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1 Introduction

What is entropy? Entropy represents the uncertainty. The following definition is due to
Shannon.

Definition 1.1 (Shannon) Let us consider a finite set E = {A1, . . . , An}. A nonnega-
tive function P on E is called a probability distribution if

∑n
i=1 P (Ei) = 1. Then for this

probability distribution P , we define the entropy by

H(P ) = −
n∑

i=1

P (Ei) logP (Ei). (1.1)

Remark 1.2 We use the convention, 0 log 0 = 0. If we do not mention about the base of
the logarithmic function, we mean by log the natural logarithm, loge (nat). (log2...bit).
We define for a nonnegative sequence {pi}ni=1,

H(p1, . . . , pn) = −
n∑

i=1

pi log pi. (1.2)

Example 1.3 (1) Coin toss:
Ω = {H,T} and P1({H}) = P1({T}) = 1/2. We have H(P1) = log 2.

(2) Dice: Ω = {1, 2, 3, 4, 5, 6}. P2({i}) = 1/6. Then we have H(P2) = log 6.
(3) いかさあDice: Ω = {1, 2, 3, 4, 5, 6}. P3({1}) = 9/10, P3({i}) = 1/50 (2 ≤ i ≤ 6).

H(P3) = log

[(
10

9

)9/10

(50)1/10
]
≤ log

(
10

9
· 3
2

)
< log 2 = H(P1) (1.3)

In the above examples (1) and (2), the entropies are nothing but log(# all elementary events),
because all elementary events have equal probabilities.

The notion of entropy appeared in statistical mechanics also. Actually the discovery
is older than that of the information theory, of course. In statistical mechanics, S =
k logN (Boltzmann), where N stands for the number of all possible states

Theorem 1.4 Suppose that |E| = n. Then for any probability distribution P , we have

H(P ) ≤ log n. (1.4)

The equality holds if and only if P is the uniform distribution, namely, P (Ei) = 1/n for
all 1 ≤ i ≤ n.
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We refer to the proof of Theorem 3.1 in the next section for the proof of the above.
The notion of entropy is used to solve the following problem

Problem Here are eight gold coins and a balance. One of them is an imitation and
it is slightly lighter than the others. How many times do you need to use the balance to
identify the imitation?

In order to get into the detail, we prepare the notion of probability theory.

2 Basic notions in probability theory

In general, mathematically, a probability space is defined to be a measure space whose to-
tal measure equals 1. We refer the audiences to some text books for the precise definition.
We give very rough definition of it.

Definition 2.1 Let Ω be a set and F be a set of some subsets of Ω. A nonnegative
function P : F → R is called a probability neasure on P if P (Ω) = 1 holds. A function
on Ω is called a random variable.

For a random variable X, we can define the probability distribution µX on R. Below,
we consider the following cases only.

Definition 2.2 (1) X is a discrete type random variable, that is, X takes finite number
values {a1, . . . , an}. Then pi := P ({ω ∈ Ω | X(ω) = ai}) satisfies that

∑N
i=1 pi = 1.

The probability distribution µX on {a1, · · · , an} such that µX({ai}) = pi is called the
distribution of X.
(2) X is a continuous type random variable in the sense that there exists a nonnegative
function f(x) on R such that

P ({ω ∈ Ω | X(ω) ∈ [a, b]}) =
∫ b

a

f(x)dx

for any interval [a, b]. In this case, the distribution of X is the probability distribution µX

on R which has the density function f(x).

Definition 2.3 For a random variable X, we denote the expectation and the variance by
m and σ2 respectively. Namely,
(i) The case where X is a discrete type random variable and takes values a1, . . . , an:

m = E[X] =
n∑

i=1

aiP (X = ai), (2.1)

σ2 = E[(X −m)2]
n∑

i=1

(ai −m)2P (X = ai). (2.2)
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(ii) The case where X is a continuous type random variable which has the density function
f :

m = E[X] =

∫
R
xf(x)dx, (2.3)

σ2 = E[(X −m)2] =

∫
R
(x−m)2f(x)dx. (2.4)

Definition 2.4 (independence of random variables) Let {Xi}Ni=1 be random vari-
ables on a probability space (Ω,F , P ). N is a natural number or N = ∞. {Xi}Ni=1 are
said to be independent if for any {Xik}mk=1 ⊂ {Xi}Ni=1 (m ∈ N) and −∞ < ak < bk <∞,
the following hold:

P (Xi1 ∈ [a1, b1], · · · , Xim ∈ [am, bm]) =
m∏
i=1

P (Xik ∈ [ak, bk]). (2.5)

Definition 2.5 Let A = {α1, . . . , αn} ⊂ R and consider a probability distribution µ on A.
Let {Xi}∞i=1 be independent random variables and the probability distribution of Xi is equal
to µ for all i. Then {Xi} is said to be i.i.d. (=independent and identically distributed)
with the distribution µ.

3 Entropy and Law of large numbers (Shannon and

McMillan’s theorem)

Suppose we are given a set of numbers A = {1, . . . , N} ⊂ N. We call A the alphabet
and the element is called a letter. A finite sequence {x1, x2, . . . , xn} (xi ∈ A) is called a
sentense with the length n. The set of the sentenses whose length are n is the product
space An := {(ω1, . . . , ωn) | ωi ∈ A}. Let P be a probability distribution on A. We denote
P ({i}) = pi. In this section, we define the entropy of P by using the logarithmic function
to the base N :

H(P ) = −
N∑
i=1

P ({i}) logN P ({i}). (3.1)

We can prove that

Theorem 3.1 For any P , 0 ≤ H(P ) ≤ 1. The equality holds if and only if P is the
uniform distribution, that is, pi = 1/N for all i.

Lemma 3.2 Let f(x) = x log x. Then for any {mi}Ni=1 with mi ≥ 0 and
∑N

i=1mi = 1
and nonnegative sequence {xi}Ni=1, we have

f

(
N∑
i=1

mixi

)
≤

N∑
i=1

mif(xi). (3.2)

Furtheremore, whenmi > 0 for all i, the equality of (3.2) holds if and only if x1 = · · · = xn.
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Proof of Theorem 3.1. By Lemma 3.2, for any nonnegative probability distribution
{pi}, we have

f

(
1

N

N∑
i=1

pi

)
≤ 1

N

N∑
i=1

f(pi). (3.3)

Since
∑N

i=1 pi = 1, this implies

− 1

N
logN ≤ 1

N

N∑
i=1

pi log pi.

Thus, −
∑N

i=1 pi log pi ≤ logN and −
∑N

i=1 pi logN pi ≤ 1. By the last assertion of
Lemma 3.2, the equality holds iff pi = 1/N for all i. 2

Now we consider the following situation. Here is a (memoryless) information source
S which sends out the letter according to the probability distribution P at each time
independently. Namely, mathematically, we consider i.i.d. {Xi}∞i=1 with the distribution
P . We consider the problem coding the sequence of letters.

Basic observation: (1) Suppose that P ({1}) = 1 and P ({i}) = 0 (2 ≤ i ≤ N). Then
the random sequence Xi is, actually, a deterministic sequence {1, 1, . . . , 1, . . .}. Thus, the
variety of sequence is nothing. In this case, we do not need to send the all sequences.
Actually, if we get just the first letter, we immediately know that subsequent all letters
are 1. Namely, we can encode all sentenses, whatever the lentgh are, to just one letter.
Note that the entropy of P is 0.

(2) Suppose that N ≥ 2 and consider a probability measure such that P ({1}) =
P ({2}) = 1/2 and P ({i}) = 0 for 3 ≤ i ≤ N . Then note that the sequences contain
i(≥ 3) are not sent out. Thus the number of possible sequences under P whose lengths
are n are 2n. Note that the number of all sequences of alphabet A whose lengths are k is
Nk. Thus, if Nk ≥ 2n(⇐⇒ k

n
≥ logN 2 = H(P )), then all possible sentences whose lengths

are n can be encoded into the sentenses whose lengths are k(≤ n). Also the decode is
also possible. More precisely, we can prove the following claim.

Claim If
k

n
≥ H(P ), then there exists an encoder φ : An → Ak and a decorder ψ :

Ak → An such that

P
(
ψ(φ(X1, . . . , Xn)) ̸= (X1, . . . , Xn)

)
= 0. (3.4)

The probability P
(
ψ(φ(X1, . . . , Xn)) ̸= (X1, . . . , Xn)

)
is called the error probability.

For general P , we can prove the following theorem.

Theorem 3.3 (Shannon and McMillan) Take a positive number R > H(P ). For any
ε > 0, there exists M ∈ N such that for all n ≥ M and k satisfying that k

n
≥ R, there

exists φ : An → Ak and ψ : Ak → An such that

P
(
ψ(φ(X1, . . . , Xn)) ̸= (X1, . . . , Xn)

)
< ε. (3.5)
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We need the following estimates for the proof of the above theorem.

Lemma 3.4 Let {Zi}∞i=1 be i.i.d. Suppose that E[|Zi|] <∞ and E[|Zi|2] <∞. Then

P

(∣∣∣∣Z1 + · · ·Zn

n
−m

∣∣∣∣ ≥ δ

)
≤ σ

nδ2
, (3.6)

where m = E[Zi], σ = E[(Zi −m)2].

This lemma immediately implies the follwoing the weak law of large numbers.

Theorem 3.5 Assume the same assumption on {Zi}. Then

lim
n→∞

P

(∣∣∣∣Z1 + · · ·Zn

n
−m

∣∣∣∣ ≥ δ

)
= 0. (3.7)

Proof of Theorem 3.3 Take n ∈ N. The probability distribution of the i.i.d. subse-
quence {Xi}ni=1 is the probability distribution Pn on An such that for any {ai}ni=1,

Pn ({ω1 = a1, . . . , ωn = an}) =
n∏

i=1

P ({ai}) . (3.8)

Let us consider the random variable on An, Zi(ω) = − logN P ({ωi}). Then {Zi}ni=1 are
i.i.d. and the expectation and the variance are finite. In fact, we have

m = E[Zi] = −
n∑

i=1

P ({ωi}) logn P ({ωi}) = H(P )

σ = E[(Zi − E[Zi])
2] =

n∑
i=1

(logN pi)
2 pi −H(P )2. (3.9)

Take δ > 0 such that R > H(P ) + δ. By Lemma 3.4,

Pn

(
1

n

n∑
i=1

(− logN P ({ωi})) ≥ H(P ) + δ

)
≤ σ

nδ2
. (3.10)

Hence, for any ε > 0, there exists M ∈ N such that

Pn

(
1

n

n∑
i=1

(− logN P ({ωi})) ≥ H(P ) + δ

)
≤ ε for all n ≥M. (3.11)

Noting {
(ω1, . . . , ωn)

∣∣∣ 1
n

n∑
i=1

(− logN P ({ωi})) < H(P ) + δ

}

=

{
(ω1, . . . , ωn)

∣∣∣ n∏
i=1

P ({ωi}) > N−n(H(P )+δ)

}

⊂

{
(ω1, . . . , ωn)

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

}
=: Sn, (3.12)
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by (3.11), we have, for n ≥M ,

P ((X1, . . . , Xn) ∈ Sn)

= Pn

({
(ω1 . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

})

≥ P

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−n(H(P )+δ)

})
≥ 1− ε (3.13)

On the other hand, we have

1 = Pn

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

})

+P

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) < N−nR

})
≥ |Sn|N−nR. (3.14)

Consequently we have
|Sn| ≤ NnR. (3.15)

By this estimate, if k ≥ nR, then, there exists a injective map ϕ : Sn → Ak and a map
ψ : Ak → Sn such that

ψ(ϕ(ω1, . . . , ωn)) = (ω1, . . . , ωn) for (ω1, . . . , ωn) ∈ Sn.

By taking a map φ : An → Ak which satisfies φ|Sn = ϕ, we have

P (ψ(φ(X1, . . . , Xn)) ̸= (X1, . . . , Xn)) ≤ P ((X1, . . . , Xn) /∈ Sn) ≤ ε. (3.16)

This completes the proof. 2

4 Entropy and central limit theorem

Let {Xi}∞i=1 be i.i.d. such that E[Xi] = 0 and E[X2
i ] = 1. Let

Sn =
X1 + · · ·Xn√

n
.

Then we have

Theorem 4.1 (Central limit theorem=CLT) For any −∞ < a < b <∞,

lim
n→∞

P (Sn ∈ [a, b]) =

∫ b

a

1√
2π
e−

x2

2 dx. (4.1)
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The probability distribution whose density is G(x) = 1√
2π
e−

x2

2 dx is called a normal

distribution with mean 0 and variance 1 and it is denoted by N(0, 1). A standard proof
of CLT is the proof using the characteristic function of Sn, E[e

−1tSn ]. In this section, we
show a proof using the entropy of probability distributions.

Below, we assume

Assumption 4.2 The distribution of Xi has the density function φ, namely,

P (Xi ∈ [a, b]) =

∫ b

a

φ(x)dx.

In the previous sections, we define the entropy for the discrete type probability distribu-
tion. For the distribution P which has the density f(x), and a random variable X whose
distribution is P , we define the entropy H and Fisher’s information L by

H(P ) = H(X) = −
∫
R
f(x) log f(x)dx, (4.2)

L(P ) = L(X) =

∫
R

f ′(x)2

f(x)
dx. (4.3)

The following hold.

Theorem 4.3 (1) If random variables X and Y have the density functions f and g

respectively then a(X + Y ) (a > 0) has the density function
1

a

∫
R
f
(x
a
− y
)
g(y)dy

(2) (Gibbs’s lemma) Let f(x) be a density of a probability whose mean 0 and the variance
is 1, that is, ∫

R
xf(x)dx = 0, (4.4)∫

R
x2f(x) = 1. (4.5)

Then we have,
0 ≤ H(f) ≤ H(G). (4.6)

The equality holds iff f(x) = G(x).
(3) (Shannon-Stam’s inequality) Let X, Y be independent random variables whose density
functions satisfy (4.4) and (4.5). Then for a, b ∈ R with a2 + b2 = 1, we have

a2H(X) + b2H(Y ) ≤ H(aX + bY ). (4.7)

The equality holds iff the laws of X and Y are N(0, 1).
(4) (Fisher information inequality) Let X, Y be independent random variables whose
density functions satisfy (4.4) and (4.5). Then for a, b ∈ R with a2 + b2 = 1,

(a+ b)2L(X + Y ) ≤ a2L(X) + b2L(Y ). (4.8)
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(5) (Csiszár-Kullback-Pinsker) For a probability density function f , we have(∫
R
|f(x)−G(x)|dx

)2

≤ 2 (H(G)−H(f)) (4.9)

“Proof” (2) is proved by Jensen’s inequality. (4) implies (3). By (1), Sn Sn has the
density function, say, fn(x). By (4),

L(fn) ≤ L(G) =
1

4
. (4.10)

Also, by (4.7),

H(Sn) ≤ H(Sn+1) ≤ H(G)(=
1

2
(1 + log(2π))) for all n (4.11)

By (4.9), limn→∞ fn(x) = f(x) exists for all x.

5 Boltzmann’s H-theorem, Markov chain and entropy

Kinetic theory of rarefied gases:
(vix(t), v

i
y(t), v

i
z(t)) :the velocity of the i-th molecule (1 ≤ i ≤ N). N denotes the num-

ber of mlecules. The velocities vi(t) = (v1x(t), v
i
y(t), v

i
z(t)) obey Newton’s equation of mo-

tion, but N is very big and it is almost meaningless to know each behavior of vi(t). Boltz-
mann considered the probability distribution of the velocity, say, ft(vx, vy, vz)dvxdvydvz
and derived the following his H-theorem:

Theorem 5.1 (Boltzmann) Let

H(t) = −
∫
R3

ft(vx, vy, vz) log ft(vx, vy, vz)dvxdvydvz.

Then
d

dt
H(t) ≥ 0.

Remark 5.2 (1) In statistical mechanics, the entropy is nothing but kH(t), where k is
the Boltzmann’s constant (=1.38× 10−23J ·K−1). Therefore, the above theorem implies
that the entropy incraeses.
(2) Some people raised questions about the H-theorem.

(i) Newton’s equation of motion for the particles x(t) = (xi(t))
N
i=1 moving in a poten-

tial U reads as follows:

mi
d2

dt2
xi(t) = −∇U(x(t)) (5.1)

xi(0) = xi,0. (5.2)

ẋi(0) = vi. (5.3)
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The time reversed curve x(−t) is the solution with initial velocity −vi. Clearly, it is
impossible that both entropy of {x(t)} and {x(−t)} increase. This is a contradiction.

(ii) Poincaré’s recurrence theorem:
The reason is in the statistical treatment.

From now on, we consider stochastic dynamics which is called Markov chains and
prove that the entropy increases.

Example 5.3 There is a datum on the weather forecast in some local area.
today tomorrow
fine fine weather ...2

3

fine rain............1
3

rain fine............1
2

fine rain............1
2

Today(=0-th day)is fine, then how much is the probability that the n-th day is also
fine?

Solution:
Let pk be the probability that the k-th day is fine and set qk = 1 − pk, that is the

probability that k-th day is rainy day. Then (pk, qk) satisfies the following 漸化式：

(pk, qk) = (pk−1, qk−1)

(
1
2

1
2

2
3

1
3

)
. (5.4)

So we obtain

(pk, qk) = (1, 0)

(
1
2

1
2

2
3

1
3

)k

.

Definition 5.4 Let E = {S1, . . . , SN} be a finite set. E is called a state space. We
consider a random motion of a particle {x(n)}n=0,1,2,... on S. Let {pij}i,j∈E be nonnegative
numbers satisfying that

N∑
j=1

pij = 1 for all i ∈ E. (5.5)

pij denotes the probability that the particle moves from Si to Sj. If the probability that
the particle locates at Si is πi (i ∈ E) at the time n, then the probability that the particle
locates at Sj at the time n + 1 is

∑N
i=1 πipij. That is, if the initial distribution of the

particle is π(0) = (π1, . . . , πN), then the time t distribution π(n) = (π1(n), . . . , πN(n)) is
determined by

π(n) = π(0)P n, (5.6)

where P denotes the n×n matrix whose (i, j)-element is pij. Below, we denote by pnij the
(i, j)-element of P n.

We prove the following.
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Theorem 5.5 Assume that

(A1)
N∑
i=1

pij = 1 for all 1 ≤ j ≤ N .

(A2) There exists n0 ∈ N such that pn0
ij > 0 for all i, j ∈ S.

Then for any initial distribution π, we have

lim
n→∞

π(n)i =
1

N
. for all 1 ≤ i ≤ N. (5.7)

Note that (π(n)i)
N
i=1 = π(n) = πP n.

(A1) holds if pij = pji for all i, j ∈ E. This theorem can be proved by using the
entropy of π(n). Recall

H(π) = −
N∑
i=1

πi log πi.

Lemma 5.6 (1) Assume (A1). Then for any π and n ∈ N ∪ {0}, H(πP n+1) ≥ H(πP n)
for all n ∈ N.
(2) (Irreducibility of the Markov chain) Assume (A1) and (A2). Then for any π ̸=
(1/N, . . . , 1/N) and for all n ≥ n0, it holds that

H(πP n) > H(π). (5.8)

Proof. (1) It suffices to prove the case n = 0.

H(πP ) = −
N∑
i=1

(πP )i log (πP )i

= −
N∑
i=1

(
N∑
k=1

πkpki

)
log

(
N∑
k=1

πkpki

)
. (5.9)

Since
∑N

k=1 pki = 1, by Lemma 3.2,(
N∑
k=1

πkpki

)
log

(
N∑
k=1

πkpki

)
≤

N∑
k=1

pkiπk log πk. (5.10)

(5.9) and (5.10) implies H(πP ) ≥ H(π). Now we consider (2). It is obvious that p
(n)
ij > 0

for any n ≥ n0 and any i, j. By noting this, (2) is proved by the same method and by the
last assertion of Lemma 3.2. 2

By using this lemma, we prove Theorem 5.5.
Proof of Theorem 5.5 We prove that limn→∞H(π(n)) = logN(= H(1/N, . . . , 1/N)).
Since π(n) moves in a bounded subset in RN , there exist the accumulation points. That is,
there exist x = (x1, . . . , xN) and a subsequence {π(n(k))}∞k=1 such that limk→∞ π(n(k)) =
x. x is also a probability on E and satisfies that H(x) = limk→∞H(π(n(k))). Since
H(xP n0) = limk→∞H(π(n(k) + n0)) and {H(π(n))}n is an increasing sequence, H(x) =
H(xP n0). By Lemma 5.6 (2), we have x = (1/N, . . . , 1/N). This completes the proof. 2
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