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The main conclusion of this work, which is a joint project with Ben
Hambly (University of Oxford) and Takashi Kumagai (Kyoto University), is
that the mixing times of the simple random walks on a sequence of graphs
converge to the mixing time of a limiting diffusion whenever the correspond-
ing state spaces, invariant measures and heat kernels converge. Whilst this
result is intuitively obvious, proving it demands the introduction of a frame-
work in which we can express the relevant conditions in a precise and useful
way. For this purpose, I will explain how to define a ‘generalised Gromov-
Hausdorff metric’ that extends the usual notion of Gromov-Hausdorff con-
vergence of compact metric spaces to include associated measures and heat
kernel-type functions. In addition to this, I will describe how our results
can be applied to a number of examples, including some simple lattice mod-
els, self-similar fractal graphs with random weights, critical Galton-Watson
trees, the Erdős-Rényi random graph at criticality and the range of a random
walk in high dimensions.

In order to be more specific, it is helpful to first present some notation
for graphs and the random walks upon them. Suppose G = (V (G), E(G))
is a finite connected graph with at least two vertices, where V (G) denotes
the vertex set and E(G) the edge set of G, and dG is a metric on V (G). Let
µG : V (G)2 → R+ be a symmetric weight function that satisfies µG

xy > 0
if and only if {x, y} ∈ E(G). The discrete time simple random walk on
the weighted graph G is then the Markov chain ((XG

m)m≥0,P
G
x , x ∈ V (G))

with transition probabilities (PG(x, y))x,y∈V (G) given by PG(x, y) := µG
xy/µ

G
x ,

where µG
x :=

∑
y∈V (G) µ

G
xy. If πG is a measure on V (G) defined by setting,

for A ⊆ V (G), πG(A) :=
∑

x∈A µG
x /

∑
x∈V (G) µ

G
x , then πG is the invariant

probability measure for XG. The transition density of XG, with respect to
πG, is given by (pGm(x, y))x,y∈V (G),m≥0, where

pGm(x, y) :=
PG

x (Xm = y)

πG({y})
.

Due to parity concerns for bipartite graphs, it is convenient to consider a
smoothed version of this function, (qGm(x, y))x,y∈V (G),m≥0, obtained by set-
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ting

qGm(x, y) :=
pGm(x, y) + pGm+1(x, y)

2
,

and define the Lp-mixing time of G by

tpmix(G) := inf

{
m > 0 : sup

x∈V (G)
∥qGm(x, ·)− 1∥Lp(πG) ≤ 1/4

}
.

Finally, in the case that a sequence of graphs (GN )N≥1 is being considered,

πGN
will be abbreviated to πN , and qG

N
to qN .

As for the prototypical limiting objects, (F, dF ) is a compact metric space
and π is a non-atomic Borel probability measure on F with full support.
Moreover, (qt(x, y))x,y∈F,t>0 is the jointly continuous transition density of
a conservative π-symmetric Hunt process XF = (XF

t )t≥0 on F . (Some
additional mild conditions will be imposed on π and (qt(x, y))x,y∈F,t>0 to
avoid various trivialities, but are omitted here for brevity.) The transition
density (qt(x, y))x,y∈F,t>0 is said to converge to stationarity in an Lp sense
for some p ∈ [1,∞] if it holds that

lim
t→∞

∥qt(x, ·)− 1∥Lp(π) = 0,

for every x ∈ F . If this previous condition is satisfied, then it is possible to
check that the Lp-mixing time of F ,

tpmix(F ) := inf

{
t > 0 : sup

x∈F
∥qt(x, ·)− 1∥Lp(π) ≤ 1/4

}
,

is a finite quantity.
Given this setup, the first goal of my talk will be to explain how we can

make precise the following condition regarding the convergence of a sequence
of graphs (GN )N≥1 and associated quantities to F , π and (qt(x, y))x,y∈F,t>0.
As noted above, this involves a generalised Gromov-Hausdorff metric, the
definition of which is based upon the fundamental Gromov-Hausdorff idea
of considering isometric embeddings of the relevant objects into a common
space, where distances can be measured, and then optimising over all such
embeddings.

Assumption 1. (GN )N≥1 is a sequence of finite connected graphs with at
least two vertices for which there exists a sequence (γ(N))N≥1 such that, for
any compact interval I ⊂ (0,∞),((

V (GN ), dGN

)
, πN ,

(
qNγ(N)t(x, y)

)
x,y∈V (GN ),t∈I

)
converges to

((F, dF ) , π, (qt(x, y))x,y∈F,t∈I)

in a generalised Gromov-Hausdorff sense.
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I will subsequently describe how this assumption can be applied to
yield the convergence of the Lp-mixing times of the graphs in the sequence
(GN )N≥1. The only additional assumption made is that the limiting heat
kernel converges to stationarity in an Lp sense, which guarantees that the
limiting Lp-mixing time is well-defined.

Theorem 1. Suppose that Assumption 1 is satisfied. If p ∈ [1,∞] is such
that the transition density (qt(x, y))x,y∈F,t>0 converges to stationarity in an
Lp sense, then tpmix(F ) ∈ (0,∞) and

γ(N)−1tpmix(G
N ) → tpmix(F ).

To complete my talk, I will discuss the application of this theorem to the
examples mentioned in the opening paragraph. In particular, I will comment
upon how to check Assumption 1 by using the local limit theorem proved
in [1], which demonstrates the appropriate heat kernel convergence occurs
whenever the laws of the simple random walks converge to the law of the
limiting diffusion and a certain tightness condition is satisfied.
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