
Diffusion Processes in Thin Tubes and their Limits on Graphs

Seiichiro Kusuoka
Research Fellow of the Japan Society for the Promotion of Science (PD)

(Joint work with Sergio Albeverio)

We concern diffusion processes running on tubular domains with Dirichlet (i.e. absorbing-
like) boundary conditions, and obtain the limit processes where the thin tubular domains shrink
to graphs. Problems of this type are important for models of phenomenons. Partial differential
equations on graphs are often considered for fluid mechanics in thin tubes, for example circuits of
blood vessels, or circuits of neurons. These equations are simplified by regarding the thin tubes as
graphs. However, if we look at them with microscope, they consist of tubes.

These problems have been studied before intensively in the case of Neumann boundary condi-
tions by probabilistic tools and analytic tools. In the case of Dirichlet boundary conditions, there
are difficulties, and there have been less works concerned with this case. Now we use probabilistic
methods, and discuss the case of shrinking by potentials. Shrinking by potentials are associated
with the case of Dirichlet boundary conditions. Our goal is to determine the limit process on a
given graph. However, by locality, the behavior of diffusion processes associated with differential
operators is determined in a given point by the behavior in neighborhoods of it. Thus, it is enough
to consider the case of “N -spider” (the definition appears below).

Consider an n-dimensional Euclidean space Rn, let d(·, ·) be the distance function in Rn, and O
be the origin. Let {ei}N

i=1 be N different unit vectors in Rn and Ii := {sei : s ∈ [0,∞)}. Consider
an N -spider graph Γ defined by Γ :=

∪N
i=1 Ii. Γ is also called an N -star graph. Let A be the set

in Rn given by
A :=

∪
i,j: i ̸=j

{x ∈ Rn : x · ei = x · ej} .

For x ∈ Rn \ A, let π(x) be the nearest point in Γ from x. Note that π(x) is uniquely determined
for all x ∈ Rn \ A.

Let ui be a differentiable function on [0, 1) such that

ui(0) = 0, u′
i ≥ 0, and − lim

R↑1

ui(R)
log(1 − R)

= +∞.

for i = 1, 2, . . . , N . (ui determines the potential acting in the thin tube around Ii). Let ci be a
positive number for i = 1, 2, . . . , N and κ := max

{√
2ci/

√
1 − ⟨ei, ej⟩ : i, j = 1, 2, . . . , N

}
. ci has

the interpretation of width of the tube around Ii. Let U be a function on Rn with values in [0,∞],
and assume

U(x) = ui(c−1
i d(x, Γ)), x ∈ {x ∈ Rn : π(x) ∈ Ii, d(x, Ii) < ci, |x| ≥ κ}

U(x) = +∞, x ∈ {x ∈ Rn : π(x) ∈ Ii, d(x, Ii) ≥ ci, |x| ≥ κ},

U(x) < +∞, x ∈ {x ∈ Rn : |x| ≤ κ/2},

Ω := {x : U(x) < ∞} is a simply connected and unbounded domain, ∂Ω is a C2-manifold, and U |Ω
is a C1-function in Ω. This structure Ω is sometimes called a “fattened” N -spider. In addition, we
assume

− lim
m→∞

U(xm)
log(d(xm, ∂Ω))

= +∞

for any sequence {xm} which converges to a point x ∈ ∂Ω.
Let Ωε := εΩ, and Uε(x) = U(ε−1x) for x ∈ Rn for all ε > 0. Note that Uε(x) ∈ [0, +∞) for

x ∈ Ωε, and ∂Ωε is a C2-manifold, and Uε|Ωε is a C1-function in Ωε. Consider a diffusion process
Xε given by the following equation:

Xε(t) = Xε(0) +
∫ t

0

σ(Xε(s))dW (s) +
∫ t

0

b(Xε(s))ds −
∫ t

0

(∇Uε)(Xε(s))ds, (1)



where Xε(0) is an Ωε-valued random variable, W is an n-dimensional Wiener process, σ ∈
Cb(Rn; Rn ⊗ Rn), and b ∈ Cb(Rn; Rn). We can show that any solution Xε of (1) does not hit
∂Ωε. Let a(x) := σ(x)σT (x) and assume that a is a uniformly positive definite matrix. Then, (1)
has the unique solution.

We show the tightness of {Xε} in the continuous path space and characterize the limit process
by the martingale problem. The behavior of the limit process X on each edge Ii \ O is obtained
easily by using geometrical methods. Hence, the difficulty is only on the behavior near O, and by
observing the boundary condition at O we can characterize X.

Let

pi :=
cn−1
i

∫ 1

0
rn−2e−ui(r)dr∑N

i=1 cn−1
i

∫ 1

0
rn−2e−ui(r)dr

.

The weights of the boundary condition at O are determined by the values {pi}. We remark that
when ui is independent of i, then we have pi := cn−1

i /
(∑N

i=1 cn−1
i

)
, hence the weights {pi} are

determined by the ratio of the area of the cross-section around the edge Ii. Define a second-order
differential operator Li on Ii by

Li :=
1
2
|σ(x)ei|2∂2

ei
+ b(x)ei∂ei

for i = 1, 2, . . . , N . Define the second-order differential operator L on C0(Γ):

D(L) :=

{
f ∈ C0(Γ) : f |Ii\O ∈ C2

b (Ii \ O) for all i = 1, 2, . . . , N,

lim
s↓0

Lif(sei) has a common value in i = 1, 2, . . . , N,

N∑
i=1

pi

(
lim
s↓0

(∂eif)(sei)
)

= 0

}
,

Lf(x) := Lif(x), x ∈ Ii \ O,

Lf(O) := lim
s↓0

Lif(sei).

Note that Lf(O) does not depend on the selection of i = 1, 2, . . . , N . The boundary condition of
L at O is the weighted Kirchhoff boundary condition.

Theorem 1. Consider diffusion processes Xε defined by (1). Assume that σ(O) = In and the law
of Xε converges to a probability measure µ0 on Γ. Then, Xε converges weakly on C([0,+∞); Rn)
to the diffusion process X as ε ↓ 0, where X is determined by the conditions that the law of X(0)
is equal to µ0 and

E

[
f(X(t)) − f(X(s)) −

∫ t

s

Lf(X(u))du

∣∣∣∣ Fs

]
= 0

for t ≥ s ≥ 0 and f ∈ D(L), where (Ft) is the filtration generated by X. Therefore, L is the
generator of X.

This argument is also available for diffusion processes in thin tubes with reflecting on the
boundary of the tubes. This case is associated with Neumann boundary condition. In this case,
the weights of boundary condition at O are {p̂i} where p̂i := cn−1

i /
∑N

i=1 cn−1
i .
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