JENSEN'S INEQUALITY ON CONVEX SPACES

KAZUHIRO KUWAE

1. *p*-UNIFORM CONVEXITY

Definition 1.1 (*p*-Uniformly Convex Space; cf. Naor-Silberman [4]). A metric space (Y, d) is called *p*-uniformly convex with parameter k > 0 if (Y, d) is a geodesic space and for any three points $x, y, z \in Y$, any minimal geodesic $\gamma := (\gamma_t)_{t \in [0,1]}$ in Y with $\gamma_0 = x, \gamma_1 = y$, and all $t \in [0, 1]$,

(1.1)
$$d^{p}(z,\gamma_{t}) \leq (1-t)d^{p}(z,x) + td^{p}(z,y) - \frac{k}{2}t(1-t)d^{p}(x,y).$$

By definition, putting $z = \gamma_t$, we see $k \in [0, 2]$ and $p \in [2, \infty[$. The inequality (1.1) yields the (strict) convexity of $Y \ni x \mapsto d^p(z, x)$ for a fixed $z \in Y$. Any closed convex subset of a *p*-uniformly convex space is again a *p*-uniformly convex space with the same parameter. Any L^p space over a measurable space is *p*-uniformly convex with parameter $k = \frac{8}{4^p p^2} (\frac{p-1}{p})^{p-1}$ provided p > 2, and it is 2-uniformly convex with parameter k = 2(p-1) provided 1 . Every CAT(0)-space is a*p* $-uniformly convex space with parameter <math>k = \frac{8}{4^p p^2} (\frac{p-1}{p})^{p-1}$ for $p \geq 2$ (we can take k = 2 for p = 2), because \mathbb{R}^2 is isometrically embedded into $L^p([0,1])$ for p > 1 (see [1],[4]) and any L^p -space of maps into CAT(α)-space is again *p*-uniformly convex for $p \geq 2$. Ohta [5] proved that for $\kappa > 0$ any CAT(κ)-space Y with diam($Y > R_{\kappa}/2$ is a 2-uniformly convex space with parameter $\{(\pi - 2\sqrt{\kappa\varepsilon}) \tan \sqrt{\kappa\varepsilon}\}$ for any $\varepsilon \in [0, R_{\kappa}/2 - \text{diam}(Y)]$.

Lemma 1.1 (Projection Map to Convex Set). Let (Y, d) be a complete p-uniformly convex space with parameter $k \in [0, 2]$. The the following hold:

- (1) Let F be a closed convex subset of (Y, d). Then, for each $x \in Y$, there exists a unique element $\pi_F(x) \in F$ such that $d(x, F) = d(\pi_F(x), x)$ holds. We call $\pi_F : Y \to F$ the projection map to F.
- (2) Let F be as above. Then π_F satisfies

(1.2)
$$d^{p}(z,\pi_{F}(z)) + \frac{k}{2}d^{p}(\pi_{F}(z),w) \leq d^{p}(z,w), \quad \text{for } z \in Y, w \in F.$$

Definition 1.2 (Vertical Geodesics). Let (Y, d) be a geodesic space. Take a geodesic η with a point p_0 on it and another geodesic γ through p_0 . We say that γ is vertical to η at p_0 (write $\gamma \perp_{p_0} \eta$ in short) if for any $x \in \gamma$ and $y \in \eta$, $d(x, p_0) \leq d(x, y)$ holds.

Let (Y, d) be a complete *p*-uniformly convex space with parameter $k \in [0, 2]$. We consider the following conditions:

- (A) For any closed convex set F in (Y,d), the projection map $\pi_F : Y \to F$ satisfies $d(\pi_F(x), y) \leq d(x, y)$ for $x \in Y, y \in F$.
- (B) Let γ and η be minimal geodesic segments such that γ intersects η at p_0 . Then $\gamma \perp_{p_0} \eta$ inlies $\eta \perp_{p_0} \gamma$.

Lemma 1.2. (B) implies (A).

Lemma 1.3 (Stability of **(B)** under Product). Let (Y_i, d_i) (i = 1, 2) be *p*-uniformly convex spaces with the common parameter $k \in [0, 2]$ satisfying **(B)** and (Y, d) the *p*-product metric space defined by the following:

$$\begin{cases} Y := Y_1 \stackrel{\nu}{\times} Y_2 := \{(x_1, x_2) \mid x_1 \in Y_1, x_2 \in Y_2\}, \\ d(x, y) = (d_1^p(x_1, y_1) + d_2^p(x_2, y_2))^{1/p} & for \ x = (x_1, x_2), \ y = (y_1, y_2) \in Y. \end{cases}$$

Then (Y, d) is a p-uniformly convex space with parameter $k \in [0, 2]$ and it satisfies (B).

2. *p*-Barycenter

Let (Y, d) be a metric space and for p > 0 let $\mathcal{P}^p(Y)$ be the family of all Borel probability measures on Y having p-th moment.

Definition 2.1 (*p*-Barycenter; cf. [4]). Fix $p \ge 2$. For $\mu \in \mathcal{P}^p(Y)$, if $z \mapsto \int_Y d^p(z, x)\mu(dx)$ has a minimizer $b_p(\mu) \in Y$, then we call $b_p(\mu)$ the *p*-barycenter, or *p*-center of mass of $\mu \in \mathcal{P}^p(Y)$. For $\mu \in \mathcal{P}^{p-1}(Y)$ and $w \in Y$, we consider the following function F_w :

(2.1)
$$F_w(z) := \int_Y (d^p(z, x) - d^p(w, x))\mu(dx).$$

We easily see

$$|F_w(z)| \le pd(z,w) \int_Y (d(z,x) + d(w,x))^{p-1} \mu(dx) < \infty.$$

If $Y \ni z \mapsto F_w(z)$ admits a minimizer $b_p(\mu)$ independent of w in the sense that $F_w(z) \ge F_w(b_p(\mu))$ if and only if $F_v(z) \ge F_v(b_p(\mu))$ for all $z, w, v \in Y$, we call it *p*-barycenter, or *p*-center of mass of $\mu \in \mathcal{P}^{p-1}(Y)$. If the *p*-barycenter of $\mu \in \mathcal{P}^p(Y)$ exists, then it is a *p*-barycenter of $\mu \in \mathcal{P}^{p-1}(Y)$.

Lemma 2.1 ([4],[3]). Let (Y, d) be complete p-uniformly convex space with some parameter $k \in [0,2]$. Then $\mu \in \mathcal{P}^{p-1}(Y)$ admits the unique p-barycenter.

For any metric space (Y, d), we easily see $b_p(\delta_x) = x$ for $x \in Y$.

Proposition 2.1. Let (Y, d) be a complete *p*-uniformly convex space with a parameter $k \in [0, 2]$. For $x, y \in Y$ and $t \in [0, 1]$, we have

$$b_p((1-t)\delta_x + t\delta_y) = \gamma_{xy} \left(\frac{t^{\frac{1}{p-1}}}{t^{\frac{1}{p-1}} + (1-t)^{\frac{1}{p-1}}}\right)$$

where γ_{xy} is the unique minimal segment joining x to y.

Remark 2.1. Let (Y, d) be a complete *p*-uniformly convex space with a parameter $k \in [0, 2]$.

- (1) Let (Y, d) be a complete CAT(0)-space. In this case, we can consider *p*-barycenter $b_p(\mu)$ of $\mu \in \mathcal{P}^{p-1}(Y)$ for any $p \ge 2$. For p > 2, $b_p(\mu) \ne b_2(\mu)$ in general.
- (2) For any probability measure $\mu \in \mathcal{P}^1(H)$ over a real Hilbert space H with inner product $\langle \cdot, \cdot \rangle_H$, $b_2(\mu)$ is nothing but the mean $\int_H x\mu(dx)$ of μ , that is,

$$\langle b_2(\mu), h \rangle_H = \int_H \langle x, h \rangle_H \mu(dx) \quad \text{for } h \in H.$$

But for $\mu \in \mathcal{P}^{p-1}(H)$ with p > 2, $\alpha = b_p(\mu)$ is the unique solution of $\int_H |x - \alpha|^{p-2} (x - \alpha) \mu(dx) = 0.$

3. JENSEN'S INEQUALTY ON *p*-UNIFORMLY CONVEX SPACES

Our Jensen's inequality is the following:

Theorem 3.1 (Jensen's Inequality on *p*-Uniformly Convex Space).

Let (Y, d) be a complete p-uniformly convex with some parameter $k \in [0, 2]$. Suppose that (Y, d) satisfies **(B)**. Let φ be a lower semi-continuous convex function on Y and $\mu \in \mathcal{P}^{p-1}(Y)$. Suppose $\varphi \in L^{p-1}(Y; \mu)$. Then we have

(3.1)
$$\varphi(b_p(\mu)) \le b_p(\varphi_*\mu).$$

Here $\varphi_*\mu$ is the image (or push-forward) measure of μ by φ on \mathbb{R} and $b_p(\varphi_*\mu)$ is the pbarycenter of $\varphi_*\mu \in \mathcal{P}^{p-1}(\mathbb{R})$ by regarding that \mathbb{R} is a p-uniformly convex space.

Corollary 3.1 (Jensen's Inequality on 2-Uniformly Convex Space).

Let (Y, d) be a complete 2-uniformly convex with some parameter $k \in [0, 2]$. Suppose that (Y, d) satisfies **(B)**. Let φ be a lower semi-continuous convex function on Y and $\mu \in \mathcal{P}^1(Y)$. Suppose $\varphi \in L^1(Y; \mu)$. Then we have

(3.2)
$$\varphi(b_2(\mu)) \le \int_Y \varphi(x)\mu(dx).$$

Corollary 3.2 (Fundamental Contraction Property). Let (Y, d) be a complete 2-uniformly convex with some parameter $k \in [0, 2]$. Suppose that (Y, d) is a NPC space in the sense of Busemann and satisfies **(B)**. Let $\mu, \nu \in \mathcal{P}^1(Y)$. Then

$$d(b_2(\mu), b_2(\nu)) \le d_{W^1}(\mu, \nu),$$

where $d_{W^1}(\mu,\nu)$ is the Kantorovich-Rubinstein/L¹-Wasserstein distance between μ and ν defined by

$$d_{W^{1}}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \int_{Y \times Y} d(x,y)\pi(dxdy).$$

Here $\Pi(\mu,\nu) := \{ \pi \in \mathcal{P}(Y \times Y) \mid \pi(A \times Y) = \mu(A), \pi(Y \times B) = \nu(B) \text{ for } A, B \in \mathcal{B}(Y) \}.$

References

- [1] L. E. Dor, Potentials and isometric embeddings in L₁, Israel J. Math. 24 (1976), no. 3-4, 260–268.
- K. Kuwae, Jensen's inequality over CAT(κ)-space with small diameter, Proceedings of Potential Theory and Stochastics, 1997, 173–182, Albac Romania.
- [3] K. Kuwae, Jensen's inequality on convex spaces, preprint (2010).
- [4] A. Naor and L. Silberman, *Poincaré inequalities, embeddings, and wild groups*, preprint (2010), arXive:1005.4084v1.
- [5] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata 125, (2007), no. 1, 225–250.
- [6] S.-I. Ohta, Extending Lipschitz and Hölder maps between metric spaces, Positivity 13 (2009), no. 2, 407–425.
- [7] K.-Th. Sturm, Probability measures on metric spaces of nonpositive curvature. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 357–390, *Contemp. Math.*, 338, Amer. Math. Soc., Providence, RI, 2003.
- [8] C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009.

K. Kuwae — Department of Mathematics and Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan

E-mail address: kuwae@gpo.kumamoto-u.ac.jp