Random walk on non-intersecting two-sided random walk trace is

subdiffusive in low dimensions
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Theorem 1: Let d =2 or 3. Then the following limit exists;
nlin;oP(- |An) — P*(.). (2.2)
Moreover, P* extends uniquely to a probability measure on the configurations of infinite non-
intersecting two-sided paths.
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Theorem 2: Let d = 2. The following holds for P*-a.s. w.

(i) For each i = 1,2, we have

S T (k) = n¥+o) (as n — o0). (2.3)
k=0

In particular, both gl and EQ have infinitely many global cut times.
(ii) For all € € (0, 155), we have
B (T(n) > n¥, (2.4)
for large n.
0000000000 SRWS'ODOO0O00000000000000000000000000 (i)

O X O subdiffusivity O quenched level 000000000000 (i))0000O000O0OOOOO
oooooo

References

[1] Gregory F. Lawler. Nonintersecting planar Brownian motions. Math. Phys. Electron. J. 1 (1995),
Paper 4, approx. 35 pp. (electronic).

[2] Gregory F. Lawler. Cut times for simple random walk. Electron. J. Probab. 1 (1996), no. 13,
approx. 24 pp. (electronic).

[3] Gregory F. Lawler, Oded Schramm, Wendelin Werner. Values of Brownian intersection expo-
nents. II. Plane exponents. Acta Math. 187 (2001), no. 2, 275-308.

[4] Gregory F. Lawler, Brigitta Vermesi. Fast convergence to an invariant measure
for non-intersecting 3-dimensional Brownian paths. (2010) preprint, available at
http://arxiv.org/abs/1008.4830

[5] Daisuke Shiraishi. Two-sided random walks conditioned to have no intersections. (2011)
preprint, available at http://arxiv.org/abs/1106.529

[6] Daisuke Shiraishi. Random walk on non-intersecting two-sided random walk trace is subdiffusive
in low dimensions. Trans. Amer. Math. Soc., to appear.



