The distributions of sliding block patterns in finite samples and the
inclusion-exclusion principles for partially ordered sets
Hayato Takahashi!

Let X € A™ with finite alphabet A and w € A*. Let |w| be the length of the word w. We consider
the following random variable,

n
— 1 i+w|—-1
Ny = 51 IXf*‘w‘”:w where IX}*‘”'*lzw =1if X, = w else 0.
=

We also call this statistics sliding block patterns. In particular if we count the occurrence of multiple
words, it is called suffix tree.

The distributions of sliding block patterns have been shown via generating functions based on
induction of sample size, see [1, 2, 3, 5, 4].

In this paper we show the distributions of sliding block patterns for Bernoulli processes with
finite alphabet, which is not based on the induction on sample size. We show a new inclusion-
exclusion formula in multivariate generating function form on partially ordered sets, and show a
simpler expression of generating functions of the number of pattern occurrences in finite samples.

We say that a word w is overlapping if there is a word = with |w| < |z| < 2|w| and w appears in x
at least 2 times, and w is called non-overlapping if there is no such x. We write = C y if x is a prefix
of y.

Theorem 1 Let P be an i.i.d. process of fixed sample size n of finite alphabet. Let s1 C so C -+ C 5

be an increasing non-overlapping words of finite alphabet, i.e., s; is a prefix of s; and m; < m;j, where
m; is the length of s;, for all i < j. Let P(s;) be the probability of s; fori=1,...,1. Let

l
=D imiki + ) ki :
Alky,... k) = (” %’17” 2i >HP’“(S¢),

.k Py
B(ky,...,k) = P> Lgismio1_y = hjy j=1,....,1), (1)
=1
Fa(z1,...,21) = Z Alky, ... k2" 2R and
1,k
FB(Zl,...,Zl) = Z B(/cl,...,kl)zkl---zk’.
k1, ky

Then
Fy(z1,29,...,21) = Fp(z1+ 1,21+ 20+ 1,...,21+ -+ 21+ 1).

With slight modification of Theorem 1, we can compute the number of the occurrence of the
overlapping increasing words. For example, let us consider increasing self-overlapping words 11, 111,
1111 and the number of their occurrences. Let 011, 0111, 01111 then these words are increasing non-
self-overlapping words. The number of occurrences 11, 111, 1111 in sample of length n is equivalent
to the number of occurrences 011, 0111, 01111 in sample of length n + 1 that starts with 0. We can
apply Theorem 1 to derive the distribution of increasing overlapping words with this manner.

In [5], expectation, variance, and CLTs for the sliding block pattern are shown. We show the
general higher moments for non-overlapping words.
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Theorem 2 Let w be a non-overlapping pattern.

min{T,t} n— S|'w‘ Ls
vt BE(N.) Z At5< ) >P5(w).
S _
Aps = <T>rt(—1)5 ", T =max{t € N | n—t|lw| > 0}.
"
In the above theorem, A; s is the number of surjective functions from {1,2,...,t} — {1,2,...,s} for
t,s € N, see [6].
In [5], it is shown that central limit theorem holds for sliding block patterns,
Ny — E(N, 1
pe= By L[ ey,
m V21 J

where w is non-overlapping pattern, E(N,,) = (n — |w| 4+ 1)P(w) and V(Ny) = E(Ny) + (n — 2|w| +
2)(n — 2|w| + 1)p*(w) — E*(Ny).
Let
Ln/|wl]

Z (Dl =1

z*|w|

N/, obeys binomial law if the process is 1.1.d. We call N|, block-wise sampling. As an application

of CLT approximation, we compare power functions of sliding block sampling N,, and block-wise
sampling N,,. We consider the following test for sliding block patterns: We write Ey = E(N,,) and
Vo = V(Ny) if P(w) = 6. Null hypothesis: P(w) = 6* vs alternative hypothesis P(w) < 0*. Reject
null hypothesis if and only if N, < Eg+ — 51/Vg«. The likelihood of the critical region is called power
function, i.e., Pow(0) := Py(Ny < Eg« — 5y/Vp«) for 6 < 6*.

We construct a test for block-wise sampling: Null hypothesis: P(w) = 6* vs alternative hypothesis
P(w) < 0*. Reject null hypothesis if and only if N;, < Ej. — 5,/Vj., where Ej = [n/|w|]# and
Vy = [n/|w||0(1 — ). The following table shows powers of tests for sliding block patterns and block
wise sampling at 6 = 0.2,0.18,0.16 under the condition that 8* = 0.25, |w| = 2, and n = 500.

0 0.2 0.18 0.16
Power of Sliding block 0.316007 0.860057 0.995681
Power of Block wise ~ 0.000295 0.002939 0.021481
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Central limit theorem for random walks on nilpotent
covering graphs with weak asymmetry

Ryuya NAMBA (Okayama University)
(Jointwork with Satoshi ISHIWATA (Yamagata) and Hiroshi KAWABI (Keio))

Long time behaviors of random walks (RWs) on an infinite graph is a well-studied topic
in geometry, harmonic analysis and graph theory, to say nothing of probability theory. It is
known that geometric features such as the periodicity and the volume growth of the underlying
graph affect long time behaviors of RWs. By putting an emphasis on them, Ishiwata, Kawabi
and Kotani [1] considered a non-symmetric random walk {w, }°°, on a I-crystal lattice X, a
covering graph of a finite graph whose covering transformation group I' is abelian. Through a
discrete analogue of the harmonic map from X into a Euclidean space I'® R, they established
two kinds of functional central limit theorems (CLTSs) for {w, }°,. In fact, since a diverging
drift term arising from the non-symmetry prevents us from taking the CLT-scaling limit
directly, it is difficult to prove such CLTs. To overcome the difficulty, two schemes were
introduced in [1]. One is to replace the usual transition operator by the transition-shift
operator to “delete” the diverging drift term. The other is to introduce a family of non-
symmetric RWs on X to “weaken” the diverging drift term. (The latter scheme is also applied
in the study of the hydrodynamic limit of weakly asymmetric simple exclusion processes.)

Let I be a finitely generated nilpotent group. In [2], we considered a non-symmetric RW
{w,}22, on a I'-nilpotent covering graph, a generalization of both crystal lattices and Cayley
graphs of a finitely generated group of polynomial volume growth. By extending the former
scheme to the nilpotent case, we established a functional CLT for {w,}32, in [2]. The main
purpose of this talk is to extend the latter scheme to the nilpotent case and to establish
another functional CLT for {w,}>2,. This talk is based on our recent preprint [3].

Let X = (V, E) be a I'-nilpotent covering graph. Here V' is the set of all vertices and E
the set of all oriented edges in X. For e € F, we denote the origin, terminus and inverse
edge of e by o(e),t(e) and e, respectively. We set E, := {e € F|o(e) = z} for x € V. Let
p: E — (0,1] be a I-invariant transition probability and (2,(X),P,, {w,}>2,) a RW on X
starting from x € V associated with p. Through the covering map = : X — X, we also
consider the RW (Q(4)(Xo), Pray, {m(wn)}72) and the corresponding transition probability
is also denoted by p : Ey — (0,1]. We denote by m : Vi — (0, 1] the normalized invariant
measure on Xy and also write m : V. — (0, 1] for the I'-invariant lift of m to X. Let
H;(Xo, R) be the first homology group of X,. We define the homological direction of the RW
on Xo by v := Y .cp, P(e)m(o(e))e € Hy(Xo,R). We call the RW on Xg (m-)symmetric if
p(e)m(o(e)) = p(e)m(t(e)) for e € Ey. Otherwise, it is called (m-)non-symmetric. Note that
the RW on X is (m-)symmetric if and only if v, = 0.

Thanks to the celebrated theorem of Maléev, we find a connected and simply connected
nilpotent Lie group G such that I' is isomorphic to a cocompact lattice in G. The nilpotent Lie
group G is equipped with the canonical dilations (7.).>o, which gives a scalar multiplication on



G. By realizing X into G, CLTs for RWs on X can be discussed. Let g be the corresponding
Lie algebra of G and gV = G/[G, G] the generating part of g. We take a canonical surjective
linear map pg : Hy(Xo,R) — g(!) by using the general theory of covering spaces. Thanks
to the map pr and the discrete Hodge-Kodaira theorem, a flat metric gy associated with the
transition probability p, called the Albanese metric, is induced on g. A periodic realization
®y : X — (@ is said to be modified harmonic if
> ple)tog (Po(ofe) - @o(t(e))
ecFE,
The quantity pr(7,) € g is called the asymptotic direction, which also appears in the law
of large numbers for g™M-valued RW {log (<I>0(wn)) ‘g<1)}f:0. It should be noted that v, = 0
implies pgr(7,) = 04, however, the converse does not hold in general.
For the given transition probability p, we introduce a family of [-invariant transition
probabilities (p:)o<e<1 on X by p-(e) := po(e) + eq(e) for e € E, where

i) 1= 3 (ple) + %p@), a(e) = 2 (v0) - %p@).

Namely, the family (p.)o<c<1 is given by the linear interpolation between the given transition
probability p = p; and the (m-)symmetric probability pg. Moreover, the homological direction

Yp. equals €7, for every 0 < e <1, which plays a key role in the proof of main theorems.
We now fix a reference point x, € V such that @éo) (x) = 1g, where 15 is the unit
clement of G. We write ¢\ for the Albanese metric on g() associated with p. and ®{ :

X — G be the (p.-)modified harmonic realization for every 0 < e < 1. We set y,Si:)(c) =
Tp-1/2 (@éa)(wk(c))) forneN k=0,1,...,n,c€ Q, (X) and 0 < e < 1. We then define a

G-valued continuous stochastic process Y& = (yf’”))ogtgl by the geodesic interpolation of

o = pr(7p) (xeV).

{y,gj;’j)};;:o with respect to the Carnot-Carathéodory metric on G. We take an orthonormal
basis {Vi,Va, ..., Vy} of (g, g(()o)) and consider a stochastic differential equation (SDE)
d

dY, = Vi(Ys) o dBi + pr(y,)(Y)) dt, Yo =1g,
i=1
where (B)o<i<1 = (B}, BZ, ..., B{*")o<i<1 is an R%-standard Brownian motion starting from
By = 0. Let (Y;)o<t<1 be the G-valued diffusion process which solves the SDE above.

We now state our main result as follows:

Theorem. Under several natural assumptions on {@ff)}ogsgl, the sequence {Y™ ™ myoe
converges in law to a G-valued diffusion process Y in C%*H([01]; G) as n — oo for all
a<1/2.
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A limit theorem for inverse local times of
jumping-in diffusion processes

Kosuke Yamato(Kyoto University)
(joint work with Kouji Yano(Kyoto University)

Let X be a strong Markov process X on the half line [0,00) which is
a natunal scale diffusion up to the first hitting time of 0 and, as soon as
X hits 0, X jumps into the interior (0,00) and starts afresh. This kind of
processes are studied by Feller[1] and 1t6[2] and shown that such processes
are characterized by the speed measure dm which characterizes the diffusion
on the interior (0, 00) and the jumping-in measure j which characterizes the
law of jumps from the boundary 0 to the interior (0,00). We denote this
process by X,, ; and call it a jumping-in diffusion.

Let us consider the inverse local time 7, ; at 0 of a jumping-in diffusion
X ;. We study the fluctuation scaling limit of the inverse local time 7,, ; of
the form:

a7 V) = BAE) — T(1) in D (1)
for some constants b > 0 and a € (0,2]. Here D denotes the space of
cadlag paths from [0,00) to R equipped with Skorokhod’s J;-topology. In
order to obtain the limit, we establish the continuity theorem for jumping-
in diffusion processes which roughly asserts the following: for jumping-in
diffusions {X,,,, j, }n, if their speed measures {dm,}, converge to a speed
measure dm in a certain sense and the measures {7j,(dz)}, degenerate to the

point mass at the origin in a certain sense, then for the appropriate constants
{bn }n, it holds that

N (£) — bt LN oB(t) +T(m;kt) in D (2)

n—oo
for some constants ¢ and x. Here B denotes a standard Brownian motion
and T'(m;t) the spectrally positive Lévy process without Gaussian part as-
sociated to m which is independent of B. In order to prove the continuity
theorem, we introduce a class of A-eigenfunctions of the generalized second

1



order differential operator %% and apply Krein-Kotani correspondence and

its continuity established in Kotani[4].

As an application of the above result, we study the occupation time of
two-sided jumping-in diffusions which are constructed by connecting two
jumping-in diffusion processes with respect to 0. Let X be such a process
and define A(t) = fot L(0,00)(Xs)ds. We give conditions for the existence of
the limit distribution $A(t) as t — oo. Moreover, in the case where the limit
degenerate, that is,

1AM Lo pe o] Q

t—o0

holds, we show the scaling limit of the fluctuation around the limit constant
along the exponential clock, that is, the following limit:

(Alegt) — pegt) —— Z(t) (4)
€f(q) q—+0

for a process Z(t) and a positive function f(g) which converges to 0 as
qg — +0. Here e, denotes an exponentially distributed random variable
with parameter ¢ > 0 and is independent of X. This result is a jumping-in
version of the result proved for diffusions in Kasahara and Watanabel[3].
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On optimal periodic dividend strategies
for Lévy risk processes

Kei Noba (Kyoto University), José Luis Pérez (CIMAT),
Kazutoshi Yamazaki (Kansai University) and Kouji Yano (Kyoto Universtiy)

1 Introduction

This talk is based on [4] and [5]. In this talk, we revisit the optimal periodic dividend
problem, in which dividend payments can only be made at the jump times of an indepen-
dent Poisson process. In the dual (spectrally positive Lévy) model, recent results have
shown the optimality of a periodic barrier strategy, which pays dividends at Poissonian
dividend-decision times, if and only if the surplus is above some level. In this talk, we
show the optimality of this strategy for a spectrally negative Lévy process whose dual has
a completely monotone Lévy density. We also consider the version with bail-outs where
the surplus must be non-negative uniformly in time. There are many previous studies
of spectrally negative cases. Loeffen([3]) and Kyprianou et al.([2]) showed the optimality
of a barrier strategy in the classical case and that of a threshold strategy under the ab-
solutely continuous assumption on the dividend strategy, respectively. Avram et al.([1])
and Pérez et al.([7]) showed the optimality of those of the version with bail-outs. In this
draft, we give the main results for the models without bail-outs.

2 Preliminary facts and main results

Let X be a spectrally negative Lévy process. Suppose that the Lévy measure of —X has
a completely monotone with respect to the Lebesgue measure. Let N" be the Poisson
process with rate » > 0 which are independent from X. Let [F be the filtration generated
from X and N”. In this setting, a strategy m = {L] : t > 0} is a non-decreasing,
right-continuous, and F-adapted process such that the cumulative amount of dividends
L™ admits the form

L™(t) —/ v (s)dN"(s), (2.1)
[0,%]
for some F-adapted caglad process v™. The surplus process U™ after dividends are de-
ducted is such that
U™(t) = X(t) — L™ (t) (2.2)

where of = inf{t > 0: U™(¢) < 0} is the corresponding ruin time. We assume that the
payment cannot exceed the available surplus and hence

0<v™(s) <U"(s—), s>0. (2.3)

We fix ¢ > 0 which is the discount rate. We define the expected net present value of
dividends paid until ruin as the following:

ve(z) = E, /[0 . eqtdL”(t)] : (2.4)




Let A, be the set of all admissible strategies. The problem is to compute the value
function

U () = v(x) := sup vg(x). (2.5)

T{'GAT
For b > 0, the periodic barrier strategy 7 is the strategy which satisfies the
V() = (UT (k=) —b) VO, t>0. (2.6)
The strategy 7° was constructed by [6]. The expected NPV v™ was computed by 6,

Corollary 4.4] using the scale functions.

Let ® be the inverse Laplace exponent of X and W@ be the g-scale function of X.
We denote

ZD(x, o(q+71)) = 7’/ e~ @ (5 4 1)dz, z € R, (2.7)
0
h(b) = e~ ®latr)b (T’W(Q)/(b) —O(qg+ 7‘)Z(q)'(b7 O(q + 1"))) , b>0. (2.8)
We define
b =inf{b > 0: h(b) < 0}. (2.9)

Then we have the following theorem:

Theorem 2.1. For x > 0, we have v+ (x) = v(z).
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Functional limit theorem for
intermittent interval maps

Toru Sera (Kyoto University)

Interval maps with indifferent fixed points have been studied as models of intermittent
phenomena, such as intermittent transitions to turbulent flow in convective fluid. In
this context, the occupations near indifferent fixed points correspond to long regular or
laminar phases, while the occupations away from them correspond to short irregular or
turbulent bursts. There have been many studies of scaling limits of the occupations near
and away from them, e.g., [1, 7, 8, 10, 4, 6]. In this talk, we present a functional and joint-
distributional refinement of them, based on [5]. It is motivated particularly by [2, 3, 9].

We impose the following assumption from now on:

Assumption. An interval map 7 : [0, 1] — [0, 1] satisfies the following conditions:

(1) (for simplicity) T is point-symmetric, i.e., Tx =1 —-T(1 —z), z € (1/2,1].
(2) the restriction T'|j1/9 : [0,1/2] — [0,1] is a C*-bijective map.

(3) T0=0,T'0 =1 and T"z > 0, z € (0,1/2).

Note that 0 and 1 are indifferent fixed points of 7. We know that 7" has a unique (up to
scalar multiplication) o-finite invariant measure p(dx) equivalent to the Lebesgue measure
dz. From now on, let us fix 0 € (0,1/2). Then, it holds that x([0,6)) = u((1 —46,1]) = 0o
and u([d,1 — d]) < co. Hence Birkhoff’s pointwise ergodic theorem implies

n—1 n—1

1 . 1
- ; Lirkzeqs 1oy njoo 0 equivalently, o g Lyrkagsi-)} n——>>oo 1), aexz.

Roughly speaking, the orbit (x, Tx, T?z,...) of almost every starting point  is concen-
trated close to 0 and 1. We are interested in non-trivial scaling limits of occupation times
for [0,4),[d,1 — 6] or (1 —6,1]. Let us denote by ¢(N) = ¢(N,z) the Nth hitting time of
(x, Tz, T?x,...) for [§,1 — d]:

©(0)=0 and @(N +1)=min{k > p(N): TFz € [5,1-46]}, N >0.

We will denote by @ = p([d,1 — 8] N -)/u([0,1 — 6]) the normalized restriction of p over
[0, 1 — 6]. We now present our main result.

Theorem (S. [5]). Let o € (0,1), and let & be a [0, 1]-valued random variable with P[§ €
dz] < dz. Then the following conditions are equivalent:



(i) Te —x = (1 —2) —T(1 —z) is reqularly varying of index (1 + 1/a) at 0.
(ii) 4t holds that

o ((bnt] L i)
( Z Lirie<s), ~ Z Lirhes1_s} : t>0> = L (8, S) :t>0), inD,

where b, = 1/7lp(1) > n], and S (t) and S(f) (t) are i.i.d. a-stable subordinators

with Lévy measure %r*ko‘dr, r > 0.

(iii) 4t holds that

[nt] [nt] [nt]

1
( Z 1{T’“§<6}a Z S A Z Lirrgs1—gy it 2 0)

kO

d o .
— (/O :H-{Z(O‘)(s)<0}d37 L( )<t>, /O :H-{Z(O‘)(s)>0}d3 it > O>, m D,

n—o0

where Z\@(t) denotes a (2 — 2a)-dimensional symmetric Bessel diffusion process
starting from the origin, and L™ (t) denotes the local time of Z(®)(t) at the origin
in the Blumenthal-Getoor normalization.
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The Laplacian on some round Sierpinski carpets
and Weyl's asymptotics for its eigenvalues

Naotaka Kajino (Kobe University)

The purpose of this talk is to present the speaker’s recent results on the construction of
a “canonical” Laplacian on round Sierpinski carpets invariant with respect to certain
Kleinian groups (i.e., discrete subgroups of the group Méb(@) of (orientation preserving
or reversing) Mébius transformations on C:=CuU {o0}) and on Weyl’s asymptotics for
its eigenvalues. Here a round Sierpinski carpet refers to a subset of C homeomorphic to

the standard Sierpinski carpet whose complement consists of disjoint open disks in C.

1. Preceding results for the Apollonian gasket

The construction of the Laplacian is based on the speaker’s preceding study of the
simplest case of the Apollonian gasket K, g~. This is a compact fractal subset of C ob-
tained from an ideal triangle, i.e., the closed subset of C enclosed by mutually externally
tangent three circles, with the radii of the circles a~!, 71,7~ and with the set V%7
of its three vertices (see Fig. 1). Set C(Kap,) :={f | f : Kap~, — R, f is continuous}.

Theorem 1.1 (K., cf. [5]). There ezist a finite Borel measure p on K, g, with full sup-
port and an irreducible, strongly local, reqular symmetric Dirichlet form (%P7, Fy 5.4)
on L*(Ko g, ) such that for any affine function h : C — R, h|k € Fopn and

o, B,y

gaﬁﬁ(thaﬂﬁ,U) =0 for any v € Fop,NC(Kqyp,) with ,U|VOQ’B” =0 (1.1)

(i.e., hlx, 5. is E¥P7-harmonic on Kop \VE?7). Moreover, Co gy i= FagC(Kagy)

and E4P e, . xcu ., are unique (up to positive constant multiples of E4P7|e. . e .. ).
Theorem 1.2 (K.). C}Y = {ulk,, | u:C —= R, uis Lipschitz}y C Cop and

4P (u,v) = ZCEAQ’M rad(C) /C<ch, Vev)dvole  for any u,v € CI;}}QW (1.2)

where A, g denotes the set of all the arcs appearing in the construction of K, g3,
rad(C') the radius of C, V¢ the gradient on C' and vole the length measure on C.
Theorem 1.3 (K.). As the measure pi in Theorem 1.1, u®P7 = > cea, - rad(C)vole

can be taken. Moreover, the Laplacian associated with (Ko g, u®?7, E*PY Fop.) has
discrete spectrum and its eigenvalues {\*P7},en (with each repeated according to mul-
tiplicity) satisfy, with' dag := dimy K, g~ and some cq € (0,00) independent of a, 3,7,

limy oo A%/ 240 0 € N | AP < A} = ¢ H%e (K, 5) € (0, 00). (1.3)

This work was supported by JSPS KAKENHI Grant Numbers 25887038, 15K17554, 18K18720.
Keywords: Kleinian groups, round Sierpinski carpets, Laplacian, Weyl’s eigenvalue asymptotics.
ldimg and H¢ denote Hausdorff dimension and the d-dimensional Hausdorff measure, respectively.




2. Kleinian groups G,, with limit set a round Sierpinski carpet
Let m € N, m > 6. Since 7 + 2 + - < 7 there exists a geodesic triangle with

inner angles 7, %, 7, which is unique up to hyperbolic isometry, in the Poincaré¢ disk
model B? := {2z € C | |z| < 1} of the hyperbolic plane. More specifically, set ¢, := R,
(5 := {te™/™ | t € R} and choose t,7 € (0,00) so that {5 := {z € C | |z —te™™| = r}is
orthogonal to OB* := {z € C | |z| = 1} and intersects ¢, with angle Z; there is a unique
such choice of ¢, r by virtue of 7 +%+7- < m. Let Ay denote the closed geodesic triangle

~

formed by ¢y, {5, {3 and define a subgroup I, of M6b(C) by T, := ({Invy, }3_,), where
Inv, denotes the inversion (reflection) in a circle or a straight line ¢. Then Poincaré’s
polygon theorem (see, e.g., [2, Section 8]) tells us that B* = |J, .. 7(4), where 7(4)
and o(/\g) intersect only on their boundaries for any 7,0 € T',,, with 7 # 0.

Next, choose r,,, € (0,1) so that S := {z € C| |z = ry,} intersects {, with angle %;
it is elementary to see that there is a unique such choice of r,,. Then it turns out (see,
e.g., [1]) that the subgroup G,, of Mob(C) defined by G, := (I', Invs) is a Kleinian
group and that 0xGrn := U,cq, 9(0B?) is the limit set of Gy, (i.e., the minimum non-

empty closed G,,-invariant subset of ((A:) and is in fact a round Sierpinski carpet (being
homeomorphic to the standard Sierpiniski carpet follows from [6]).

Set Ko := (0Gm) NB2, G := {g € M6b(C) | g'(c0) € C\ B2} and K, := g(Ky)
for g € G. Also set D, := {gh(@\@) | h€Gn}\ {g(@\@)}, so that D, is a family
of disjoint open disks in C with K, = g(B?) \ Upep, D- Now we adopt (1.2) as the
definition of the Dirichlet form on K, and similarly for the volume measure on K,.
Definition 2.1 (K.). Let g € G and set C, := {u|g, | u: C — R, u is Lipschitz}. We
define a Borel measure 7 on K, and a symmetric bilinear form £9: C; x C, —+ R by

V9= ZDE% rad(0D)volgp, E9(u,v) := Z rad(@D)/ (Vapu, Vopv) dvolgp.

oD
Proposition 2.2 (K.). On L*(K,,19), (£9,C,) is closable and its closure (9, F,) is a
strongly local reqular Dirichlet form whose associated Laplacian has discrete spectrum.

DeDy

Since G, is convex cocompact (hence Gromov hyperbolic), d,,, := dimy K, € (1,2)
and H% (K,) € (0,00) by [4, Theorem 7]. The following is the main result of this talk.

Theorem 2.3 (K.). There ezists ¢, € (0,00) such that for any g € G, the eigenval-
ues {\ }nen (with each eigenvalue repeated according to its multiplicity) of the (non-
negative definite) Laplacian associated with (K,,v9,E9, F,) satisfy

limy oo A2 # 0 € N | N < A} = ¢, H (K,). (2.1)

Theorem 2.3 is proved by applying Kesten’s renewal theorem [3, Theorem 2] to a
certain Markov chain on the space of “all possible Euclidean shapes of K,” defined by
H\G :={Hg | g € G}, where H denotes the group of Euclidean similarities of C.
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Ground state of the renormalized Nelson model:

final version
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