可算マルコフシフトの大偏差原理とその連分数展開への応用

高橋 博樹

Denote by X the set of all one-sided infinite sequences over the set \mathbb{N} of positive integers, namely $X = \{x = (x_1, x_2, \ldots) : x_i \in \mathbb{N}, i \in \mathbb{N}\}$, endowed with the product topology of the discrete topology on \mathbb{N} . Define the left shift $\sigma : X \to X$ by $(\sigma x)_i = x_{i+1}$ $(i \in \mathbb{N})$. For each $x \in X$ and $n \in \mathbb{N}$ define an n-cylinder by

$$[x_1, \dots, x_n] = \{ y = (y_i) \in X \colon x_i = y_i \text{ for every } i \in \{1, \dots, n\} \}.$$

Let $\phi: X \to \mathbb{R}$ be a function. A Borel probability measure μ_{ϕ} on X is Bowen's Gibbs measure for the potential ϕ [1, 4, 5] if there exist constants $c_0 > 0$, $c_1 > 0$ and $P \in \mathbb{R}$ such that for every $x \in X$ and every $n \in \mathbb{N}$,

$$c_0 \leq \frac{\mu_{\phi}[x_1, \dots, x_n]}{\exp\left(-Pn + \sum_{i=0}^{n-1} \phi(\sigma^i(x))\right)} \leq c_1.$$

Let \mathcal{M} denote the space of Borel probability measures on X endowed with the weak*topology. We are concerned with the following three sequences $\{\Delta_n\}, \{\Xi_n\}, \{\Upsilon_{y,n}\}$ of Borel probability measures on \mathcal{M} :

For each $x \in X$ and $n \in \mathbb{N}$ define $\delta_x^n = \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\sigma^i x}$, with $\delta_{\sigma^i x}$ the unit point mass at $\sigma^i x$. Denote by Δ_n the distribution of the \mathcal{M} -valued random variable $x \mapsto \delta_x^n$ on the probability space (X, μ_{ϕ}) ;

For each integer $n \in \mathbb{N}$ define

$$\Xi_n = \left(\sum_{x \in \operatorname{Per}_n \sigma} \exp S_n \phi(x)\right)^{-1} \sum_{x \in \operatorname{Per}_n \sigma} \exp S_n \phi(x) \delta_{\delta_x^n},$$
$$\Upsilon_{y,n} = \left(\sum_{x \in \sigma^{-n} y} \exp S_n \phi(x)\right)^{-1} \sum_{x \in \sigma^{-n} y} \exp S_n \phi(x) \delta_{\delta_x^n},$$
$$[m \in X: \pi^n m, \pi^n] = \pi^{-n} \exp \left(\pi \in X: \pi^n m, \pi^n\right) \text{ and } x \in X \text{ in } n^n m$$

where $\operatorname{Per}_n \sigma = \{x \in X : \sigma^n x = x\}, \ \sigma^{-n} y = \{x \in X : \sigma^n x = y\} \text{ and } y \in X \text{ is fixed.}$

Theorem A. ([6, Theorem A]). Let $\phi: X \to \mathbb{R}$ be a measurable function and μ_{ϕ} a Bowen's Gibbs measure for the potential ϕ . Then $\{\Delta_n\}, \{\Xi_n\}, \{\Upsilon_{y,n}\}$ are exponentially tight and satisfy the Large Deviation Principle with the same convex good rate function I. All their weak*-limit points are supported on subsets of the set $I^{-1}(0)$.

Under the hypotheses and notation of Theorem A, we call $\nu \in \mathcal{M}$ a minimizer if $I(\nu) = 0$. We give a sufficient condition for the uniqueness of minimizer. For a function $\phi: X \to \mathbb{R}$ put

$$P(\phi) = \lim_{n \to \infty} \frac{1}{n} \log \sum_{x_1 \cdots x_n} \sup_{[x_1, \dots, x_n]} \exp \sum_{i=0}^{n-1} \phi \circ \sigma^i,$$

where the sum runs over all *n*-cylinders. For $\gamma \in (0, 1]$ we introduce a metric d_{γ} on X by setting $d_{\gamma}(x, y) = \exp(-\gamma \inf\{i \in \mathbb{N} : x_i \neq y_i\})$, with the convention $e^{-\infty} = 0$. A function $\phi \colon X \to \mathbb{R}$ is *Hölder continuous* if there exist C > 0 and $\gamma \in (0, 1]$ such that for every $k \in \mathbb{N}$ and all $x, y \in [k], |\phi(x) - \phi(y)| \leq Cd_{\gamma}(x, y)$.

高橋 博樹

Theorem B. Let $\phi: X \to \mathbb{R}$ be a Hölder continuous function such that $\beta_{\infty} := \inf\{\beta \in \mathbb{R}: P(\beta\phi) < \infty\} < 1$. Then there exists a unique shift-invariant Bowen's Gibbs measure for the potential ϕ . It is the unique equilibrium state for ϕ , i.e., the unique measure which attains the supremum

$$\sup\left\{h(\nu) + \int \phi d\nu \colon \nu \in \mathcal{M} \text{ is shift-invariant and } \int \phi d\nu > -\infty\right\}$$

 $(h(\nu) \text{ being the entropy of } \nu \text{ with respect to } \sigma))$, and it is the unique minimizer of the rate function I in Theorem A. The $\{\Delta_n\}$, $\{\Xi_n\}$, $\{\Upsilon_{y,n}\}$ converge in the weak*-topology to the unit point mass at the minimizer.

We apply Theorem B to the Gauss map $G: (0,1] \to [0,1)$ given by $G(x) = 1/x - \lfloor 1/x \rfloor$. For $x \in (0,1) \setminus \mathbb{Q}$, define $(a_i(x))_{i \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ by $a_i(x) = \left\lfloor \frac{1}{G^{i-1}(x)} \right\rfloor$, and put

$$[a_1(x); a_2(x); \cdots; a_n(x)] = \frac{1}{a_1(x) + \frac{1}{a_2(x) + \cdots + \frac{1}{a_n(x)}}}$$

Then $x = \lim_{n\to\infty} [a_1(x); a_2(x); \cdots; a_n(x)]$. The map $\pi : x \in (0,1) \setminus \mathbb{Q} \to (a_i(x))_{i\in\mathbb{N}} \in \mathbb{N}^{\mathbb{N}}$ is a homeomorphism, and commutes with G and the left shift. Hence, the study of the behavior of $a_1(x), a_2(x), a_3(x), \ldots$ translates to that of the dynamics of G.

Define $\phi := -\log |DG| \circ \pi^{-1}$. Then $\beta_{\infty} = 1/2$ [3]. For each $\beta > 1/2$ the potential $\beta \phi$ satisfies the conditions in Theorem B. Denote by μ_{β} the *G*-invariant Borel probability measure which corresponds to the unique shift-invariant Bowen's Gibbs measure for the potential $\beta \phi$.

Corollary. (Equidistribution of weighted periodic points). For every $\beta > 1/2$ the following convergence in the weak*-topology holds:

$$\frac{1}{\sum_{x \in \operatorname{Per}_n(G)} |DG^n(x)|^{-\beta}} \sum_{x \in \operatorname{Per}_n(G)} |DG^n(x)|^{-\beta} \delta_x^n \longrightarrow \mu_\beta \quad (n \to \infty).$$

The convergence for $\beta = 1$ was first proved in [2] by directly showing the tightness of the sequence of measures. The μ_1 is the Gauss measure: $d\mu_1 = \frac{1}{\log 2} \frac{dx}{1+x}$.

References

- Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Springer lecture notes in Mathematics. Springer (1975)
- [2] Fiebig, D., Fiebig, U.-R., Yuri, M.: Pressure and equilibrium states for countable state Markov shifts. Israel J. Math. 131, 221–257 (2002)
- [3] Mayer, D.H.: On the thermodynamic formalism for the Gauss transformation. Commun. Math. Phys. 130, 311–333 (1990)
- Mauldin, R.D., Urbański, M.: Gibbs states on the symbolic space over infinite alphabet. Israel J. Math. 125, 93–130 (2001)
- [5] Sarig, O.: Thermodynamic formalism for countable Markov shifts. Ergodic Theory and Dynamical Systems 19, 1565–1593 (1999)
- [6] Takahasi, H.: Large deviation principles for countable Markov shifts. preprint 29 pages

DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY, YOKOHAMA, 223-8522, JAPAN *E-mail address*: hiroki@math.keio.ac.jp *URL*: http://www.math.keio.ac.jp/~hiroki/