A hypercontractive family of the Ornstein–Uhlenbeck semigroup and its connection with Φ -entropy inequalities^{*}

針谷 祐 (東北大学)

Given a positive integer d, let γ_d be the d-dimensional standard Gaussian measure. For every p > 0, define $L^p(\gamma_d)$ to be the set of measurable functions $f : \mathbb{R}^d \to \mathbb{R}$ such that $\|f\|_p^p := \int_{\mathbb{R}^d} |f(x)|^p \gamma_d(dx) < \infty$ (we abuse the notation even when p < 1). We denote by $Q = \{Q_t\}_{t\geq 0}$ the Ornstein–Uhlenbeck semigroup acting on $L^1(\gamma_d)$: for $f \in L^1(\gamma_d)$ and $t \geq 0$,

$$(Q_t f)(x) := \int_{\mathbb{R}^d} f\left(e^{-t}x + \sqrt{1 - e^{-2t}}y\right) \gamma_d(dy), \quad x \in \mathbb{R}^d.$$

It is well known that Q enjoys the hypercontractivity: if $f \in L^p(\gamma_d)$ for some p > 1, then

$$\|Q_t f\|_{q(t)} \le \|f\|_p \quad \text{for all } t \ge 0, \tag{HC}$$

where $q(t) = e^{2t}(p-1) + 1$. The hypercontractivity (HC) was firstly observed by Nelson [6] and found later by Gross [4] to be equivalent to the (Gaussian) logarithmic Sobolev inequality[†]:

$$\int_{\mathbb{R}^d} |f|^2 \log |f| \, d\gamma_d \le \int_{\mathbb{R}^d} |\nabla f|^2 \, d\gamma_d + \|f\|_2^2 \log \|f\|_2 \,, \tag{LSI}$$

which holds true for any weakly differentiable function f in $L^2(\gamma_d)$ with $|\nabla f| \in L^2(\gamma_d)$. It is also known (see [1, Proposition 4]) that (HC) is equivalent to the exponential hypercontractivity: for any $f \in L^1(\gamma_d)$ with $e^f \in L^1(\gamma_d)$, it holds that

$$\|\exp(Q_t f)\|_{e^{2t}} \le \|e^f\|_1 \quad \text{for all } t \ge 0.$$
 (eHC)

One of the objectives of this talk is to show, by employing stochastic analysis, that two hypercontractivities (HC) and (eHC) are unified into

Theorem 1 ([5], Theorem 1.1). Let a positive function c in $C^1((0,\infty))$ satisfy

$$c' > 0 \text{ and } c/c' \text{ is concave on } (0, \infty),$$
 (C)

and set

$$u(t,x) = \int_0^x c(y)^{e^{2t}} dy, \quad t \ge 0, \ x > 0.$$
(1)

Then for any nonnegative, measurable function f on \mathbb{R}^d such that

$$u(0,f) \in L^1(\gamma_d),$$

we have

$$v(t, ||u(t, Q_t f)||_1) \le v(0, ||u(0, f)||_1)$$
 for all $t \ge 0.$ (uHC)

Here for every $t \ge 0$, the function $v(t, \cdot)$ is the inverse function of u(t, x), x > 0.

Typical examples of functions c fulfilling the condition (C) are x^{p-1} with p > 1 and e^x ; in fact, they both satisfy (c/c')'' = 0. These two choices of c in Theorem 1 lead to (HC) and (eHC), respectively. Another example of c will be given in the talk.

Recall the well-known fact that differentiating the left-hand side of (HC) at t = 0 yields (LSI); the same argument enables us to obtain from (uHC) the following generalization of (LSI):

^{*}This talk is based on [5].

[†]The Gaussian logarithmic Sobolev inequality goes back to Stam [7].

Corollary 1 ([5], Corollary 3.1). For a function c satisfying the assumptions in Theorem 1, set

$$G(x) = \int_0^x c(y) \, dy \qquad \text{and} \qquad H(x) = \int_0^x c(y) \log c(y) \, dy$$

for x > 0. Then for any $f \in C_b^1(\mathbb{R}^d)$ with $\inf_{x \in \mathbb{R}^d} f(x) > 0$, we have

$$\int_{\mathbb{R}^d} H(f) \, d\gamma_d \le \frac{1}{2} \int_{\mathbb{R}^d} c'(f) \, |\nabla f|^2 \, d\gamma_d + H \circ G^{-1} \left(\|G(f)\|_1 \right). \tag{gLSI}$$

Here G^{-1} is the inverse function of G.

It is shown in [5, Proposition 3.3] that for every function f as in Corollary 1, the validity of (gLSI) for any positive $c \in C^1((0,\infty))$ satisfying (C), is necessary and sufficient for that of Φ -entropy inequalities for any $\Phi \in C^2((0,\infty))$ satisfying the condition that

 $\Phi'' > 0$ and $1/\Phi''$ is concave on $(0, \infty)$. (P)

In a general setting of *Markov triple* (E, μ, Γ) with associated Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ as treated in detail in [2, Chapters 4–7], the triple is said to satisfy the Φ -entropy inequality with constant R > 0 if

$$\int_{E} \Phi(f) \, d\mu - \Phi\left(\int_{E} f \, d\mu\right) \le \frac{R}{2} \int_{E} \Phi''(f) \Gamma(f, f) \, d\mu \tag{\PhiI}$$

for any positive $f \in \mathcal{D}(\mathcal{E})$. In the setting of the present talk, namely in the case $E = \mathbb{R}^d$, $\mu = \gamma_d$ and $\Gamma(f, f) = |\nabla f|^2$, it is known (see, e.g., [3, Section 4]) that (Φ I) holds with R = 1 under the condition (P). In this talk, we show that in the present setting, the hypercontractive family (uHC) indexed by positive c's satisfying (C), is equivalent to the family of Φ -entropy inequalities (Φ I) with R = 1 indexed by Φ 's satisfying (P). The same reasoning applies to the general setting of Markov triple as well. For instance, if a probability measure μ on $E = \mathbb{R}^d$ is in the form $\mu(dx) = e^{-V(x)}dx$ with $V \in C^2(\mathbb{R}^d)$ whose Hessian matrix satisfies $y \cdot \text{Hess}_V(x)y \ge \rho|y|^2$, $x, y \in \mathbb{R}^d$, for some $\rho > 0$, then the Φ -entropy inequality (Φ I) for $\Gamma(f, f) = |\nabla f|^2$ is known (cf. [3, Corollary 2.1]) to hold with $R = 1/\rho$, which entails that (uHC) holds true for the semigroup generated by $\Delta - \nabla V \cdot \nabla$, with exponent e^{2t} in (1) replaced by $e^{2\rho t}$.

If time permits, we will also present a unification of (eHC) and the reverse hypercontractivity of the Ornstein–Uhlenbeck semigroup Q.

References

- D. Bakry, M. Emery, Diffusions hypercontractives, in: Séminaire de Probabilités, XIX, 1983/84, pp. 177–206, Lecture Notes in Math. 1123, Springer, Berlin, 1985.
- [2] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, Cham, 2014.
- [3] D. Chafaï, Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities, J. Math. Kyoto Univ. 44 (2004), 325–363.
- [4] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061–1083.
- [5] Y. Hariya, A unification of hypercontractivities of the Ornstein–Uhlenbeck semigroup and its connection with Φ-entropy inequalities, J. Funct. Anal. **275** (2018), 2647–2683.
- [6] E. Nelson, The free Markoff field, J. Funct. Anal. **12** (1973), 211–227.
- [7] A.J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. and Control 2 (1959), 101–112.