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Let X ∈ An with finite alphabet A and w ∈ A∗. Let |w| be the length of the word w. We consider
the following random variable,

Nw :=
n∑

i=1

I
X

i+|w|−1
i =w

where I
X

i+|w|−1
i =w

= 1 if X
i+|w|−1
i = w else 0.

We also call this statistics sliding block patterns. In particular if we count the occurrence of multiple
words, it is called suffix tree.

The distributions of sliding block patterns have been shown via generating functions based on
induction of sample size, see [1, 2, 3, 5, 4].

In this paper we show the distributions of sliding block patterns for Bernoulli processes with
finite alphabet, which is not based on the induction on sample size. We show a new inclusion-
exclusion formula in multivariate generating function form on partially ordered sets, and show a
simpler expression of generating functions of the number of pattern occurrences in finite samples.

We say that a word w is overlapping if there is a word x with |w| < |x| < 2|w| and w appears in x
at least 2 times, and w is called non-overlapping if there is no such x. We write x ⊏ y if x is a prefix
of y.

Theorem 1 Let P be an i.i.d. process of fixed sample size n of finite alphabet. Let s1 ⊏ s2 ⊏ · · · ⊏ sl
be an increasing non–overlapping words of finite alphabet, i.e., si is a prefix of sj and mi < mj, where
mi is the length of si, for all i < j. Let P (si) be the probability of si for i = 1, . . . , l. Let

A(k1, . . . , kl) =

(
n−

∑
imiki +

∑
i ki

k1, . . . , kl

) l∏
i=1

P ki(si),

B(k1, . . . , kl) = P (

n∑
i=1

I
X

i+mi−1
i =sj

= kj , j = 1, . . . , l), (1)

FA(z1, . . . , zl) =
∑

k1,...,kl

A(k1, . . . , kl)z
k1 · · · zkl , and

FB(z1, . . . , zl) =
∑

k1,...,kl

B(k1, . . . , kl)z
k1 · · · zkl .

Then
FA(z1, z2, . . . , zl) = FB(z1 + 1, z1 + z2 + 1, . . . , z1 + · · ·+ zl + 1).

With slight modification of Theorem 1, we can compute the number of the occurrence of the
overlapping increasing words. For example, let us consider increasing self-overlapping words 11, 111,
1111 and the number of their occurrences. Let 011, 0111, 01111 then these words are increasing non-
self-overlapping words. The number of occurrences 11, 111, 1111 in sample of length n is equivalent
to the number of occurrences 011, 0111, 01111 in sample of length n + 1 that starts with 0. We can
apply Theorem 1 to derive the distribution of increasing overlapping words with this manner.

In [5], expectation, variance, and CLTs for the sliding block pattern are shown. We show the
general higher moments for non-overlapping words.
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Theorem 2 Let w be a non-overlapping pattern.

∀t E(N t
w) =

min{T,t}∑
s=1

At,s

(
n− s|w|+ s

s

)
P s(w).

At,s =
∑
r

(
s

r

)
rt(−1)s−r, T = max{t ∈ N | n− t|w| ≥ 0}.

In the above theorem, At,s is the number of surjective functions from {1, 2, . . . , t} → {1, 2, . . . , s} for
t, s ∈ N, see [6].

In [5], it is shown that central limit theorem holds for sliding block patterns,

P (
Nw − E(Nw)√

Vw
< x) → 1√

2π

∫ x

−∞
e−

1
2
x2
dx,

where w is non-overlapping pattern, E(Nw) = (n− |w|+ 1)P (w) and V (Nw) = E(Nw) + (n− 2|w|+
2)(n− 2|w|+ 1)p2(w)− E2(Nw).

Let

N ′
w :=

⌊n/|w|⌋∑
i=1

I
X

(i+1)∗|w|−1
i∗|w| =w

.

N ′
w obeys binomial law if the process is i.i.d. We call N ′

w block-wise sampling. As an application
of CLT approximation, we compare power functions of sliding block sampling Nw and block-wise
sampling N ′

w. We consider the following test for sliding block patterns: We write Eθ = E(Nw) and
Vθ = V (Nw) if P (w) = θ. Null hypothesis: P (w) = θ∗ vs alternative hypothesis P (w) < θ∗. Reject
null hypothesis if and only if Nw < Eθ∗ − 5

√
Vθ∗ . The likelihood of the critical region is called power

function, i.e., Pow(θ) := Pθ(Nw < Eθ∗ − 5
√
Vθ∗) for θ ≤ θ∗.

We construct a test for block-wise sampling: Null hypothesis: P (w) = θ∗ vs alternative hypothesis
P (w) < θ∗. Reject null hypothesis if and only if N ′

w < E′
θ∗ − 5

√
V ′
θ∗ , where E′

θ = ⌊n/|w|⌋θ and
V ′
θ = ⌊n/|w|⌋θ(1− θ). The following table shows powers of tests for sliding block patterns and block

wise sampling at θ = 0.2, 0.18, 0.16 under the condition that θ∗ = 0.25, |w| = 2, and n = 500.

θ 0.2 0.18 0.16

Power of Sliding block 0.316007 0.860057 0.995681
Power of Block wise 0.000295 0.002939 0.021481
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Central limit theorem for random walks on nilpotent
covering graphs with weak asymmetry

Ryuya NAMBA (Okayama University)
(Jointwork with Satoshi ISHIWATA (Yamagata) and Hiroshi KAWABI (Keio))

　Long time behaviors of random walks (RWs) on an infinite graph is a well-studied topic
in geometry, harmonic analysis and graph theory, to say nothing of probability theory. It is
known that geometric features such as the periodicity and the volume growth of the underlying
graph affect long time behaviors of RWs. By putting an emphasis on them, Ishiwata, Kawabi
and Kotani [1] considered a non-symmetric random walk {wn}∞n=0 on a Γ-crystal lattice X, a
covering graph of a finite graph whose covering transformation group Γ is abelian. Through a
discrete analogue of the harmonic map from X into a Euclidean space Γ⊗R, they established
two kinds of functional central limit theorems (CLTs) for {wn}∞n=0. In fact, since a diverging
drift term arising from the non-symmetry prevents us from taking the CLT-scaling limit
directly, it is difficult to prove such CLTs. To overcome the difficulty, two schemes were
introduced in [1]. One is to replace the usual transition operator by the transition-shift
operator to “delete” the diverging drift term. The other is to introduce a family of non-
symmetric RWs onX to “weaken” the diverging drift term. (The latter scheme is also applied
in the study of the hydrodynamic limit of weakly asymmetric simple exclusion processes.)

Let Γ be a finitely generated nilpotent group. In [2], we considered a non-symmetric RW
{wn}∞n=0 on a Γ-nilpotent covering graph, a generalization of both crystal lattices and Cayley
graphs of a finitely generated group of polynomial volume growth. By extending the former
scheme to the nilpotent case, we established a functional CLT for {wn}∞n=0 in [2]. The main
purpose of this talk is to extend the latter scheme to the nilpotent case and to establish
another functional CLT for {wn}∞n=0. This talk is based on our recent preprint [3].

Let X = (V,E) be a Γ-nilpotent covering graph. Here V is the set of all vertices and E
the set of all oriented edges in X. For e ∈ E, we denote the origin, terminus and inverse
edge of e by o(e), t(e) and e, respectively. We set Ex := {e ∈ E | o(e) = x} for x ∈ V . Let
p : E −→ (0, 1] be a Γ-invariant transition probability and (Ωx(X),Px, {wn}∞n=0) a RW on X
starting from x ∈ V associated with p. Through the covering map π : X −→ X0, we also
consider the RW (Ωπ(x)(X0),Pπ(x), {π(wn)}∞n=0) and the corresponding transition probability
is also denoted by p : E0 −→ (0, 1]. We denote by m : V0 −→ (0, 1] the normalized invariant
measure on X0 and also write m : V −→ (0, 1] for the Γ-invariant lift of m to X. Let
H1(X0,R) be the first homology group of X0. We define the homological direction of the RW
on X0 by γp :=

∑
e∈E0

p(e)m
(
o(e)

)
e ∈ H1(X0,R). We call the RW on X0 (m-)symmetric if

p(e)m
(
o(e)

)
= p(e)m

(
t(e)

)
for e ∈ E0. Otherwise, it is called (m-)non-symmetric. Note that

the RW on X0 is (m-)symmetric if and only if γp = 0.
Thanks to the celebrated theorem of Malćev, we find a connected and simply connected

nilpotent Lie groupG such that Γ is isomorphic to a cocompact lattice inG. The nilpotent Lie
groupG is equipped with the canonical dilations (τε)ε≥0, which gives a scalar multiplication on
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G. By realizing X into G, CLTs for RWs on X can be discussed. Let g be the corresponding
Lie algebra of G and g(1) ∼= G/[G,G] the generating part of g. We take a canonical surjective
linear map ρR : H1(X0,R) −→ g(1) by using the general theory of covering spaces. Thanks
to the map ρR and the discrete Hodge–Kodaira theorem, a flat metric g0 associated with the
transition probability p, called the Albanese metric, is induced on g(1). A periodic realization
Φ0 : X −→ G is said to be modified harmonic if∑

e∈Ex

p(e) log
(
Φ0

(
o(e)

)−1 · Φ0

(
t(e)

))∣∣∣
g(1)

= ρR(γp) (x ∈ V ).

The quantity ρR(γp) ∈ g(1) is called the asymptotic direction, which also appears in the law
of large numbers for g(1)-valued RW {log

(
Φ0(wn)

)∣∣
g(1)

}∞n=0. It should be noted that γp = 0

implies ρR(γp) = 0g, however, the converse does not hold in general.
For the given transition probability p, we introduce a family of Γ-invariant transition

probabilities (pε)0≤ε≤1 on X by pε(e) := p0(e) + εq(e) for e ∈ E, where

p0(e) :=
1

2

(
p(e) +

m
(
t(e)

)
m
(
o(e)

)p(e)), q(e) :=
1

2

(
p(e)−

m
(
t(e)

)
m
(
o(e)

)p(e)).
Namely, the family (pε)0≤ε≤1 is given by the linear interpolation between the given transition
probability p = p1 and the (m-)symmetric probability p0. Moreover, the homological direction
γpε equals εγp for every 0 ≤ ε ≤ 1, which plays a key role in the proof of main theorems.

We now fix a reference point x∗ ∈ V such that Φ
(0)
0 (x∗) = 1G, where 1G is the unit

element of G. We write g
(ε)
0 for the Albanese metric on g(1) associated with pε and Φ

(ε)
0 :

X −→ G be the (pε-)modified harmonic realization for every 0 ≤ ε ≤ 1. We set Y(ε,n)
k/n (c) :=

τn−1/2

(
Φ

(ε)
0 (wk(c))

)
for n ∈ N, k = 0, 1, . . . , n, c ∈ Ωx∗(X) and 0 ≤ ε ≤ 1. We then define a

G-valued continuous stochastic process Y (ε,n) = (Y (ε,n)
t )0≤t≤1 by the geodesic interpolation of

{Y(ε,n)
k/n }nk=0 with respect to the Carnot–Carathéodory metric on G. We take an orthonormal

basis {V1, V2, . . . , Vd1} of (g(1), g
(0)
0 ) and consider a stochastic differential equation (SDE)

dYt =

d1∑
i=1

Vi(Yt) ◦ dBi
t + ρR(γp)(Yt) dt, Y0 = 1G,

where (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d1
t )0≤t≤1 is an Rd1-standard Brownian motion starting from

B0 = 0. Let (Yt)0≤t≤1 be the G-valued diffusion process which solves the SDE above.

We now state our main result as follows:

Theorem. Under several natural assumptions on {Φ(ε)
0 }0≤ε≤1, the sequence {Y(n−1/2,n)}∞n=1

converges in law to a G-valued diffusion process Y in C0,α-Höl([0, 1];G) as n → ∞ for all
α < 1/2.
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A limit theorem for inverse local times of
jumping-in diffusion processes

Kosuke Yamato(Kyoto University)
(joint work with Kouji Yano(Kyoto University)

Let X be a strong Markov process X on the half line [0,∞) which is
a natunal scale diffusion up to the first hitting time of 0 and, as soon as
X hits 0, X jumps into the interior (0,∞) and starts afresh. This kind of
processes are studied by Feller[1] and Itô[2] and shown that such processes
are characterized by the speed measure dm which characterizes the diffusion
on the interior (0,∞) and the jumping-in measure j which characterizes the
law of jumps from the boundary 0 to the interior (0,∞). We denote this
process by Xm,j and call it a jumping-in diffusion.

Let us consider the inverse local time ηm,j at 0 of a jumping-in diffusion
Xm,j. We study the fluctuation scaling limit of the inverse local time ηm,j of
the form:

1

λ1/α
(ηm,j(λt)− bλt)

d−−−→
λ→∞

T (t) in D (1)

for some constants b ≥ 0 and α ∈ (0, 2]. Here D denotes the space of
càdlàg paths from [0,∞) to R equipped with Skorokhod’s J1-topology. In
order to obtain the limit, we establish the continuity theorem for jumping-
in diffusion processes which roughly asserts the following: for jumping-in
diffusions {Xmn,jn}n, if their speed measures {dmn}n converge to a speed
measure dm in a certain sense and the measures {jn(dx)}n degenerate to the
point mass at the origin in a certain sense, then for the appropriate constants
{bn}n, it holds that

ηmn,jn(t)− bnt
d−−−→

n→∞
σB(t) + T (m;κt) in D (2)

for some constants σ and κ. Here B denotes a standard Brownian motion
and T (m; t) the spectrally positive Lévy process without Gaussian part as-
sociated to m which is independent of B. In order to prove the continuity
theorem, we introduce a class of λ-eigenfunctions of the generalized second
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order differential operator d
dm

d
dx

and apply Krein-Kotani correspondence and
its continuity established in Kotani[4].

As an application of the above result, we study the occupation time of
two-sided jumping-in diffusions which are constructed by connecting two
jumping-in diffusion processes with respect to 0. Let X be such a process
and define A(t) =

∫ t
0

1(0,∞)(Xs)ds. We give conditions for the existence of
the limit distribution 1

t
A(t) as t→∞. Moreover, in the case where the limit

degenerate, that is,

1

t
A(t)

P−−−→
t→∞

p ∈ [0, 1] (3)

holds, we show the scaling limit of the fluctuation around the limit constant
along the exponential clock, that is, the following limit:

1

ef(q)
(A(eqt)− peqt)

d−−−→
q→+0

Z(t) (4)

for a process Z(t) and a positive function f(q) which converges to 0 as
q → +0. Here eq denotes an exponentially distributed random variable
with parameter q > 0 and is independent of X. This result is a jumping-in
version of the result proved for diffusions in Kasahara and Watanabe[3].
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On optimal periodic dividend strategies
for Lévy risk processes

Kei Noba (Kyoto University), José Luis Pérez (CIMAT),
Kazutoshi Yamazaki (Kansai University) and Kouji Yano (Kyoto Universtiy)

1 Introduction
This talk is based on [4] and [5]. In this talk, we revisit the optimal periodic dividend
problem, in which dividend payments can only be made at the jump times of an indepen-
dent Poisson process. In the dual (spectrally positive Lévy) model, recent results have
shown the optimality of a periodic barrier strategy, which pays dividends at Poissonian
dividend-decision times, if and only if the surplus is above some level. In this talk, we
show the optimality of this strategy for a spectrally negative Lévy process whose dual has
a completely monotone Lévy density. We also consider the version with bail-outs where
the surplus must be non-negative uniformly in time. There are many previous studies
of spectrally negative cases. Loeffen([3]) and Kyprianou et al.([2]) showed the optimality
of a barrier strategy in the classical case and that of a threshold strategy under the ab-
solutely continuous assumption on the dividend strategy, respectively. Avram et al.([1])
and Pérez et al.([7]) showed the optimality of those of the version with bail-outs. In this
draft, we give the main results for the models without bail-outs.

2 Preliminary facts and main results
Let X be a spectrally negative Lévy process. Suppose that the Lévy measure of −X has
a completely monotone with respect to the Lebesgue measure. Let N r be the Poisson
process with rate r > 0 which are independent from X. Let F be the filtration generated
from X and N r. In this setting, a strategy π = {Lπ

t : t ≥ 0} is a non-decreasing,
right-continuous, and F-adapted process such that the cumulative amount of dividends
Lπ admits the form

Lπ(t) =

∫
[0,t]

νπ(s)dN r(s), (2.1)

for some F-adapted càglàd process νπ. The surplus process Uπ after dividends are de-
ducted is such that

Uπ(t) = X(t)− Lπ(t) (2.2)

where σπ
0 = inf{t > 0 : Uπ(t) < 0} is the corresponding ruin time. We assume that the

payment cannot exceed the available surplus and hence

0 ≤ νπ(s) ≤ Uπ(s−), s ≥ 0. (2.3)

We fix q > 0 which is the discount rate. We define the expected net present value of
dividends paid until ruin as the following:

vπ(x) = Ex

[∫
[0,σπ

0 ]

e−qtdLπ(t)

]
. (2.4)
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Let Ar be the set of all admissible strategies. The problem is to compute the value
function

vπ∗(x) = v(x) := sup
π∈Ar

vπ(x). (2.5)

For b ≥ 0, the periodic barrier strategy πb is the strategy which satisfies the

νπb

(t) = (Uπb

r (t−)− b) ∨ 0, t > 0. (2.6)

The strategy πb was constructed by [6]. The expected NPV vπ
b
was computed by [6,

Corollary 4.4] using the scale functions.

Let Φ be the inverse Laplace exponent of X and W (q) be the q-scale function of X.
We denote

Z(q)(x,Φ(q + r)) = r

∫ ∞

0

e−Φ(q+r)zW (q)(z + x)dz, x ∈ R, (2.7)

h(b) = e−Φ(q+r)b
(
rW (q)′(b)− Φ(q + r)Z(q)′(b,Φ(q + r))

)
, b > 0. (2.8)

We define

b∗ = inf{b > 0 : h(b) ≤ 0}. (2.9)

Then we have the following theorem:

Theorem 2.1. For x > 0, we have vπb∗ (x) = v(x).
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Sierpinski gasket 格子上の長距離浸透モデルに
おけるランダムウォークの混合時間と等周定数

三角　淳 （高知大学）

基本的なフラクタル格子の 1つである Sierpinski gasket 格子上での長
距離浸透モデルに対して、ランダムグラフ上のランダムウォークの混合
時間の評価 ([3]) と、ランダムグラフの等周定数について考える。

平面上の点O = (0, 0), u0 = (1
2
,
√
3
2
), v0 = (1, 0)に対して、三角形Ou0v0

の 3個の頂点と 3本の辺からなるグラフをG0とする。さらに、un = 2nu0,

vn = 2nv0とし、有限グラフの列 {Gn}∞n=0を

Gn+1 = Gn ∪ (Gn + un) ∪ (Gn + vn) (n = 0, 1, 2, · · · )

によって定義する。G = ∪∞
n=0Gnを Sierpinski gasket格子 (pre-Sierpinski

gasket)と呼ぶ。以下ではGnの頂点集合を Vnで表す。
nを固定し、有限グラフGn上で長距離浸透モデルの問題を考える。す

なわち、p(1) = 1,

p(k) = 1− exp(−βk−s) (k = 2, 3, 4, · · · )

（β, sは正の実数）として、各 x, y ∈ Vn (x ̸= y)に対して独立に、確率
p(|x− y|)で、2点 x, yがランダムな辺で結ばれるとする。（|x− y|は、Gn

上における 2点間の最短ステップ数。）Vnに属する頂点と、上記の規則
によって作られるランダムな辺からなるランダムグラフをG′

nとおく。な
お、ここでは向き付けられた辺集合を考え、x, yが辺で結ばれているとき
には辺 (x, y)と辺 (y, x) が存在しているとみなす。また、Gn上の長距離
浸透モデルに対する確率測度を Pで表す。
ランダムグラフG′

nの形状を固定するごとに、その上で、推移確率P (x, y) =

P (Xt+1 = y|Xt = x)が

P (x, y) =


1

2deg(x)
(x ̸= yかつ x, yがG′

n上の隣接点のとき)
1
2

(x = yのとき)

0 (その他)

(x, y ∈ Vn)

（deg(x)は xから出ている辺の本数）で与えられる離散時間 lazy random

walk {Xt}∞t=0を考え、{Xt}∞t=0の混合時間を τ(G′
n)とおく。なお、以下で

は d = log 3/ log 2とする。
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定理 1 ([3]) d < s < 2dのとき、正の定数 c1, c2 が存在して次が成り
立つ。

lim
n→∞

P
(
c12

(s−d)n ≤ τ(G′
n) ≤ nc22(s−d)n

)
= 1.

Z/nZ上の長距離浸透モデルに対しては、τ(G′
n)に相当する量が 1 <

s < 2のとき ns−1のオーダー、s > 2のとき n2のオーダーとなり、s = 2

の前後で不連続に変化することが [1]で示されている。（[2]で証明の一部
が修正されている。）一方、Sierpinski gasket 格子上の長距離浸透モデル
の場合には、s > 2dのときの τ(G′

n)の評価はまだ得られていない。

以下では、τ(G′
n)と深い関係を持つ量であるランダムグラフの等周定数

について考える。π = (π(x))x∈VnをG′
n上の lazy random walk {Xt}∞t=0の

定常分布とし、Q(x, y) = π(x)P (x, y) (x, y ∈ Vn)とおく。また、A,B ⊂ Vn

に対して π(A) =
∑

x∈A π(x), Q(A,B) =
∑

x∈A
∑

y∈B Q(x, y) と書く。

ϕ∗ = min
D⊂Vn

0<π(D)≤ 1
2

Q(D,Dc)

π(D)

を等周定数と呼ぶ。

命題 2 (1) d < s < 2dのとき、正の定数 c3, c4が存在して次が成り立つ。

lim
n→∞

P
(
n−c32(d−s)n ≤ ϕ∗ ≤ c42

(d−s)n
)
= 1.

(2) s ≥ 2dのとき、正の定数 c5, c6が存在して次が成り立つ。

lim
n→∞

P
(
c5n

−13−n ≤ ϕ∗ ≤ c6n3
−n

)
= 1.
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Functional limit theorem for
intermittent interval maps

Toru Sera (Kyoto University)

Interval maps with indifferent fixed points have been studied as models of intermittent
phenomena, such as intermittent transitions to turbulent flow in convective fluid. In
this context, the occupations near indifferent fixed points correspond to long regular or
laminar phases, while the occupations away from them correspond to short irregular or
turbulent bursts. There have been many studies of scaling limits of the occupations near
and away from them, e.g., [1, 7, 8, 10, 4, 6]. In this talk, we present a functional and joint-
distributional refinement of them, based on [5]. It is motivated particularly by [2, 3, 9].

We impose the following assumption from now on:

Assumption. An interval map T : [0, 1] → [0, 1] satisfies the following conditions:

(1) (for simplicity) T is point-symmetric, i.e., Tx = 1− T (1− x), x ∈ (1/2, 1].

(2) the restriction T |[0,1/2] : [0, 1/2] → [0, 1] is a C2-bijective map.

(3) T0 = 0, T ′0 = 1 and T ′′x > 0, x ∈ (0, 1/2).

Note that 0 and 1 are indifferent fixed points of T . We know that T has a unique (up to
scalar multiplication) σ-finite invariant measure µ(dx) equivalent to the Lebesgue measure
dx. From now on, let us fix δ ∈ (0, 1/2). Then, it holds that µ([0, δ)) = µ((1− δ, 1]) = ∞
and µ([δ, 1− δ]) < ∞. Hence Birkhoff’s pointwise ergodic theorem implies

1

n

n−1∑
k=0

1{Tkx∈[δ,1−δ]} →
n→∞

0

(
equivalently,

1

n

n−1∑
k=0

1{Tkx/∈[δ,1−δ]} →
n→∞

1

)
, a.e.x.

Roughly speaking, the orbit (x, Tx, T 2x, . . . ) of almost every starting point x is concen-
trated close to 0 and 1. We are interested in non-trivial scaling limits of occupation times
for [0, δ), [δ, 1− δ] or (1− δ, 1]. Let us denote by φ(N) = φ(N, x) the Nth hitting time of
(x, Tx, T 2x, . . . ) for [δ, 1− δ]:

φ(0) = 0 and φ(N + 1) = min{k > φ(N) : T kx ∈ [δ, 1− δ]}, N ≥ 0.

We will denote by µ = µ([δ, 1 − δ] ∩ ·)/µ([δ, 1 − δ]) the normalized restriction of µ over
[δ, 1− δ]. We now present our main result.

Theorem (S. [5]). Let α ∈ (0, 1), and let ξ be a [0, 1]-valued random variable with P[ξ ∈
dx] ≪ dx. Then the following conditions are equivalent:

1



(i) Tx− x = (1− x)− T (1− x) is regularly varying of index (1 + 1/α) at 0.

(ii) it holds that(
1

n

φ([bnt])∑
k=0

1{Tkξ<δ},
1

n

φ([bnt])∑
k=0

1{Tkξ>1−δ} : t ≥ 0

)
d−→

n→∞

(
S
(α)
− (t), S

(α)
+ (t) : t ≥ 0

)
, in D,

where bn := 1/µ[φ(1) > n], and S
(α)
− (t) and S

(α)
+ (t) are i.i.d. α-stable subordinators

with Lévy measure α
2
r−1−αdr, r > 0.

(iii) it holds that(
1

n

[nt]∑
k=0

1{Tkξ<δ},
Γ(1− α)

bn

[nt]∑
k=0

1{Tkξ∈[δ,1−δ]},
1

n

[nt]∑
k=0

1{Tkξ>1−δ} : t ≥ 0

)
d−→

n→∞

(∫ t

0

1{Z(α)(s)<0}ds, L
(α)(t),

∫ t

0

1{Z(α)(s)>0}ds : t ≥ 0

)
, in D,

where Z(α)(t) denotes a (2 − 2α)-dimensional symmetric Bessel diffusion process
starting from the origin, and L(α)(t) denotes the local time of Z(α)(t) at the origin
in the Blumenthal–Getoor normalization.
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The Laplacian on some round Sierpiński carpets
and Weyl’s asymptotics for its eigenvalues

Naotaka Kajino (Kobe University)u

u u

u

u
u

Fig. 1. Apollonian gaskets Kα,β,γ Fig. 2. Round Sierpiński carpets ∂∞G8, ∂∞G12

The purpose of this talk is to present the speaker’s recent results on the construction of
a “canonical” Laplacian on round Sierpiński carpets invariant with respect to certain
Kleinian groups (i.e., discrete subgroups of the group Möb(Ĉ) of (orientation preserving

or reversing) Möbius transformations on Ĉ := C∪{∞}) and on Weyl’s asymptotics for

its eigenvalues. Here a round Sierpiński carpet refers to a subset of Ĉ homeomorphic to
the standard Sierpiński carpet whose complement consists of disjoint open disks in Ĉ.

1. Preceding results for the Apollonian gasket
The construction of the Laplacian is based on the speaker’s preceding study of the
simplest case of the Apollonian gasket Kα,β,γ. This is a compact fractal subset of C ob-
tained from an ideal triangle, i.e., the closed subset of C enclosed by mutually externally
tangent three circles, with the radii of the circles α−1, β−1, γ−1 and with the set V α,β,γ

0

of its three vertices (see Fig. 1). Set C(Kα,β,γ) := {f | f : Kα,β,γ → R, f is continuous}.
Theorem 1.1 (K., cf. [5]). There exist a finite Borel measure µ on Kα,β,γ with full sup-
port and an irreducible, strongly local, regular symmetric Dirichlet form (Eα,β,γ,Fα,β,γ)
on L2(Kα,β,γ, µ) such that for any affine function h : C → R, h|Kα,β,γ

∈ Fα,β,γ and

Eα,β,γ(h|Kα,β,γ
, v) = 0 for any v ∈ Fα,β,γ ∩ C(Kα,β,γ) with v|V α,β,γ

0
= 0 (1.1)

(i.e., h|Kα,β,γ
is Eα,β,γ-harmonic onKα,β,γ\V α,β,γ

0 ). Moreover, Cα,β,γ := Fα,β,γ∩C(Kα,β,γ)
and Eα,β,γ|Cα,β,γ×Cα,β,γ

are unique (up to positive constant multiples of Eα,β,γ|Cα,β,γ×Cα,β,γ
).

Theorem 1.2 (K.). CLIP
α,β,γ := {u|Kα,β,γ

| u : C → R, u is Lipschitz} ⊂ Cα,β,γ and

Eα,β,γ(u, v) =
∑

C∈Aα,β,γ

rad(C)

∫
C

⟨∇Cu,∇Cv⟩ dvolC for any u, v ∈ CLIP
α,β,γ, (1.2)

where Aα,β,γ denotes the set of all the arcs appearing in the construction of Kα,β,γ,
rad(C) the radius of C, ∇C the gradient on C and volC the length measure on C.

Theorem 1.3 (K.). As the measure µ in Theorem 1.1, µα,β,γ :=
∑

C∈Aα,β,γ
rad(C)volC

can be taken. Moreover, the Laplacian associated with (Kα,β,γ, µ
α,β,γ, Eα,β,γ,Fα,β,γ) has

discrete spectrum and its eigenvalues {λα,β,γ
n }n∈N (with each repeated according to mul-

tiplicity) satisfy, with1 dAG := dimH Kα,β,γ and some c0 ∈ (0,∞) independent of α, β, γ,

limλ→∞ λ−dAG/2#{n ∈ N | λα,β,γ
n ≤ λ} = c0H

dAG(Kα,β,γ) ∈ (0,∞). (1.3)

This work was supported by JSPS KAKENHI Grant Numbers 25887038, 15K17554, 18K18720.
Keywords: Kleinian groups, round Sierpiński carpets, Laplacian, Weyl’s eigenvalue asymptotics.
1dimH and Hd denote Hausdorff dimension and the d-dimensional Hausdorff measure, respectively.



2. Kleinian groups Gm with limit set a round Sierpiński carpet
Let m ∈ N, m > 6. Since π

2
+ π

3
+ π

m
< π there exists a geodesic triangle with

inner angles π
2
, π
3
, π
m
, which is unique up to hyperbolic isometry, in the Poincaré disk

model B2 := {z ∈ C | |z| < 1} of the hyperbolic plane. More specifically, set ℓ1 := R,
ℓ3 := {teπi/m | t ∈ R} and choose t, r ∈ (0,∞) so that ℓ2 := {z ∈ C | |z−teπi/m| = r} is
orthogonal to ∂B2 := {z ∈ C | |z| = 1} and intersects ℓ1 with angle π

3
; there is a unique

such choice of t, r by virtue of π
2
+ π

3
+ π

m
< π. Let△0 denote the closed geodesic triangle

formed by ℓ1, ℓ2, ℓ3 and define a subgroup Γm of Möb(Ĉ) by Γm := ⟨{Invℓk}3k=1⟩, where
Invℓ denotes the inversion (reflection) in a circle or a straight line ℓ. Then Poincaré’s
polygon theorem (see, e.g., [2, Section 8]) tells us that B2 =

∪
τ∈Γm

τ(△0), where τ(△0)
and σ(△0) intersect only on their boundaries for any τ, σ ∈ Γm with τ ̸= σ.

Next, choose rm ∈ (0, 1) so that S := {z ∈ C | |z| = rm} intersects ℓ2 with angle π
3
;

it is elementary to see that there is a unique such choice of rm. Then it turns out (see,

e.g., [1]) that the subgroup Gm of Möb(Ĉ) defined by Gm := ⟨Γm, InvS⟩ is a Kleinian
group and that ∂∞Gm :=

∪
g∈Gm

g(∂B2) is the limit set of Gm (i.e., the minimum non-

empty closed Gm-invariant subset of Ĉ) and is in fact a round Sierpiński carpet (being
homeomorphic to the standard Sierpiński carpet follows from [6]).

Set K0 := (∂∞Gm) ∩ B2, G :=
{
g ∈ Möb(Ĉ)

∣∣ g−1(∞) ∈ Ĉ \ B2
}
and Kg := g(K0)

for g ∈ G. Also set Dg :=
{
gh(Ĉ \B2)

∣∣ h ∈ Gm

}
\
{
g(Ĉ \B2)

}
, so that Dg is a family

of disjoint open disks in C with Kg = g(B2) \
∪

D∈Dg
D. Now we adopt (1.2) as the

definition of the Dirichlet form on Kg and similarly for the volume measure on Kg.

Definition 2.1 (K.). Let g ∈ G and set Cg := {u|Kg | u : C → R, u is Lipschitz}. We
define a Borel measure νg on Kg and a symmetric bilinear form Eg : Cg × Cg → R by

νg :=
∑

D∈Dg

rad(∂D)vol∂D, Eg(u, v) :=
∑

D∈Dg

rad(∂D)

∫
∂D

⟨∇∂Du,∇∂Dv⟩ dvol∂D.

Proposition 2.2 (K.). On L2(Kg, ν
g), (Eg, Cg) is closable and its closure (Eg,Fg) is a

strongly local regular Dirichlet form whose associated Laplacian has discrete spectrum.

Since Gm is convex cocompact (hence Gromov hyperbolic), dm := dimHKg ∈ (1, 2)
and Hdm(Kg) ∈ (0,∞) by [4, Theorem 7]. The following is the main result of this talk.

Theorem 2.3 (K.). There exists cm ∈ (0,∞) such that for any g ∈ G, the eigenval-
ues {λg

n}n∈N (with each eigenvalue repeated according to its multiplicity) of the (non-
negative definite) Laplacian associated with (Kg, ν

g, Eg,Fg) satisfy

limλ→∞ λ−dm/2#{n ∈ N | λg
n ≤ λ} = cmH

dm(Kg). (2.1)

Theorem 2.3 is proved by applying Kesten’s renewal theorem [3, Theorem 2] to a
certain Markov chain on the space of “all possible Euclidean shapes of Kg” defined by
H\G := {Hg | g ∈ G}, where H denotes the group of Euclidean similarities of C.
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Ground state of the renormalized Nelson model:

final version

廣島 文生 九大・数理

この研究はOliver Matte (Aalborg大学)との共同研究 [9]である. シュレディンガー作用
素と結合した量子場の模型でスペクトルがよく研究されている典型的なものにNelson模型
がある. 過去 2013年の「確率論シンポ」, 2014年と 2017年の「確率解析とその周辺」で
Nelson模型のくりこみ理論について発表した. 今回大きく研究が進展しほぼ最終的な形を
得ることができた. 簡単に物理的な説明をする. Nelson模型は非相対論的なスピンのない核
子とスカラー中間子の線形相互作用を表している. 相互作用はYukawa型相互作用と呼ばれ
る. スピンのある場合は [10, 8]を参照. Nelson模型を自己共役作用素として定義するため
にはまず紫外切断が必要で, そのとき

H = Hp ⊗ 1l + 1l⊗Hf + gϕ

と定義される．ここで, g ∈ Rは結合定数を表す．この紫外切断がくりこめることを Nel-
son自身が約 50年前に証明している [12]: “L2(R3) ⊗ F 上の自己共役作用素 H∞ で s −
lim
ε↓0

e−T (H−E) = e−TH∞ となるものが存在する. ここでEはくりこみ項”．

注意:
(1) Path 測度を用いた別証明が [4]で与えられている.
(2) 多様体上のNelaon模型のくりこみについては [2]を参照.
(3) Nelsonは強位相での収束を示したが, 一様位相で収束を示すことができる [11].
(4) H∞の明示的な形はわかっていないが, Nelson自身はH∞を二次形式で与えた.
(5) [4, 11]では e−tH∞ の Feynman-Kac公式が与えられた.
(6) H∞の基底状態に関しては [6]で結合定数が十分小さいときに存在が示されている.
(7) 紫外切断があるとき基底状態の性質はギブス測度を用いて [1, 7, 5]で調べられている.
H∞の基底状態 φg に関して次の結果を得た. V は Kato-分解可能クラスで binding 条件

[3]を満たすと仮定する. κ ≥ 0を赤外切断パラメター, N は個数作用素とする.

存在: κ > 0のときH∞の基底状態 φgが存在し, 一意的である.

局所性 1: κ > 0とする. このとき ∥eβNφg∥ < ∞ が任意の β > 0で成り立つ.

局所性 2: κ > 0とする. このとき
(1) ∥eβϕ(h)2φg∥ < ∞ が任意の β < 1/∥h/

√
|k|∥2で成り立つ.

(2) lim
β↑1/∥h/

√
|k|∥2 ∥e

βϕ(h)2φg∥ = ∞

非存在: κ = 0のとき基底状態は存在しない.

非 Fock表現: HG
∞をH∞のGross変換とする. HG

∞は κ > 0でH∞とユニタリー同値. さ
らに, 任意の κ ≥ 0で基底状態が存在する.
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基底状態の存在証明のアイデアを簡単に述べる. 仮想的な質量 ν > 0を導入し, さらに [11]
の Feynman-Kac公式を使って有界な開集合 G ⊂ R3上に stopping time を使ってHを定義
し直す. それをH(G, ν)とおく. e−tH(G,ν)の hypercontractivityを示してH(G, ν)が基底状
態をもつことを示す. それをφg(G, ν)とする. massless極限 νn → 0, 無限体積極限Gn → R3,
紫外切断除去の極限を順に取り φg(Gn, νn)の弱収束極限を φg とおく. Riesz-Kolmogorove
定理型のコンパクト性の議論を使って部分列が強収束することを示して φg ̸= 0を示す. こ
れがH∞の基底状態を与える. 局所性 1,2は基底状態から「くりこまれたギブス測度」を構
成して証明する.
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