An estimate of the gap of spectrum of Schrödinger operators which generate hyperbounded semigroup ${ }^{1} 2$

Shigeki Aida
February 9, 2001

§1 Setting

Notations

(X, \mathfrak{B}, m): Probability space
$d m_{\varphi}=\varphi^{2} d m$: Weighted measure $\left(\varphi \in L^{2}(m)\right)$.
$V \in L^{1}(X, m)$.
$\langle u\rangle_{m}=\int_{X} u d m$
In this section, we are working in more general situations than hyperbounded setting. We assume (A1) (A2) on ($\mathcal{E}, \mathrm{D}(\mathcal{E})$).
(A1) (conservativeness and derivation property)
P_{t} : a conservative L^{2}-Markovian symmetric semigroup on $L^{2}(m)$.
$(\mathcal{E}, \mathrm{D})$: the corresponding Dirichlet form.
Then $\mathcal{E}(1,1)=0$ holds.
For any φ which is a C^{1}-function on \mathbb{R}^{n} with bounded derivative and $\left\{u_{i}\right\}_{i=1}^{n} \in \mathrm{D}(\mathcal{E})$, it holds that

$$
\begin{align*}
& \Gamma\left(\varphi\left(u_{1}, \ldots, u_{n}\right), \varphi\left(u_{1}, \ldots, u_{n}\right)\right) \\
& \quad=\sum_{i, j=1}^{n} \Gamma\left(u_{i}, u_{j}\right) \partial_{i} \varphi\left(u_{1}, \ldots, u_{n}\right) \partial_{j} \varphi\left(u_{1}, \ldots, u_{n}\right) \tag{1}
\end{align*}
$$

(A2) Let $V_{ \pm}(x)=\max (\pm V(x), 0)$. Then $V_{+} \in L^{1}(m)$ and there exist $a \in(0,1)$ and $b \in[0, \infty)$ such that for all $u \in \mathrm{D}(\mathcal{E}) \cap L^{2}\left(V_{+} \cdot m\right)$,

$$
\begin{equation*}
\int_{X} V_{-} u^{2} d m \leq a\left\{\mathcal{E}(u, u)+\int_{X} V_{+} u^{2} d m\right\}+b\|u\|_{L^{2}(m)}^{2} \tag{2}
\end{equation*}
$$

Definition 1

$$
\begin{align*}
\mathcal{D} & :=\mathrm{D}(\mathcal{E}) \cap L^{\infty}(X, m) \tag{3}\\
\mathcal{E}_{V}(u, v) & :=\mathcal{E}(u, v)+\int_{X} V u v d m \quad(u, v \in \mathcal{D}) . \tag{4}
\end{align*}
$$

[^0]Theorem 2 (1) Under (A2), for any $u \in \mathcal{D}$,

$$
\mathcal{E}_{V}(u, u) \geq-b\|u\|_{L^{2}}^{2} .
$$

(2) The closure of \mathcal{D} with respect to $\mathcal{E}_{V}+b\| \|_{L^{2}}$ is $\mathrm{D}(\mathcal{E}) \cap L^{2}(X,|V| m)$.

Definition 3 (Definition of Schrödinger operators) Let $-L_{V}$ be the semibounded self-adjoint operator corresponding to \mathcal{E}_{V} with the domain $\mathrm{D}(\mathcal{E}) \cap L^{2}(|V| m)$. We denote the corresponding L^{2}-semigroup by T_{t}. Let $\sigma\left(-L_{V}\right)$ denote the spectral set and

$$
\begin{align*}
& \lambda_{0}(V)=\inf \sigma\left(-L_{V}\right) \tag{5}\\
& \lambda_{1}(V)=\inf \left(\sigma\left(-L_{V}\right) \backslash\left\{\lambda_{0}(V)\right\}\right) . \tag{6}
\end{align*}
$$

We are concerned with an estimate on $\lambda_{1}(V)-\lambda_{0}(V)$.
Further we assume
(A3) $\lambda_{0}(V)$ is an simple eigenvalue and the corresponding eigenfunction is almost everywhere positive or negative.

We denote the eigenfunction(=ground state) by Ω such that $\|\Omega\|_{L^{2}(m)}=1$ and $\Omega>0$ almost everywhere.

We will define an unitarily equivalent semigroup on $L^{2}\left(X, m_{\Omega}\right)$ by

$$
\hat{T}_{t} f=\Omega^{-1} e^{t \lambda_{0}(V)} T_{t}(f \Omega)
$$

Then \hat{T}_{t} is the symmetric contraction semigroup on $L^{2}\left(m_{\Omega}\right)$. Let $(\hat{\mathcal{E}}, \hat{\mathrm{D}})$ be the corresponding closed form.

It follows from the definition that

$$
\begin{align*}
\mathrm{D}(\hat{\mathcal{E}}) & =\left\{v \Omega^{-1} \mid v \in \mathrm{D}\left(\mathcal{E}_{V}\right)\right\} \tag{7}\\
\hat{\mathcal{E}}(u, u) & =\mathcal{E}_{V}(u \Omega, u \Omega)-\lambda_{0}(V)\|u \Omega\|_{L^{2}(m)}^{2} \quad(u \in \mathrm{D}(\hat{\mathcal{E}})) . \tag{8}
\end{align*}
$$

Let

$$
\begin{align*}
\mathcal{D}_{\Omega} & \stackrel{\text { def }}{=}\left\{u \in \mathcal{D} \mid \int_{X} \Gamma(u, u) d m_{\Omega}<\infty\right\} . \\
\mathcal{E}_{\Omega}(u, u) & \stackrel{\text { def }}{=} \int_{X} \Gamma(u, u) d m_{\Omega}\left(u \in \mathcal{D}_{\Omega}\right) . \tag{9}
\end{align*}
$$

Formally

$$
\hat{\mathcal{E}}(u, u)=\mathcal{E}_{\Omega}(u, u) .
$$

Concerning this formal identity, we have

Lemma 4 (1) $\Omega \in \mathrm{D}(\mathcal{E})$.
(2) (I. Shigekawa, 1992)

$$
\begin{equation*}
\int_{X} \frac{\Gamma(\Omega)}{\Omega^{2}} d m=\int_{X}\left(V-\lambda_{0}(V)\right) d m \tag{10}
\end{equation*}
$$

(3) $\left(\mathcal{E}_{\Omega}, \mathcal{D}_{\Omega}\right)$ is a densely defined Markovian symmetric form and the smallest closed extension is $(\hat{\mathcal{E}}, \mathrm{D}(\hat{\mathcal{E}}))$.

Let

$$
\begin{equation*}
\lambda_{V}=\inf \left\{\hat{\mathcal{E}}(u, u) \mid u \in \mathrm{D}(\hat{\mathcal{E}}) \text { and } \int_{X} u d m_{\Omega}=0,\|u\|_{L^{2}\left(m_{\omega}\right)}=1\right\} . \tag{11}
\end{equation*}
$$

Then by the definition

$$
\begin{equation*}
\lambda_{V}=\lambda_{0}(V)-\lambda_{1}(V) . \tag{12}
\end{equation*}
$$

Also by Lemma 4 (3),

$$
\begin{equation*}
\lambda_{V}=\inf \left\{\mathcal{E}_{\Omega}(u, u) \mid u \in \mathcal{D}_{\Omega} \text { and } \int_{X} u d m_{\Omega}=0,\|u\|_{L^{2}\left(m_{\omega}\right)}=1\right\} . \tag{13}
\end{equation*}
$$

§2 Weak Poincare inequality and some estimates on ground state

(WPI) [27] For any $\delta>0$, there exists a constant $\xi(\cdot)>0$ such that for any $u \in \mathrm{D}(\mathcal{E})$,

$$
\begin{equation*}
\left\|u-\langle u\rangle_{m}\right\|_{L^{2}(m)}^{2} \leq \xi(\delta) \mathcal{E}(u, u)+\delta\|u\|_{\infty}^{2} . \tag{14}
\end{equation*}
$$

Lemma 5 Assume (14) holds. Let $\varphi \in \mathrm{D}(\mathcal{E})$ and assume that $\varphi>0$ a.e. and $\Gamma(\varphi) / \varphi^{2} \in$ $L^{1}(m)$. For $u \in \mathrm{D}(\mathcal{E}) \cap L^{\infty}(m)$, let

$$
\begin{equation*}
\mathcal{E}_{\varphi}(u, u)=\int_{X} \Gamma(u) d m_{\varphi} \tag{15}
\end{equation*}
$$

Then for any $r>0, \varepsilon>0, K>0, \delta>0$

$$
\begin{equation*}
\left\|u-\langle u\rangle_{m_{\varphi}}\right\|_{L^{2}\left(m_{\varphi}\right)}^{2} \leq \frac{\xi(\delta) K^{4}}{\varepsilon^{2}}(1+r)^{2} \mathcal{E}_{\varphi}(u, u)+\zeta_{\varphi}(r, \varepsilon, K, \delta)\|u\|_{\infty}^{2}, \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& \zeta_{\varphi}(r, \varepsilon, K, \delta) \\
& \quad=K^{4}\left\{(1+r)\left(1+\frac{1}{r}\right) \xi(\delta) \int_{\{\varphi \leq \varepsilon\}} \frac{\Gamma(\varphi)}{\varphi^{2}} d m+(1+r) \delta+\left(1+\frac{1}{r}\right) m(\varphi \leq \varepsilon)\right\} \\
& \quad+4 \int_{\{\varphi \geq K\}} \varphi^{2} d m \tag{17}
\end{align*}
$$

and

$$
\begin{equation*}
\inf \left\{\zeta_{\varphi}(r, \varepsilon, K, \delta) \mid \varepsilon>0, K>0, \delta>0\right\}=0 \tag{18}
\end{equation*}
$$

Lemma 6 (1) Let f be a C^{1}-function on \mathbb{R} with compact support. Then it holds that

$$
\begin{equation*}
\int_{X} f\left(\frac{1}{\Omega}\right)^{2} \frac{\Gamma(\Omega)}{\Omega^{2}} d m+2 \int_{X} f\left(\frac{1}{\Omega}\right) f^{\prime}\left(\frac{1}{\Omega}\right) \frac{\Gamma(\Omega)}{\Omega^{3}} d m=\int_{X}\left(V-\lambda_{0}(V)\right) f\left(\frac{1}{\Omega}\right)^{2} d m . \tag{19}
\end{equation*}
$$

(2) For $R \geq 0$,

$$
\begin{equation*}
\int_{\left\{\Omega^{-1} \geq R\right\}} \frac{\Gamma(\Omega)}{\Omega^{2}} d m \leq \int_{\left\{\Omega^{-1} \geq R\right\}}\left(V-\lambda_{0}(V)\right) d m \tag{20}
\end{equation*}
$$

(3) Assume (WPI) holds. Let

$$
\begin{align*}
p_{\Omega} & =m\left(\Omega \leq e^{-1}\right) \tag{21}\\
n_{\Omega} & =\left[\frac{4 p_{\Omega}}{1-p_{\Omega}}\right]+1, \tag{22}\\
\gamma_{\Omega} & =e^{-n_{\Omega}}, \tag{23}
\end{align*}
$$

where $[x]$ denotes the greatest integer less than or equal to x. Then for $S \geq \exp \left(\exp \left(n_{\Omega}\right)\right)$ and $\delta>0$,

$$
\begin{align*}
m\left(\Omega^{-1} \geq S\right) & \leq 2\left(1-p_{\Omega}\right)^{-1}\left(\xi(\delta) \gamma_{\Omega}^{-2}(\log S)^{-2} \int_{\left\{\Omega^{-1} \geq S^{\left.\gamma_{\Omega}\right\}}\right.} \frac{\Gamma(\Omega)}{\Omega^{2}} d m+\delta\right) \\
& \leq 2\left(1-p_{\Omega}\right)^{-1}\left(\xi(\delta) \gamma_{\Omega}^{-2}(\log S)^{-2} \int_{\left\{\Omega^{-1} \geq S^{\gamma_{\Omega}}\right\}}\left|V-\lambda_{0}(V)\right| d m+\delta\right) \tag{24}
\end{align*}
$$

(4) Assume that \mathcal{E} satisfies Poincaré's inequality and $V \in L^{p}(m)(p>1)$. Then $\log \Omega \in L^{q}(X, m)$ for $1 \leq q<2 p$ and $\log \Omega \in \mathrm{D}(\mathcal{E})$.

Note When $X=L_{x}(M), m=$ pinned measure and M is a hyperbolic space, we can prove that for sufficietnly small δ,

$$
\xi(\delta)=C_{1} \log \left(\frac{C_{2}}{\delta}\right)+C_{3} .
$$

§3 Main estimate

We already proved that if WPI holds for \mathcal{E}, then it holds for \mathcal{E}_{Ω} too. So it suffices to prove some Sobolev type (or weaker certain inequality) for \mathcal{E}_{Ω} to prove $\lambda_{V}>0$. To this end, we assume that
(A4) $V \in L^{2}(m)$ and for any $p \geq 1,\left\|e^{V_{-}}\right\|_{L^{p}(m)}<\infty$, where $V_{-}(x)=\max (-V(x), 0)$ and
(A5) There exists $\alpha>0$ such that for any $u \in \mathcal{D}$,

$$
\begin{equation*}
\int_{X} u^{2} \log \left(u^{2} /\|u\|_{L^{2}(m)}^{2}\right) d m \leq \alpha \mathcal{E}_{V}(u, u) . \tag{25}
\end{equation*}
$$

Then note that (A4) and (A5) implies (A2). So we can define $\mathcal{E}_{V}, L_{V}, T_{t}$.
Further we assume that
(A6) There exists a symmetric diffusion process X_{t}^{x} which corresponds to the diffusion semigroup $P_{t} . x$ denotes the starting point.

Lemma 7 Assume that $(\mathcal{E}, \mathrm{D}(\mathcal{E}))$ is irreducible and $(A 4),(A 5),(A 6)$ hold. Then
(1) There exists a unique ground state Ω satisfying (A3).
(2) Ω has the following estimate.

$$
\begin{equation*}
\|\Omega\|_{L^{4}} \leq\left\|e^{t_{\alpha}\left(V_{-}+\lambda_{0}(V)\right)}\right\|_{L^{8}} \tag{26}
\end{equation*}
$$

where $t_{\alpha}=\frac{\alpha \log 13}{4}$.
We will apply the following to the case where $\varphi=\Omega$.

Lemma 8 Let $\varphi \in L^{2}(X, m)$ be a positive measurable function. Let u be a measurable function on X such that

$$
\begin{equation*}
\int_{X}(u(x) \varphi(x))^{2} \log (u(x) \varphi(x))^{2} d m(x) \leq C, \tag{27}
\end{equation*}
$$

where C is a positive number. Then it holds that for any $\eta>0, S>1, R>\eta^{-1}$

$$
\begin{align*}
& \int_{\{|u| \geq R\}} u^{2}(x) d m_{\varphi}(x) d m \\
& \quad \leq \frac{1}{2}\left(\frac{1}{\log (R \eta)}+\frac{1}{\log S}\right)\left(C+e^{-1}\right)+S^{2} m(\varphi \leq \eta) \tag{28}
\end{align*}
$$

We will apply the following by replacing m by m_{Ω}.

Lemma 9 Let $u \in L^{2}(X, m)$ and assume that $\langle u\rangle_{m}=0$. Let $R>0$ and ψ_{R} be the function such that $\psi_{R}(t)=t$ for $-R \leq t \leq R, \psi_{R}(t)=R$ for $t \geq R$ and $\psi_{R}(t)=-R$ for $t \leq-R$. Then it holds that

$$
\begin{equation*}
\|u\|_{L^{2}(m)}^{2} \leq\left\|\psi_{R}(u)-\left\langle\psi_{R}(u)\right\rangle_{m}\right\|_{L^{2}(m)}^{2}+\left(1+\frac{1}{R^{2}}\right) \int_{\{|u|>R\}}\left(u^{2}-R^{2}\right) d m \tag{29}
\end{equation*}
$$

For any $0<r<1$, let

$$
\begin{align*}
f_{r}(\varepsilon, \delta, K) \stackrel{\text { def }}{=} & K^{4}\left\{r^{-1}(1+r)\left(1+r^{-1}\right) \xi(\delta)\left\|V-\lambda_{0}(V)\right\|_{L^{2}} \cdot m(\Omega \leq \varepsilon)^{1 / 2}\right. \\
& \left.+(1+r) \delta+\left(1+r^{-1}\right) m(\Omega \leq \varepsilon)\right\}+4 C_{V} m(\Omega \geq K)^{1 / 2} \tag{30}
\end{align*}
$$

Note that $\zeta_{\Omega}(r, \varepsilon, K, \delta) \leq f_{r}(\varepsilon, \delta, K)$ and

$$
\begin{equation*}
\inf \left\{f_{r}(\varepsilon, \delta, K) \mid \varepsilon>0, \delta>0, K>0\right\}=0 \tag{31}
\end{equation*}
$$

Let

$$
\begin{align*}
& h_{r}(S, \eta, R, \varepsilon, \delta, K) \\
& \quad \stackrel{\text { def }}{=} 1-f_{r}(\varepsilon, \delta, K) R^{2}-\left(1+\frac{1}{R^{2}}\right)\left\{\frac{1}{2}\left(\frac{1}{\log (R \eta)}+\frac{1}{\log S}\right)\left(\alpha \lambda_{0}(V)+e^{-1}\right)+S^{2} m(\Omega \leq \eta)\right\} . \tag{32}
\end{align*}
$$

Then

$$
\begin{equation*}
\sup \left\{h_{r}(S, \eta, R, \varepsilon, \delta, K) \mid S>1, \eta>0, R>\eta^{-1}, \varepsilon>0, \delta>0, K>0\right\}>0 \tag{33}
\end{equation*}
$$

Theorem 10 (Main estimate) Recall the standing assumptions (A1)-(A5). Then let $\tilde{\lambda}_{V}=\sup \left\{\left.\frac{h_{r}(S, \eta, R, \varepsilon, \delta, K)}{k_{r}(S, \eta, R, \varepsilon, \delta, K)} \right\rvert\, 0<r<1, S>1, \eta>0, R>\eta^{-1}, \varepsilon>0, \delta>0, K>0\right\}$,
where

$$
\begin{equation*}
k_{r}(S, \eta, R, \varepsilon, \delta, K)=\frac{(1+r)^{2} \xi(\delta)}{\varepsilon^{2}} K^{4}+\frac{\alpha}{2}\left(1+\frac{1}{R^{2}}\right)\left(\frac{1}{\log (R \eta)}+\frac{1}{\log S}\right) \tag{35}
\end{equation*}
$$

Then it holds that

$$
\begin{equation*}
\lambda_{V} \geq \tilde{\lambda}_{V}>0 \tag{36}
\end{equation*}
$$

Proof of Main theorem:

Let $u \in \mathcal{D}_{\Omega}$ be a function such that $\|u\|_{L^{2}\left(m_{\Omega}\right)}=1,\langle u\rangle_{m_{\Omega}}=0$. By Lemma 4 , $u \Omega \in \mathrm{D}\left(\mathcal{E}_{V}\right)$ and

$$
\begin{equation*}
\mathcal{E}_{V}(u \Omega, u \Omega)=\int_{X} \Gamma(u) d m_{\Omega}+\lambda_{0}(V)\|u \Omega\|_{L^{2}(m)}^{2} . \tag{37}
\end{equation*}
$$

We write $\lambda=\mathcal{E}_{\Omega}(u, u)$ for simplicity. By the LSI (25), we have

$$
\begin{equation*}
\int_{X}(u \Omega)^{2} \log \left((u \Omega)^{2}\right) d m \leq \alpha\left(\lambda+\lambda_{0}(V)\right) . \tag{38}
\end{equation*}
$$

Hence by Lemma 8 for $\eta>0, S>1$ and $R>\eta^{-1}$,

$$
\begin{equation*}
\int_{\{|u| \geq R\}} u^{2}(x) d m_{\Omega} \leq \frac{1}{2}\left(\frac{1}{\log (R \eta)}+\frac{1}{\log S}\right)\left(\alpha\left(\lambda+\lambda_{0}(V)\right)+e^{-1}\right)+S^{2} m(\Omega \leq \eta) . \tag{39}
\end{equation*}
$$

Let ψ_{R} be the function which was defined in Lemma 9. We have

$$
\begin{align*}
1 \leq & \left\|\psi_{R}(u)-\left\langle\psi_{R}(u)\right\rangle_{m_{\Omega}}\right\|_{L^{2}\left(m_{\Omega}\right)}^{2}+\left(1+\frac{1}{R^{2}}\right) \int_{\{|u|>R\}} u^{2} d m_{\Omega}(\text { by Lemma } 9) \\
\leq & \left.\frac{\xi(\delta) K^{4}}{\varepsilon^{2}}(1+r)^{2} \mathcal{E}_{\Omega}\left(\psi_{R}\right)(u), \psi_{R}(u)\right)+f_{r}(\varepsilon, \delta, K) R^{2} \\
& +\left(1+\frac{1}{R^{2}}\right)\left\{\frac{1}{2}\left(\frac{1}{\log (R \eta)}+\frac{1}{\log S}\right) \cdot\left(\alpha\left(\lambda+\lambda_{0}(V)\right)+e^{-1}\right)+S^{2} m(\Omega \leq \eta)\right\} \\
& (\text { by Lemma } 5,(39)) \\
\leq & k_{r}(S, \eta, R, \varepsilon, \delta, K) \lambda+1-h_{r}(S, \eta, R, \varepsilon, \delta, K) . \tag{40}
\end{align*}
$$

Note: To obtain $\lambda_{V}>0$, it suffices to show that for some $0 \leq b<1$ and $a>0 R>0$, it holds that for any $u \in \mathcal{D}_{\Omega}$ with $\langle u\rangle_{m_{\Omega}}=0$ and $\|u\|_{L^{2}\left(m_{\Omega}\right)}=1$,

$$
\begin{equation*}
\int_{|u| \geq R}\left(u^{2}-R^{2}\right) d m_{\Omega} \leq a \mathcal{E}_{\Omega}(u, u)+b . \tag{41}
\end{equation*}
$$

Note that this inequality is necessary condition for $\lambda_{V}>0$, that is the validity of the Poincare inequality for \mathcal{E}_{Ω}. This might be a infinitesimal version of Hino's condition (I): There exists $t>0$ and $K>0$ such that

$$
\sup \left\{\left\|\left(T_{t}^{\Omega} u-K\right)_{+}\right\|_{L^{2}} \mid\|u\|_{L^{2}\left(m_{\Omega}\right)}=1\right\}<1
$$

$\S 4$ Schrödinger operator on Wiener space

(X, H, m) : an abstract Wiener space.

$$
\begin{align*}
\mathcal{E}(u, u) & \stackrel{\text { def }}{=} \int_{X}|D u(x)|_{H}^{2} d \mu(x), \tag{42}\\
\mathbf{D}(\mathcal{E}) & \stackrel{\text { def }}{=} \mathbb{D}_{2}^{1}(X) \tag{43}
\end{align*}
$$

L : generator of \mathcal{E} (=Ornstein-Uhlenbeck operator)
The following inequalities hold.
(1) Gross' LSI

$$
\int_{X} u^{2} \log \left(u^{2} /\|u\|_{L^{2}(m)}^{2}\right) d m \leq 2 \mathcal{E}(u, u)
$$

(2) Poincaré inequality

$$
\int_{X}\left(u-\langle u\rangle_{m}\right)^{2} d m \leq \mathcal{E}(u, u)
$$

Let $U \in L^{2}(m)$. Assume
(A7) It holds that $U \in L^{2}(m)$ and for any $p>1$,

$$
\begin{equation*}
E\left[e^{p U_{-}}\right]<\infty . \tag{44}
\end{equation*}
$$

Then we can prove that
Proposition 11 For $\rho>1$ and any $u \in \mathcal{D}$, it holds that

$$
\begin{equation*}
\int_{X} u^{2} \log \left(u^{2} /\|u\|_{L^{2}(m)}^{2}\right) d m \leq \frac{2 \rho}{\rho-1} \mathcal{E}_{V}(u, u) \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
V(x)=U(x)+\log \left\|e^{-U}\right\|_{L^{2 \rho}} . \tag{46}
\end{equation*}
$$

We can apply main theorem to the operator L_{V}.
Note that $\lambda_{V}=\lambda_{1}(U)-\lambda_{0}(U)$.
Lemma 12 Let $0<r<1$ and $p>0$. Suppose that for some $q>\max \left(p, \frac{1}{2}\right) \log (16 p+1)$,

$$
\begin{equation*}
E\left[e^{q V}\right]<\infty . \tag{47}
\end{equation*}
$$

Then it holds that

$$
\begin{equation*}
\left\|\Omega^{-1}\right\|_{L^{p}}^{p} \leq \gamma_{p, q, r}, \tag{48}
\end{equation*}
$$

where $t_{p, q}=\min \left(q, \frac{q}{2 p}\right)$ and

$$
\begin{equation*}
\gamma_{p, q, r}=\left\{(1-r)^{1 / 2} D_{r, V}^{4}\right\}^{-p}\left\{\frac{e^{2 t_{p, q}}-1}{e^{2 t_{p, q}}-1-16 p}\right\}^{1 / 4} \cdot \exp \left(\frac{4 p F^{-1}\left(D_{r, V}\right)^{2}}{e^{2 t_{p, q}}-1}\right)\left\|e^{V-\lambda_{0}(V)}\right\|_{L^{q}}^{p t_{p, q}} \tag{49}
\end{equation*}
$$

$F(x)=\sqrt{\frac{2}{\pi}} \int_{x}^{\infty} e^{-\frac{u^{2}}{2}} d u$

$$
\begin{align*}
D_{r, V} & =1-\sqrt{C_{r, V}-1}=1-\sqrt{\frac{\left\|e^{t_{\alpha}\left(V-+\lambda_{0}(V)\right)}\right\|_{L^{8}}^{4}-1}{\left\|e^{t_{\alpha}\left(V_{-}+\lambda_{0}(V)\right)}\right\|_{L^{8}}^{4}-1+r^{2}}} \tag{51}\\
C_{r, V} & =\left(1+r^{-2}\left(C_{V}^{2}-1\right)\right)^{-1} .
\end{align*}
$$

Corollary 13 Let $p \geq 1 / 2$ and $q>p \log (16 p+1)$. Assume that $E\left[e^{q U}\right]<\infty$. Then

$$
\begin{align*}
\lambda_{U} \geq & \frac{5}{8}\left[\frac{e}{2}+C_{p, q} \exp \left(512 \lambda_{0}(V)\left(1+\frac{2}{p}\right)\left(1+\frac{5}{p}\right)\right)\left(\frac{3}{2}\left\|V-\lambda_{0}(V)\right\|_{L^{2}}+1\right)^{4 / p}\right. \\
& \left.\left.\cdot\left\|e^{t_{4}\left(V-+\lambda_{0}(V)\right)-}\right\|_{L^{8}}^{2\left(1+\frac{4}{p}\right)\left(84+\frac{1}{e^{q / p}-1}\right.}\right)\left\|e^{V-\lambda_{0}(V)}\right\|_{L^{q}}^{\frac{5 q}{p}\left(1+\frac{4}{p}\right)}\right]^{-1} \tag{53}
\end{align*}
$$

where

$$
\begin{align*}
C_{p, q}= & \frac{9}{4} \cdot 2^{5\left(1+\frac{4}{p}\right)\left(25+\frac{64}{e^{q / p}-1}\right)} \cdot 2^{\frac{32}{p}\left(\frac{5}{p}+1\right)}(48)^{4 / p}(64)^{4+\frac{16}{p}} \exp \left(128\left(1+\frac{2}{p}\right)\left(1+\frac{5}{p}\right) e^{-1}\right) \\
& \cdot\left(\frac{e^{q / p}-1}{e^{q / p}-1-16 p}\right)^{\frac{5}{2 p}\left(1+\frac{4}{p}\right)} \tag{54}
\end{align*}
$$

and $V(x)=U(x)+\log \left\|e^{-U}\right\|_{L^{4}}$ and $\lambda_{0}(V)$ has the upper bound

$$
\begin{equation*}
\lambda_{0}(V) \leq\|U+\log \| e^{-U}\left\|_{L^{4}}\right\|_{L^{1}} \tag{55}
\end{equation*}
$$

$\S 5$ Remarks on $-\Delta+V$ on $L^{2}\left(\mathbb{R}^{n}, d x\right)$
Let

$$
\begin{align*}
A_{V} & =-\Delta+V \tag{56}\\
V & \stackrel{\text { def }}{=} \frac{|x|^{2}}{4}-\frac{n}{2}+U(x) \tag{57}
\end{align*}
$$

Let $\varphi_{0}=\frac{1}{(2 \pi)^{n / 4}} e^{-\frac{|x|^{2}}{4}}$ and set $d m=\varphi_{0}^{2} d m$. Assume that
(A8) $U \in L^{p}(m)$ for some $p>2$ and $e^{U_{-}} \in L^{\infty-}(m)$.
Then A_{V} is essentially self-adjoint on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Let us consider the finite dimensional case, $X=\mathbb{R}^{n}, d m=\varphi_{0}^{2} d x$. Then $L=\Delta-x \cdot \nabla$.

Theorem $14 L_{U}=L-U$ and A_{V} are unitarily equivalent by the transformation

$$
T_{\varphi_{0}}: L^{2}\left(\mathbb{R}^{n}, d m\right) \rightarrow L^{2}\left(\mathbb{R}^{n}, d x\right)
$$

by $T_{\varphi_{0}} u=\varphi_{0} \cdot u$.
So we can apply our results to estimate the gap of spectrum of A_{V}.
(e.g. $-\Delta+|x|^{a}, a \geq 2$).

Let Ω, φ be the ground states of L_{U} and A_{V} respectively. Then

$$
\varphi=\varphi_{0} \Omega .
$$

NOTE (On relations integrability of Ω^{-1} and the growth order of V)
(1) Lemma 6 (4) and WKB approximation

Consider A_{V} on \mathbb{R}^{1}. Assume $V(x)=\frac{|x|^{2}}{4}+U(|x|)$ and $U(x) \geq|x|^{a}$, where $a>2$. Formally by the WKB approximation,

$$
\begin{align*}
\varphi(x) & \sim C \cdot\left(V(x)-\lambda_{0}(V)\right)^{-1 / 4} \exp (-W(x)) \quad(|x| \rightarrow \infty) \tag{58}\\
W(x) & =\int_{0}^{|x|}\left(\sqrt{V(t)}-\frac{\lambda_{0}(V)}{2 \sqrt{V(t)}}\right) d t \tag{59}
\end{align*}
$$

Then

$$
\begin{align*}
\Omega^{-1} & =\varphi_{0} \varphi^{-1} \\
& \sim C \cdot \exp \left(-\frac{x^{2}}{4}\right) \exp \left(\int_{0}^{|x|} \frac{t}{2} \sqrt{1+\frac{4}{t^{2}} U(t)} d t\right) \tag{60}
\end{align*}
$$

Note that there exists $0<C<1$ and for any $t>0$,

$$
\begin{equation*}
\frac{t}{2}+C_{1} \sqrt{U(t)} \leq \frac{t}{2} \sqrt{1+\frac{4}{t^{2}} U(t)} \leq \frac{t}{2}+\sqrt{U(t)} \tag{61}
\end{equation*}
$$

So

$$
\begin{equation*}
\log \Omega^{-1}(x) \sim \int_{0}^{|x|} \sqrt{U(t)} d t \tag{62}
\end{equation*}
$$

Thus if $U \in L^{p}(m)$, then $\log \Omega^{-1} \in L^{2 p-}(m)$.
(2) When $V(x)=|x|^{a}(a>2)$,

$$
\begin{equation*}
\varphi(x) \leq C_{1} \exp \left(-C_{2}|x|^{1+\frac{\alpha}{2}}\right) . \tag{63}
\end{equation*}
$$

So

$$
\begin{equation*}
\Omega(x)^{-1} \geq C_{1}^{-1} \varphi_{0}(x) \exp \left(-C_{2}|x|^{1+\frac{\alpha}{2}}\right) . \tag{64}
\end{equation*}
$$

This shows that $\Omega^{-1} \notin L^{p}(m)$ for any $p>0$.

§6 Stability Property of WPI under Connected Sum of State Spaces

- (X, \mathfrak{B}, m) a probability space
- $(\mathcal{E}, \mathrm{D}(\mathcal{E}))$ Dirichlet space on $L^{2}(X, m)$.
- Γ carré du champ

Proposition 15 Let $X_{1}, X_{2} \subset X$ and assume that $m\left(Y_{3}\right)>0$ where $Y_{3}=X_{1} \cap X_{2}$. Set $X_{3}=X_{1} \cup X_{2}$. Also assume that there exist functions $\xi_{i}(\cdot) \quad(i=1,2)$ on \mathbb{R}^{+}such that for any $u \in \mathrm{D}(\mathcal{E})$ it holds that

$$
\begin{equation*}
\left\|u-\frac{1}{m\left(X_{i}\right)} \int_{X_{i}} u d m\right\|_{L^{2}\left(X_{i}, m\right)}^{2} \leq \xi_{i}(\delta) \int_{X_{i}} \Gamma(u, u) d m+\delta\|u\|_{L^{\infty}\left(X_{i}\right)}^{2} . \tag{65}
\end{equation*}
$$

Then it holds that

$$
\begin{equation*}
\left\|u-\frac{1}{m\left(X_{3}\right)} \int_{X_{3}} u d m\right\|_{L^{2}\left(X_{3}\right)}^{2} \leq C_{1}(\delta) \int_{X_{3}} \Gamma(u, u) d m+C_{2}(\delta)\|u\|_{L^{\infty}\left(X_{3}\right)}^{2}, \tag{66}
\end{equation*}
$$

where

$$
\begin{align*}
C_{1}(\delta)= & m\left(X_{3}\right)^{-1}\left\{2 m\left(X_{1}\right) \xi_{1}(\delta)\left(4 m\left(Y_{2}\right) m\left(Y_{3}\right)^{-1}+1\right)\right. \\
& \left.+2 m\left(X_{2}\right) \xi_{2}(\delta)\left(4 m\left(Y_{1}\right) m\left(Y_{3}\right)^{-1}+1\right)\right\} \tag{67}\\
C_{2}(\delta)= & 2 \delta m\left(X_{3}\right)^{-1}\left\{m\left(X_{1}\right)\left(4 m\left(Y_{2}\right) m\left(Y_{3}\right)^{-1}+1\right)\right. \\
& \left.+m\left(X_{2}\right)\left(4 m\left(Y_{1}\right) m\left(Y_{3}\right)^{-1}+1\right)\right\} . \tag{68}
\end{align*}
$$

Let us apply Proposition 15 to a diffusion process on Wiener space. Let U be an connected open set in abstract Wiener space (B, H, μ). Let us consider the following bilinear form.

$$
\begin{equation*}
\mathcal{E}_{U}(u, u)=\int_{U}|D u(x)|^{2} d \mu \tag{69}
\end{equation*}
$$

where $u \in \mathfrak{F} C_{b}^{\infty}$ and $D u$ denotes the H-derivative of u. Kusuoka proved that this is a closable Markovian form. Let us consider the smallest closed extension Dirichlet form \mathcal{E}_{U} on $L^{2}(U, \mu)$. Then we have

Corollary 16 WPI holds for \mathcal{E}_{U}.

Remark 17 Let us consider a ball.

$$
B_{\varepsilon}(x):=\{z \in B \mid\|z-x\|<\varepsilon\} .
$$

On $B_{\varepsilon}(x)$, LSI and Poincare inequality holds for $\mathcal{E}_{B_{\varepsilon}(x)}$.

Remark 18 Kusuoka proved that WPI holds for H-connected domain U with a certain property. Also the domain of the Kusuoka's Dirichlet form is larger than the above. Our assumption is quite stronger than his and cannot be applied to loop space case!

References

[1] S. Aida, Logarithmic Sobolev Inequalities on Loop Spaces over compact Riemannian Manifolds, "Proceedings of the Fifth Gregynog Symposium, Stochastic Analysis and Applications", 1-19, edited by I.M. Davies, A. Truman and K.D. Elworthy, World Scientific, (1996).
[2] S. Aida, Differential Calculus on Path and Loop Spaces, II. Irreducibility of Dirichlet Forms on Loop Spaces, Bull. Sci. Math. 158, (1998), 635-666.
[3] S. Aida, Uniform Positivity Improving Property, Sobolev Inequality and Spectral Gaps, J. Funct. Anal. 158, (1998), 152-185
[4] S. Aida, Logarithmic derivatives of heat kernels and logarithmic Sobolev inequalities with unbounded diffusion coefficients on loop spaces, J. Funct. Anal. 174 No. 2 (2000), 430-477.
[5] S. Aida, On the irreducibility of Dirichlet forms on domains in infinite dimensional spaces, to appear in Osaka J. Math.
[6] S. Aida and B. K. Driver, Equivalence of heat kernel measure and pinned Wiener measure on loop group, to appear in C. R. Acad. Sci. Paris.
[7] B. K. Driver, Integration by parts and quasi-invariance for heat kernel measures on loop groups, J. Funct. Anal. 149 No. 2, (1997), 470-547.
[8] B. K. Driver and T. Lohrenz, Logarithmic Sobolev inequalities for pinned loop groups, J. Funct. Anal. 140 No. 2 (1996), 381-448.
[9] B. K. Driver and V. Srimurthy, Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups, to appear in The Annals of Probability.
[10] D. Feyel and A. S. Üstünel, The notion of convexity and concavity on Wiener space, J. Funct. Anal. 176 No. 2 (2000), no.2, 400-428.
[11] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
[12] L. Gross, Logarithmic Sobolev Inequalities on Loop Groups, J. Funct. Anal. 102 (1991), 268-313.
[13] L. Gross, Uniqueness of ground states for Schrödinger operators over loop groups, J. Funct. Anal. 112 (1993), 373-441.
[14] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms, Varenna, 1992, Lecture Notes in Math. (G. DellAntonio, U. Mosco,eds.), 1563, Springer-Verlag, 54-88.
[15] F-Z. Gong and Z-M. Ma, The log-Sobolev Inequality on Loop Space Over a Compact Riemannian Manifold, J. Funct. Anal. 157, (1998), 599-623.
[16] F-Z. Gong, M. Röckner and L. M. Wu, Poincaré inequality for weighted first order Sobolev spaces on loop spaces, Submitted, 2000.
[17] F-Z. Gong and L.M. Wu, Spectral gap of positive operators and applications, to appear in C. R. Acad. Sci. Paris.
[18] M. Hino, Exponential decay of positivity preserving semigroups on L^{p}, Osaka J. Math. 37, No. 3 (2000), 603-624.
[19] M. Hino, On short time asymptotic behavior of some symmetric diffusions on general state spaces, to appear in Potential Analysis.
[20] S. Kusuoka, Analysis on Wiener spaces, I, Nonlinear Maps, J. Funct. Anal. 98, (1991), 122-168.
[21] S. Kusuoka, Analysis on Wiener Spaces, II, Differential Forms, J. Funct. Anal. 103, (1992), 229-427.
[22] W. Kirsch and B. Simon, Comparison Theorem for the Gap of Schrödinger Operators, J. Funct. Anal. 75, 396-410, 1987.
[23] P. Malliavin, Hypoellipticity in infinite dimensions, Diffusion processes and related problems in analysis, Vol. I (Evanston, IL, 1989), Birkhäuser Boston, Boston, MA, 1990, 17-31.
[24] P. Mathieu, Quand l'inégalite log-Sobolev implique l'inégalite de trou spectral, Séminaire de Probabilités XXXII, 30-35, Lecture Notes in Math. 1686, SpringerVerlag, Berlin, 1998.
[25] P. Mathieu, On the law of the hitting time of a small set by a Markov process, preprint.
[26] M. Okada and K. Yabuta, An inequality for functions, Acta Sci. Math. 38 (1976), 145-148.
[27] M. Röckner and F-Y. Wang, Weak Poincaré inequalities and L^{2}-Convergence Rates of Markov Semigroups, Preprint, 2000.
[28] I. Shigekawa, A resume in the annual meeting of the Mathematical Society of Japan, 1992, Fukuoka.
[29] B. Simon, Ergodic semigroups of positivity preserving self-adjoint operators, J. Funct. Anal. 9 (1972), 335-339.
[30] B. Simon and R. Hoegh-Krohn, Hypercontractive semigroups and two dimensional self-coupled Bose fields, J. Funct. Anal. 9 (1972), 121-180.
[31] F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probability Theory and Relat. Fields 109 (1997), 417-424.
[32] L. M. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1994), 202-231.
[33] L. M. Wu, Uniformly integrable operators and large devitaions for Markov processes, J. Funct. Anal. 172 (2000), 301-376.

[^0]: ${ }^{1}$ to appear in J. Funct. Anal.
 ${ }^{2}$ The latest version is in "http://www.sigmath.es.osaka-u.ac.jp/~aida/paper/paper.html"

