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§1 Setting

Notations

(X,B,m): Probability space

dmϕ = ϕ2dm: Weighted measure (ϕ ∈ L2(m)).

V ∈ L1(X,m).

〈u〉m =
∫

X
udm

In this section, we are working in more general situations than hyperbounded setting.

We assume (A1) (A2) on (E ,D(E)).

(A1) (conservativeness and derivation property)

Pt : a conservative L2-Markovian symmetric semigroup on L2(m).

(E ,D) : the corresponding Dirichlet form.

Then E(1, 1) = 0 holds.

For any ϕ which is a C1-function on Rn with bounded derivative and {ui}n
i=1 ∈ D(E),

it holds that

Γ(ϕ(u1, . . . , un), ϕ(u1, . . . , un))

=
n∑

i,j=1

Γ(ui, uj)∂iϕ(u1, . . . , un)∂jϕ(u1, . . . , un).

(1)

(A2) Let V±(x) = max(±V (x), 0). Then V+ ∈ L1(m) and there exist a ∈ (0, 1) and

b ∈ [0,∞) such that for all u ∈ D(E) ∩ L2(V+ ·m),
∫

X

V−u2dm ≤ a

{
E(u, u) +

∫

X

V+u
2dm

}
+ b‖u‖2

L2(m). (2)

Definition 1

D := D(E) ∩ L∞(X,m) (3)

EV (u, v) := E(u, v) +

∫

X

V uvdm (u, v ∈ D). (4)

1to appear in J. Funct. Anal.
2The latest version is in “ http://www.sigmath.es.osaka-u.ac.jp/˜aida/paper/paper.html”
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Theorem 2 (1) Under (A2), for any u ∈ D,

EV (u, u) ≥ −b‖u‖2
L2 .

(2) The closure of D with respect to EV + b‖ ‖L2 is D(E) ∩ L2(X, |V |m).

Definition 3 (Definition of Schrödinger operators) Let −LV be the semibounded

self-adjoint operator corresponding to EV with the domain D(E) ∩ L2(|V |m). We denote

the corresponding L2-semigroup by Tt. Let σ(−LV ) denote the spectral set and

λ0(V ) = inf σ(−LV ), (5)

λ1(V ) = inf (σ(−LV ) \ {λ0(V )}) . (6)

We are concerned with an estimate on λ1(V )− λ0(V ).

Further we assume

(A3) λ0(V ) is an simple eigenvalue and the corresponding eigenfunction is almost every-

where positive or negative.

We denote the eigenfunction(=ground state) by Ω such that ‖Ω‖L2(m) = 1 and Ω > 0

almost everywhere.

We will define an unitarily equivalent semigroup on L2(X,mΩ) by

T̂tf = Ω−1etλ0(V )Tt(fΩ).

Then T̂t is the symmetric contraction semigroup on L2(mΩ). Let (Ê , D̂) be the corre-

sponding closed form.

It follows from the definition that

D(Ê) =
{
vΩ−1 | v ∈ D(EV )

}
, (7)

Ê(u, u) = EV (uΩ, uΩ)− λ0(V )‖uΩ‖2
L2(m) (u ∈ D(Ê)). (8)

Let

DΩ
def
=

{
u ∈ D

∣∣∣
∫

X

Γ(u, u)dmΩ <∞
}
.

EΩ(u, u)
def
=

∫

X

Γ(u, u)dmΩ (u ∈ DΩ). (9)

Formally

Ê(u, u) = EΩ(u, u).

Concerning this formal identity, we have
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Lemma 4 (1) Ω ∈ D(E).

(2) (I. Shigekawa, 1992)
∫

X

Γ(Ω)

Ω2
dm =

∫

X

(V − λ0(V ))dm. (10)

(3) (EΩ,DΩ) is a densely defined Markovian symmetric form and the smallest closed

extension is (Ê ,D(Ê)).

Let

λV = inf

{
Ê(u, u)

∣∣∣∣∣ u ∈ D(Ê) and

∫

X

udmΩ = 0, ‖u‖L2(mω) = 1

}
. (11)

Then by the definition

λV = λ0(V )− λ1(V ). (12)

Also by Lemma 4 (3),

λV = inf

{
EΩ(u, u)

∣∣∣∣∣ u ∈ DΩ and

∫

X

udmΩ = 0, ‖u‖L2(mω) = 1

}
. (13)

§2 Weak Poincare inequality and some estimates on ground state

(WPI) [27] For any δ > 0, there exists a constant ξ(·) > 0 such that for any u ∈ D(E),

‖u− 〈u〉m‖2
L2(m) ≤ ξ(δ)E(u, u) + δ‖u‖2

∞. (14)

Lemma 5 Assume (14) holds. Let ϕ ∈ D(E) and assume that ϕ > 0 a.e. and Γ(ϕ)/ϕ2 ∈
L1(m). For u ∈ D(E) ∩ L∞(m), let

Eϕ(u, u) =

∫

X

Γ(u)dmϕ. (15)

Then for any r > 0, ε > 0, K > 0, δ > 0

‖u− 〈u〉mϕ‖2
L2(mϕ) ≤

ξ(δ)K4

ε2
(1 + r)2Eϕ(u, u) + ζϕ(r, ε,K, δ)‖u‖2

∞, (16)

where

ζϕ(r, ε,K, δ)

= K4
{

(1 + r)(1 +
1

r
)ξ(δ)

∫

{ϕ≤ε}

Γ(ϕ)

ϕ2
dm+ (1 + r)δ + (1 +

1

r
)m(ϕ ≤ ε)

}

+4

∫

{ϕ≥K}
ϕ2dm (17)

and

inf {ζϕ(r, ε,K, δ) | ε > 0, K > 0, δ > 0} = 0. (18)
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Lemma 6 (1) Let f be a C1-function on R with compact support. Then it holds that

∫

X

f(
1

Ω
)2 Γ(Ω)

Ω2
dm+ 2

∫

X

f(
1

Ω
)f ′(

1

Ω
)
Γ(Ω)

Ω3
dm =

∫

X

(V − λ0(V ))f(
1

Ω
)2dm. (19)

(2) For R ≥ 0,

∫

{Ω−1≥R}

Γ(Ω)

Ω2
dm ≤

∫

{Ω−1≥R}
(V − λ0(V ))dm (20)

(3) Assume (WPI) holds. Let

pΩ = m(Ω ≤ e−1), (21)

nΩ =

[
4pΩ

1− pΩ

]
+ 1, (22)

γΩ = e−nΩ , (23)

where [x] denotes the greatest integer less than or equal to x. Then for S ≥ exp(exp(nΩ))

and δ > 0,

m(Ω−1 ≥ S) ≤ 2(1− pΩ)−1

(
ξ(δ)γ−2

Ω (logS)−2

∫

{Ω−1≥SγΩ}

Γ(Ω)

Ω2
dm+ δ

)

≤ 2(1− pΩ)−1

(
ξ(δ)γ−2

Ω (logS)−2

∫

{Ω−1≥SγΩ}
|V − λ0(V )|dm+ δ

)
.(24)

(4) Assume that E satisfies Poincaré’s inequality and V ∈ Lp(m) (p > 1). Then

log Ω ∈ Lq(X,m) for 1 ≤ q < 2p and log Ω ∈ D(E).

Note When X = Lx(M), m = pinned measure and M is a hyperbolic space, we can

prove that for sufficietnly small δ,

ξ(δ) = C1 log(
C2

δ
) + C3.

§3 Main estimate
We already proved that if WPI holds for E , then it holds for EΩ too. So it suffices to

prove some Sobolev type (or weaker certain inequality) for EΩ to prove λV > 0. To this

end, we assume that

(A4) V ∈ L2(m) and for any p ≥ 1, ‖eV−‖Lp(m) <∞, where V−(x) = max(−V (x), 0)

and
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(A5) There exists α > 0 such that for any u ∈ D,
∫

X

u2 log(u2/‖u‖2
L2(m))dm ≤ αEV (u, u). (25)

Then note that (A4) and (A5) implies (A2). So we can define EV , LV , Tt.

Further we assume that

(A6) There exists a symmetric diffusion process Xx
t which corresponds to the diffusion

semigroup Pt. x denotes the starting point.

Lemma 7 Assume that (E ,D(E)) is irreducible and (A4), (A5), (A6) hold. Then

(1) There exists a unique ground state Ω satisfying (A3).

(2) Ω has the following estimate.

‖Ω‖L4 ≤ ‖etα(V−+λ0(V ))‖L8 , (26)

where tα = α log 13
4

.

We will apply the following to the case where ϕ = Ω.

Lemma 8 Let ϕ ∈ L2(X,m) be a positive measurable function. Let u be a measurable

function on X such that
∫

X

(u(x)ϕ(x))2 log (u(x)ϕ(x))2 dm(x) ≤ C, (27)

where C is a positive number. Then it holds that for any η > 0, S > 1, R > η−1

∫

{|u|≥R}
u2(x)dmϕ(x)dm

≤ 1

2

(
1

log(Rη)
+

1

logS

)
(C + e−1) + S2m(ϕ ≤ η) (28)

We will apply the following by replacing m by mΩ.

Lemma 9 Let u ∈ L2(X,m) and assume that 〈u〉m = 0. Let R > 0 and ψR be the

function such that ψR(t) = t for −R ≤ t ≤ R, ψR(t) = R for t ≥ R and ψR(t) = −R for

t ≤ −R. Then it holds that

‖u‖2
L2(m) ≤ ‖ψR(u)− 〈ψR(u)〉m‖2

L2(m) +

(
1 +

1

R2

)∫

{|u|>R}
(u2 −R2)dm. (29)
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For any 0 < r < 1, let

fr(ε, δ,K)
def
= K4

{
r−1(1 + r)(1 + r−1)ξ(δ)‖V − λ0(V )‖L2 ·m (Ω ≤ ε)1/2

+(1 + r)δ + (1 + r−1)m(Ω ≤ ε)

}
+ 4CVm(Ω ≥ K)1/2. (30)

Note that ζΩ(r, ε,K, δ) ≤ fr(ε, δ,K) and

inf {fr(ε, δ,K) | ε > 0, δ > 0, K > 0} = 0. (31)

Let

hr(S, η,R, ε, δ,K)

def
= 1− fr(ε, δ,K)R2 − (1 +

1

R2
)

{
1

2

(
1

log(Rη)
+

1

logS

)
(αλ0(V ) + e−1) + S2m(Ω ≤ η)

}
.

(32)

Then

sup
{
hr(S, η, R, ε, δ,K) | S > 1, η > 0, R > η−1, ε > 0, δ > 0, K > 0

}
> 0. (33)

Theorem 10 (Main estimate) Recall the standing assumptions (A1)–(A5). Then let

λ̃V = sup

{
hr(S, η, R, ε, δ,K)

kr(S, η,R, ε, δ,K)

∣∣∣∣∣ 0 < r < 1, S > 1, η > 0, R > η−1, ε > 0, δ > 0, K > 0

}
,

(34)

where

kr(S, η, R, ε, δ,K) =
(1 + r)2ξ(δ)

ε2
K4 +

α

2

(
1 +

1

R2

)(
1

log(Rη)
+

1

logS

)
. (35)

Then it holds that

λV ≥ λ̃V > 0. (36)
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Proof of Main theorem:

Let u ∈ DΩ be a function such that ‖u‖L2(mΩ) = 1, 〈u〉mΩ
= 0. By Lemma 4 ,

uΩ ∈ D(EV ) and

EV (uΩ, uΩ) =

∫

X

Γ(u)dmΩ + λ0(V )‖uΩ‖2
L2(m). (37)

We write λ = EΩ(u, u) for simplicity. By the LSI (25), we have

∫

X

(uΩ)2 log
(
(uΩ)2

)
dm ≤ α(λ+ λ0(V )). (38)

Hence by Lemma 8 for η > 0,S > 1 and R > η−1,

∫

{|u|≥R}
u2(x)dmΩ ≤ 1

2

(
1

log(Rη)
+

1

logS

) (
α(λ+ λ0(V )) + e−1

)
+ S2m(Ω ≤ η). (39)

Let ψR be the function which was defined in Lemma 9. We have

1 ≤ ‖ψR(u)− 〈ψR(u)〉mΩ
‖2

L2(mΩ) +

(
1 +

1

R2

)∫

{|u|>R}
u2dmΩ (by Lemma 9)

≤ ξ(δ)K4

ε2
(1 + r)2EΩ(ψR)(u), ψR(u)) + fr(ε, δ,K)R2

+(1 +
1

R2
)

{
1

2

(
1

log(Rη)
+

1

logS

)
· (α(λ+ λ0(V )) + e−1

)
+ S2m(Ω ≤ η)

}

(by Lemma 5, (39))

≤ kr(S, η, R, ε, δ,K)λ+ 1− hr(S, η, R, ε, δ,K). (40)

Note: To obtain λV > 0, it suffices to show that for some 0 ≤ b < 1 and a > 0 R > 0, it

holds that for any u ∈ DΩ with 〈u〉mΩ
= 0 and ‖u‖L2(mΩ) = 1,

∫

|u|≥R

(
u2 −R2

)
dmΩ ≤ aEΩ(u, u) + b. (41)

Note that this inequality is necessary condition for λV > 0, that is the validity of the

Poincare inequality for EΩ. This might be a infinitesimal version of Hino’s condition (I):

There exists t > 0 and K > 0 such that

sup
{‖(TΩ

t u−K)+‖L2 | ‖u‖L2(mΩ) = 1
}
< 1.

§4 Schrödinger operator on Wiener space
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(X,H,m): an abstract Wiener space.

E(u, u)
def
=

∫

X

|Du(x)|2Hdµ(x), (42)

D(E)
def
= D1

2(X) (43)

L : generator of E (=Ornstein-Uhlenbeck operator)

The following inequalities hold.

(1) Gross’ LSI ∫

X

u2 log(u2/‖u‖2
L2(m))dm ≤ 2E(u, u)

(2) Poincaré inequality

∫

X

(u− 〈u〉m)2dm ≤ E(u, u)

Let U ∈ L2(m). Assume

(A7) It holds that U ∈ L2(m) and for any p > 1,

E[epU− ] <∞. (44)

Then we can prove that

Proposition 11 For ρ > 1 and any u ∈ D, it holds that
∫

X

u2 log(u2/‖u‖2
L2(m))dm ≤ 2ρ

ρ− 1
EV (u, u), (45)

where

V (x) = U(x) + log ‖e−U‖L2ρ . (46)

We can apply main theorem to the operator LV .

Note that λV = λ1(U)− λ0(U).

Lemma 12 Let 0 < r < 1 and p > 0. Suppose that for some q > max(p, 1
2
) log(16p+1),

E[eqV ] <∞. (47)

Then it holds that

‖Ω−1‖p
Lp ≤ γp,q,r, (48)

8



where tp,q = min(q, q
2p

) and

γp,q,r =
{
(1− r)1/2D4

r,V

}−p
{

e2tp,q − 1

e2tp,q − 1− 16p

}1/4

· exp

(
4pF−1(Dr,V )2

e2tp,q − 1

)
‖eV−λ0(V )‖ptp,q

Lq

(49)

F (x) =

√
2

π

∫ ∞

x

e−
u2

2 du (50)

Dr,V = 1−
√
Cr,V − 1 = 1−

√
‖etα(V−+λ0(V ))‖4

L8 − 1

‖etα(V−+λ0(V ))‖4
L8 − 1 + r2

(51)

Cr,V =
(
1 + r−2(C2

V − 1)
)−1

. (52)

Corollary 13 Let p ≥ 1/2 and q > p log(16p+ 1). Assume that E[eqU ] <∞. Then

λU ≥ 5

8

[
e

2
+ Cp,q exp

(
512λ0(V )

(
1 +

2

p

)(
1 +

5

p

))(
3

2
‖V − λ0(V )‖L2 + 1

)4/p

·‖et4(V−+λ0(V ))−‖
2(1+ 4

p)
„

84+ 1

eq/p−1

«

L8 ‖eV−λ0(V )‖
5q
p

(1+ 4
p
)

Lq

]−1

, (53)

where

Cp,q =
9

4
· 25(1+ 4

p
)(25+ 64

eq/p−1
) · 2 32

p
( 5

p
+1)(48)4/p(64)4+ 16

p exp

(
128(1 +

2

p
)(1 +

5

p
)e−1

)

·
(

eq/p − 1

eq/p − 1− 16p

) 5
2p

(1+ 4
p
)

(54)

and V (x) = U(x) + log ‖e−U‖L4 and λ0(V ) has the upper bound

λ0(V ) ≤ ‖U + log ‖e−U‖L4‖L1 . (55)

§5 Remarks on −∆ + V on L2(Rn, dx)
Let

AV = −∆ + V, (56)

V
def
=

|x|2
4
− n

2
+ U(x). (57)

Let ϕ0 = 1
(2π)n/4 e

− |x|2
4 and set dm = ϕ2

0dm. Assume that

(A8) U ∈ Lp(m) for some p > 2 and eU− ∈ L∞−(m).

Then AV is essentially self-adjoint on C∞0 (Rn).

Let us consider the finite dimensional case, X = Rn, dm = ϕ2
0dx. Then L = ∆−x ·∇.
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Theorem 14 LU = L− U and AV are unitarily equivalent by the transformation

Tϕ0 : L2(Rn, dm) → L2(Rn, dx)

by Tϕ0u = ϕ0 · u.

So we can apply our results to estimate the gap of spectrum of AV .

(e.g. −∆ + |x|a, a ≥ 2).

Let Ω, ϕ be the ground states of LU and AV respectively. Then

ϕ = ϕ0Ω.

NOTE (On relations integrability of Ω−1 and the growth order of V )

(1) Lemma 6 (4) and WKB approximation

Consider AV on R1. Assume V (x) = |x|2
4

+ U(|x|) and U(x) ≥ |x|a, where a > 2.

Formally by the WKB approximation,

ϕ(x) ∼ C · (V (x)− λ0(V ))−1/4 exp (−W (x)) (|x| → ∞) (58)

W (x) =

∫ |x|

0

(√
V (t)− λ0(V )

2
√
V (t)

)
dt (59)

Then

Ω−1 = ϕ0ϕ
−1

∼ C · exp

(
−x

2

4

)
exp

(∫ |x|

0

t

2

√
1 +

4

t2
U(t)dt

)
(60)

Note that there exists 0 < C < 1 and for any t > 0,

t

2
+ C1

√
U(t) ≤ t

2

√
1 +

4

t2
U(t) ≤ t

2
+

√
U(t). (61)

So

log Ω−1(x) ∼
∫ |x|

0

√
U(t)dt. (62)

Thus if U ∈ Lp(m), then log Ω−1 ∈ L2p−(m).

(2) When V (x) = |x|a (a > 2),

ϕ(x) ≤ C1 exp
(−C2|x|1+α

2

)
. (63)
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So

Ω(x)−1 ≥ C−1
1 ϕ0(x) exp

(−C2|x|1+α
2

)
. (64)

This shows that Ω−1 /∈ Lp(m) for any p > 0.

§6 Stability Property of WPI under Connected Sum of State
Spaces

• (X,B,m) a probability space

• (E ,D(E)) Dirichlet space on L2(X,m).

• Γ carré du champ

Proposition 15 Let X1, X2 ⊂ X and assume that m(Y3) > 0 where Y3 = X1 ∩X2. Set

X3 = X1 ∪ X2. Also assume that there exist functions ξi(·) (i = 1, 2) on R+ such that

for any u ∈ D(E) it holds that

∥∥∥∥u−
1

m(Xi)

∫

Xi

udm

∥∥∥∥
2

L2(Xi,m)

≤ ξi(δ)

∫

Xi

Γ(u, u)dm+ δ‖u‖2
L∞(Xi)

. (65)

Then it holds that
∥∥∥∥u−

1

m(X3)

∫

X3

udm

∥∥∥∥
2

L2(X3)

≤ C1(δ)

∫

X3

Γ(u, u)dm+ C2(δ)‖u‖2
L∞(X3), (66)

where

C1(δ) = m(X3)
−1

{
2m(X1)ξ1(δ)(4m(Y2)m(Y3)

−1 + 1)

+2m(X2)ξ2(δ)(4m(Y1)m(Y3)
−1 + 1)

}
(67)

C2(δ) = 2δm(X3)
−1

{
m(X1)

(
4m(Y2)m(Y3)

−1 + 1
)

+m(X2)
(
4m(Y1)m(Y3)

−1 + 1
)}
. (68)

Let us apply Proposition 15 to a diffusion process on Wiener space. Let U be an

connected open set in abstract Wiener space (B,H, µ). Let us consider the following

bilinear form.

EU(u, u) =

∫

U

|Du(x)|2dµ, (69)

where u ∈ FC∞b and Du denotes the H-derivative of u. Kusuoka proved that this is a

closable Markovian form. Let us consider the smallest closed extension Dirichlet form EU

on L2(U, µ). Then we have
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Corollary 16 WPI holds for EU .

Remark 17 Let us consider a ball.

Bε(x) := {z ∈ B | ‖z − x‖ < ε}.

On Bε(x), LSI and Poincare inequality holds for EBε(x).

Remark 18 Kusuoka proved that WPI holds for H-connected domain U with a certain

property. Also the domain of the Kusuoka’s Dirichlet form is larger than the above. Our

assumption is quite stronger than his and cannot be applied to loop space case!
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