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Leta, b andT be positive constants. L0 (t);t € [0,T]} (i =1,...,d) be independent
gamma processes with the paraméteb), that is, each procesh is a one-sided pure-jump
Lévy process without any Gaussian components with ghe/lmeasure

V(d2) = 9(2) [(04e)(2)dz, 9(2) = aexp(—bz)/z
The marginal'(t) at timet € [0, T] has the density in closed form:
Paiy(y) = by texp(—by) /T (at), y e [0,+e).
Let Ag, Aq, ..., Aq : RY — RY be smooth and bounded. Suppose that the funcéigris=
1,...,d) satisfy the invertible condition:
infyea iNfoe (0,1 ‘ det(lg + IA () 2) ‘ >0 1)

for anyi = 1,...,d. For a non-random pointc RY, we shall consider th&9-valued process
{X(t);t € [0,T]} determined by the stochastic differential equation of the form:

dX(t) = Ag(X(t)) dt + A (X(t—)) dI(t), X(0) =x, (2)
where A = (Aq,...,Aq) andJ(t) = (J4(t),...,J9(t)). Then, there exists a unique solution
{X(t);t € [0,T]} to the equation (2) such that, for eack [0, T], the functionR? > x —»

X(t) € RY has aC®-modification, and its Jacobi matrix is invertible a.s. In this talk, we shall
focus on the sensitivity, and the error estimate on the densities between the solution and the
driving gamma process, which can be applied to the strict positivity of the density. This is

based upon joint work with Vlad Bally (UnivergitParis-Est Marne-la-Vae, France).
LetC; be a positive constant, aile C (RY@RY; [0,1]) such that

=(B)=0 (0<|detB]| <C1/2), =(B)=1 (|detB| >Cy).

The Girsanov transform on the driving process leads to get the integration by parts formula.
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Theorem 1 For @ € Cé(Rd ; R), the following equality holds:

E[3@(X(T)) Z(W(T)| = E[@(X(T)) @(X(T),Z(W(T))) @3)
fork=1,...,d, where ¥(T) is the Malliavin covariance matrix for K).

Moreover, suppose that the functiofs(1 < i < d) satisfy the uniformly elliptic condition:

infzesa1 iNfycpa £ A(Y) AY)* ¢ > C, (4)
under which there exists@G’-Lebesgue density fok(T). Theorem 1 enables us to see that

Theorem 2 It holds that
E[Tx(T)cD) /D ded (T) =) Ok (X(T),=(Vx (T)))} ay (5
for D € #(RY), where Q is the fundamental solution to the equati@y = d.
Let Cs be a positive constant, amg ; € G’ ([0, +); [0,1]) (i =1,...,d) with

Pri(u)=1 (4 >Cz), Yri(u)=0 (u<Cz/2).
Defineyu (u) = 1%, @ri(u) for u= (uy,...,uq) € [0,+00)9. Rewrite (2) as follows:

X(T) = <x+A / Ao (X ds-l—/OT{A(X(s—)) —A(x)}dJ(s))
=:G(T)+R(T).

Theorem 3 It holds that
Px(m)(Y) = Pg(m)(Y) — &7, (6)
where pr)(y) is the density for 0T), & = C4(|R(T)|p + [[Va(T)llp+ [[Ha(T)|lp), and

B () = Wa(AX) " Hy—X)) pycr) (AX) Hy—xX)).
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