,2]$. Suppose that (Y, d) satisfies (\mathbf{B}). Let φ be a lower semi-continuous convex function on Y and $\mu \in \mathcal{P}^{1}(Y)$. Suppose $\varphi \in L^{1}(Y ; \mu)$. Then we have

$$
\begin{equation*}
\varphi\left(b_{2}(\mu)\right) \leq \int_{Y} \varphi(x) \mu(d x) \tag{3.2}
\end{equation*}
$$

Corollary 3.2 (Fundamental Contraction Property). Let ($Y, d)$ be a complete 2-uniformly convex with some parameter $k \in] 0,2]$. Suppose that (Y, d) is a NPC space in the sense of Busemann and satsifies (B). Let $\mu, \nu \in \mathcal{P}^{1}(Y)$. Then

$$
d\left(b_{2}(\mu), b_{2}(\nu)\right) \leq d_{W^{1}}(\mu, \nu)
$$

where $d_{W^{1}}(\mu, \nu)$ is the Kantorovich-Rubinstein/L L^{1}-Wasserstein distance between μ and ν defined by

$$
d_{W^{1}}(\mu, \nu):=\inf _{\pi \in \Pi(\mu, \nu)} \int_{Y \times Y} d(x, y) \pi(d x d y)
$$

Here $\Pi(\mu, \nu):=\{\pi \in \mathcal{P}(Y \times Y) \mid \pi(A \times Y)=\mu(A), \pi(Y \times B)=\nu(B)$ for $A, B \in \mathcal{B}(Y)\}$.

References

[1] L. E. Dor, Potentials and isometric embeddings in L_{1}, Israel J. Math. 24 (1976), no. 3-4, 260-268.
[2] K. Kuwae, Jensen's inequality over CAT($\kappa)$-space with small diameter, Proceedings of Potential Theory and Stochastics, 1997, 173-182, Albac Romania.
[3] K. Kuwae, Jensen's inequality on convex spaces, preprint (2010).
[4] A. Naor and L. Silberman, Poincaré inequalities, embeddings, and wild groups, preprint (2010), arXive:1005.4084v1.
[5] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata 125, (2007), no. 1, 225-250.
[6] S.-I. Ohta, Extending Lipschitz and Hölder maps between metric spaces, Positivity 13 (2009), no. 2, 407-425.
[7] K.-Th. Sturm, Probability measures on metric spaces of nonpositive curvature. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357-390, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.
[8] C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009.
K. Kuwae - Department of Mathematics and Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan

E-mail address: kuwae@gpo.kumamoto-u.ac.jp

