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1 Introduction

次のような d次元確率微分方程式を考える：

dXt = b(t, Xt)dt + σ(t,Xt)dBt, X0 = x. (1)

但し、b, σは適当な関数、Btはd次元ブラウン運動とする。この解XT (T >

0)に対して、期待値E[f(XT )]を考える。但し、f は適当な関数とする。
この期待値が具体的に計算出来ることは少ない。そのため、数値を得た
いとき、シミュレーションを行い、近似値で代用される。そのシミュレー
ションの際に 2種類の近似が必要となる。

(i). 1つ目は確率分方程式 (1)に対して近似をしてやる必要がある。代
表的な近似の方法として次のようなオイラー・丸山近似がある：

X̄t = x +

∫ t

0

b(φ(s), X̄φ(s))ds +

∫ t

0

σ(φ(s), X̄φ(s))dBs,

但し、φ(s) = sup{t ≤ s|t = k
n

for k ∈ N}とする。

(ii). 2つ目は期待値に対する近似が必要である。これに関しては大数の
法則を基としたモンテカルロ法が代表的である。

本講演では、前者の (i)に関して考える。特に、ドリフト係数 bが不連
続関数の場合の弱近似の収束のオーダーについて考察する。ここで、XT

の近似過程 X̃T がオーダー γの弱近似とは、適当な関数の族に属する関
数 f に対して、 ∣∣∣E [f(XT )] − E

[
f

(
X̃T

)]∣∣∣ ≤ C∆tγ

が成り立つことである。但し、Cは正の定数とする。
1立命館大学理工学部 and JST.
2Project-team TOSCA (INRIA) and IECN.
3法政大学理工学部（k yasuda@hosei.ac.jp）.

1



2 Main Theorems

Assumption 2.1 (i). σ :を [0, T ]×Rd上の d× d-対称行列値一様連続
関数で、次を満たす定数Λ ≥ λ > 0が存在するとする：

λ|ξ|2 ≤ ξ∗σσ∗(t, x)ξ ≤ Λ|ξ|2, for all ξ ∈ Rd and (t, x) ∈ [0, T ] × Rd.

(ii). bを [0, T ]×Rd上の有界な d次元可測関数とする。また、bε（bに対
する近似関数）を [0, T ] × Rd上の有界な d次元可測関数とする。

以下、Assumption 2.1を仮定する。また、Xε
t を (1)のドリフト係数を

bεで置き換えたものとし、X̄ε
t をそのオイラー・丸山近似したものとする。

Theorem 2.2 次が成り立つと仮定する：

(i). γ > 0に対して、|E[f(XT )] − E[f(Xε
T )]| = O(εγ).

(ii). β, δ > 0に対して、|E[f(Xε
T )] − E[f(X̄ε

T )]| = O( 1
εβnδ ).

このとき、ε = O(n− δ
γ+β )に対して、次が成り立つ：∣∣E[f(XT )] − E

[
f

(
X̄ε

T

)]∣∣ ≤ O
(
n− δγ

γ+β

)
.

CSl(Rd) = {f ∈ C(Rd) : ∀k > 0, lim|x|→∞ |f(x)|e−k|x|2 = 0}とする。

Proposition 2.3 α, p > 2 ( 1
α

+ 1
p

< 1
2
)とする。f ∈ CSl(Rd)に対して、

|E [f(XT )] − E [f (Xε
T )]| ≤ C(α, p, T )AT (ε)

√
V ar(f(XT ))

が成り立つ。但し、C(α, p, T )は正の定数で、

AT (ε) = E

[∫ T

0

|bε(s, Ys) − b(s, Ys)|p ds

] 1
p

,

但し、Ytは Yt = x +
∫ t

0
σ(s, Ys)dWsの解とする。

Theorem2.2の(ii)に関しては、例えば、Mikulevicius and Platen (1991)

の結果を用いることが出来る。
1次元（d = 1）かつ拡散係数が定数（σ(t, x) = σ）の場合、オイラー・
丸山近似に対する弱近似のオーダーが次のように得られる。

Theorem 2.4 b(x)は有界かつ ∪M−1
i=1 (xi, xi+1)の上で Lipschitz連続、各

xiでは両極限が存在するとする。このとき、f ∈ C3
p と p > 2に対して、

次が成り立つ： ∣∣E[f(XT )] − E[f(X̄T )]
∣∣ = O

(
n− 1

p+1

)
.
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