Heat kernel and mixing time convergence for sequences of simple random walks on graphs

D. A. Croydon^{*}

The main conclusion of this work, which is a joint project with Ben Hambly (University of Oxford) and Takashi Kumagai (Kyoto University), is that the mixing times of the simple random walks on a sequence of graphs converge to the mixing time of a limiting diffusion whenever the corresponding state spaces, invariant measures and heat kernels converge. Whilst this result is intuitively obvious, proving it demands the introduction of a framework in which we can express the relevant conditions in a precise and useful way. For this purpose, I will explain how to define a 'generalised Gromov-Hausdorff metric' that extends the usual notion of Gromov-Hausdorff convergence of compact metric spaces to include associated measures and heat kernel-type functions. In addition to this, I will describe how our results can be applied to a number of examples, including some simple lattice models, self-similar fractal graphs with random weights, critical Galton-Watson trees, the Erdős-Rényi random graph at criticality and the range of a random walk in high dimensions.

In order to be more specific, it is helpful to first present some notation for graphs and the random walks upon them. Suppose G = (V(G), E(G))is a finite connected graph with at least two vertices, where V(G) denotes the vertex set and E(G) the edge set of G, and d_G is a metric on V(G). Let $\mu^G : V(G)^2 \to \mathbb{R}_+$ be a symmetric weight function that satisfies $\mu^G_{xy} > 0$ if and only if $\{x, y\} \in E(G)$. The discrete time simple random walk on the weighted graph G is then the Markov chain $((X^G_m)_{m\geq 0}, \mathbf{P}^G_x, x \in V(G))$ with transition probabilities $(P_G(x, y))_{x,y\in V(G)}$ given by $P_G(x, y) := \mu^G_{xy}/\mu^G_x$, where $\mu^G_x := \sum_{y\in V(G)} \mu^G_{xy}$. If π^G is a measure on V(G) defined by setting, for $A \subseteq V(G)$, $\pi^G(A) := \sum_{x\in A} \mu^G_x / \sum_{x\in V(G)} \mu^G_x$, then π^G is the invariant probability measure for X^G . The transition density of X^G , with respect to π^G , is given by $(p^G_m(x, y))_{x,y\in V(G),m\geq 0}$, where

$$p_m^G(x,y) := \frac{\mathbf{P}_x^G(X_m = y)}{\pi^G(\{y\})}$$

Due to parity concerns for bipartite graphs, it is convenient to consider a smoothed version of this function, $(q_m^G(x, y))_{x,y \in V(G), m \geq 0}$, obtained by set-

^{*}Dept of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom; d.a.croydon@warwick.ac.uk.

ting

$$q_m^G(x,y) := rac{p_m^G(x,y) + p_{m+1}^G(x,y)}{2},$$

and define the L^p -mixing time of G by

$$t^{p}_{\min}(G) := \inf \left\{ m > 0 : \sup_{x \in V(G)} \|q^{G}_{m}(x, \cdot) - 1\|_{L^{p}(\pi^{G})} \le 1/4 \right\}.$$

Finally, in the case that a sequence of graphs $(G^N)_{N\geq 1}$ is being considered, π^{G^N} will be abbreviated to π^N , and q^{G^N} to q^N .

As for the prototypical limiting objects, (F, d_F) is a compact metric space and π is a non-atomic Borel probability measure on F with full support. Moreover, $(q_t(x, y))_{x,y\in F,t>0}$ is the jointly continuous transition density of a conservative π -symmetric Hunt process $X^F = (X_t^F)_{t\geq 0}$ on F. (Some additional mild conditions will be imposed on π and $(q_t(x, y))_{x,y\in F,t>0}$ to avoid various trivialities, but are omitted here for brevity.) The transition density $(q_t(x, y))_{x,y\in F,t>0}$ is said to converge to stationarity in an L^p sense for some $p \in [1, \infty]$ if it holds that

$$\lim_{t \to \infty} \|q_t(x, \cdot) - 1\|_{L^p(\pi)} = 0,$$

for every $x \in F$. If this previous condition is satisfied, then it is possible to check that the L^p -mixing time of F,

$$t_{\min}^p(F) := \inf \left\{ t > 0 : \sup_{x \in F} \|q_t(x, \cdot) - 1\|_{L^p(\pi)} \le 1/4 \right\},$$

is a finite quantity.

Given this setup, the first goal of my talk will be to explain how we can make precise the following condition regarding the convergence of a sequence of graphs $(G^N)_{N\geq 1}$ and associated quantities to F, π and $(q_t(x, y))_{x,y\in F,t>0}$. As noted above, this involves a generalised Gromov-Hausdorff metric, the definition of which is based upon the fundamental Gromov-Hausdorff idea of considering isometric embeddings of the relevant objects into a common space, where distances can be measured, and then optimising over all such embeddings.

Assumption 1. $(G^N)_{N\geq 1}$ is a sequence of finite connected graphs with at least two vertices for which there exists a sequence $(\gamma(N))_{N\geq 1}$ such that, for any compact interval $I \subset (0, \infty)$,

$$\left(\left(V(G^N), d_{G^N}\right), \pi^N, \left(q_{\gamma(N)t}^N(x, y)\right)_{x, y \in V(G^N), t \in I}\right)$$

converges to

 $\left((F, d_F), \pi, (q_t(x, y))_{x, y \in F, t \in I}\right)$

in a generalised Gromov-Hausdorff sense.

I will subsequently describe how this assumption can be applied to yield the convergence of the L^p -mixing times of the graphs in the sequence $(G^N)_{N\geq 1}$. The only additional assumption made is that the limiting heat kernel converges to stationarity in an L^p sense, which guarantees that the limiting L^p -mixing time is well-defined.

Theorem 1. Suppose that Assumption 1 is satisfied. If $p \in [1, \infty]$ is such that the transition density $(q_t(x, y))_{x,y \in F, t>0}$ converges to stationarity in an L^p sense, then $t^p_{\min}(F) \in (0, \infty)$ and

$$\gamma(N)^{-1} t^p_{\min}(G^N) \to t^p_{\min}(F).$$

To complete my talk, I will discuss the application of this theorem to the examples mentioned in the opening paragraph. In particular, I will comment upon how to check Assumption 1 by using the local limit theorem proved in [1], which demonstrates the appropriate heat kernel convergence occurs whenever the laws of the simple random walks converge to the law of the limiting diffusion and a certain tightness condition is satisfied.

References

 D. A. Croydon and B. M. Hambly, Local limit theorems for sequences of simple random walks on graphs, Potential Anal. 29 (2008), no. 4, 351–389.