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1 背景

S = (S(n))n≥0 を原点から出発する Zd (d = 2, 3)上のシンプルランダムウォーク (SRW)とする。ふ
たつの整数 0 ≤ k < nを取る。時刻 kが時刻 nまでのカットタイムであるとは、

S[0, k] ∩ S[k + 1, n] = ∅

を満たすこととする。ここで S[0, k] = {S(j) : 0 ≤ j ≤ k}である。その事象の指示関数 Yk を

Yk := 1{S[0, k] ∩ S[k + 1, n] = ∅}

で定義する。このとき Lawler([2])はある定数 ζd が存在して、
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が成立することを示した。ここで ζdは intersection exponent と呼ばれる指数である。その後 Lawler、
Schrammそして Werner([3])らにより

ζ2 =
5
8

(1.1)

であることが証明された。ζ3 の値は今のところわかっていない。最良の評価として 1
4 < ζ3 < 1

2 であ
ることが知られている。
このようにカットタイムの個数については理解が進んでいる一方で、連続するカットポイントの間

の SRWのパスの構造や、カットポイントの近傍におけるパスの特異性といった幾何学的構造の研究
は全く進んでいない。そこで講演者は以下のような問題を考察した。「時刻 nが時刻 2nまでのカット
タイムであると条件付けた時、S(n)の周りにおける SRWのパスはどのような構造をしているのか？」
S1, S2を Zd上の原点から出発する独立な SRWとする。このとき SRWの時間反転に関する対称性と
平行移動不変性からこの問題は以下のように帰着される。

(Q) S1[0, n]∩S2[1, n] = ∅と条件付けた時S1とS2のパスは原点近傍でどのような構造をしているか？

上の問題において n → ∞ とすると以下のふたつの問題が生じる。まず第一の問題は S1[0,∞) ∩
S2[1,∞) = ∅と条件付けられた two-sided RWの構成である。両者が出発後永久に交わらない確率は
d = 2, 3の場合 0なので、その構成は自明な問題ではない。なおブラウン運動に対しては出発後２度
と交わらないように条件付けられた two-sidedパスが既に構成されている ([1, 4])。しかしながらその
構成においてブラウン運動のスケーリング則を本質的に用いているため、そこでの手法を SRWに対
してそのまま適用することはできない。



2 結果

事象 An を
An = {S1[0, n] ∩ S2[1, n] = ∅} (2.1)

と定義する。最初の定理は構成に関するものである ([5])。
Theorem 1: Let d = 2 or 3. Then the following limit exists;

lim
n→∞

P
(
·

∣∣ An

)
=: P ?(·). (2.2)

Moreover, P ? extends uniquely to a probability measure on the configurations of infinite non-
intersecting two-sided paths.
確率測度 P ?に従う two-sided RWを S

1
, S

2
とする。G = S

1
[0,∞) ∪ S

2
[0,∞)をその軌跡とする。

ここでの目標は G と通常の two-sided SRWの軌跡 G = S1[0,∞) ∪ S2[0,∞)の違いを明らかにするこ
とである。以下この問題を２次元の場合に限り考察する。この場合は G = Z2 となる。
時刻 kが S

i
のグローバルカットタイムであるとは S

i
[0, k]∩ S

i
[k + 1,∞) = ∅が成立することとす

る。J
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{
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}
をその事象の指示関数とせよ。

X を G 上の原点から出発する SRW とする。X が半径 n の円の外に出る最初の時刻を T (n) =
inf{k ≥ 0 : |X(k)| ≥ n}とする。また Pω

0 をX の quenched law、Eω
0 を Pω

0 に関する平均とする。(ω
は G のランダムネスを表わす。)
次の定理は G と Z2 との違いを述べたものである ([6])。
Theorem 2: Let d = 2. The following holds for P ?-a.s. ω.

(i) For each i = 1, 2, we have

n∑
k=0

J
i
(k) = n

3
8+o(1) (as n → ∞). (2.3)

In particular, both S
1

and S
2

have infinitely many global cut times.
(ii) For all ε ∈ (0, 1

100 ), we have
Eω

0

(
T (n)

)
≥ n

81
40−ε, (2.4)

for large n.
２次元の場合、通常の SRWSiはグローバルカットタイムをひとつも持たないことに注意せよ。(ii)

はX の subdiffusivityを quenched levelで述べている。本講演では (ii)がなぜ成立するのかを中心に
説明したい。
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