
Probability and Entropy ∗

Shigeki Aida

1 Introduction

Suppose we are given a set of numbers A = {1, . . . , N} ⊂ N. We call A the alphabet and
we call each element of A a letter. A finite sequence {ω1, ω2, . . . , ωn} (ωi ∈ A) is called a
sentence with the length n. The set of the sentences whose length are n is the product space
An := {(ω1, . . . , ωn) | ωi ∈ A}. Let P be a probability distribution on A. We denote P ({i}) = pi.

Now we consider the following situation. Here is a (memoryless) information source S which
sends out the letter according to the probability distribution P at each time independently.
Namely, mathematically, we consider independent random sequences {Xi}∞i=1 with the same
distribution P . We consider coding problem of the random sentences.

Basic observation: (1) Suppose that P ({1}) = 1 and P ({i}) = 0 (2 ≤ i ≤ N). Then the
random sequence Xi is, actually, a deterministic sequence {1, 1, . . . , 1, . . .}. Thus, the variety
of sequence is nothing. In this case, we do not need to send the all sequences. In this case,
immediately after getting the first letter, we know that subsequent all letters are 1. Namely, we
can encode all sentences, whatever the lengths are, to just one letter.
(2) Suppose that N ≥ 3 and consider a probability measure such that P ({1}) = P ({2}) = 1/2
and P ({i}) = 0 for 3 ≤ i ≤ N . Then note that the sequences contain i(≥ 3) are not sent out.
Thus the number of possible sequences under P whose lengths are n are 2n. Note that the
number of all sequences of alphabet A whose lengths are k is Nk. Thus, if Nk ≥ 2n then all
possible sentences whose lengths are n can be encoded into the sentences of A whose lengths are
k(≤ n). Also the decode is also possible. Note that

Nk ≥ 2n ⇐⇒ k

n
≥ logN 2

The number logN 2 is the entropy of the probability distribution P in (2). In the case of (1),
the entropy of the probability P is 0. Hence k = 1 is possible.

In general, we define the entropy of P by using the logarithmic function to the base N :

H(P ) = −
N∑

i=1

P ({i}) logN P ({i}). (1.1)

We summarize what we prove in the case of (2).

Coding result in the case of (2) If
k

n
≥ H(P ), then there exists an encoder ϕ : An → Ak

and a decoder ψ : Ak → An such that

P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
= 0. (1.2)

The probability P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
is called the error probability. For

general P , we can prove the following theorem [2].
∗This is one of lectures of “Mathematics B”in Graduate School of Science in Tohoku University in 2011.

1



Theorem 1.1 (Shannon and McMillan). Take a positive number R > H(P ). For any ε > 0,
there exists M ∈ N such that for all n ≥M and k satisfying that k

n ≥ R, there exists ϕ : An → Ak

and ψ : Ak → An such that

P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
≤ ε. (1.3)

Remark 1.2. (1) k/n is called the coding rate.
(2) ϕ is called an encoder and ψ is called a decoder.

About entropy, we have

Theorem 1.3. For every P , 0 ≤ H(P ) ≤ 1 holds. H(P ) = 0 holds if and only if P ({i}) = 1
for some i ∈ A. H(P ) = 1 holds if and only if P is the uniform distribution, that is, pi = 1/N
for all i.

Clearly, the uniform distribution is most “random probability” and the probability concen-
trates one letter is most “not random probability”. That is, we may say that the entropy stands
for the uncertainty of probability.

The weak law of large number (actually an estimate by Chebyshev’s inequality) is
necessary in the proof of Shannon-McMillan’s theorem and elementary probability is enough
for the understanding of the proof. However, I think, it is not bad to learn “probability theory
based on measure theory”.

The plan of this lecture:

(I) Elementary probability

(II) Modern probability theory based on Lebesgue integration

(III) Proof of Shannon-McMillan theorem

2 Elementary probability theory

We recall several notion in elementary probability theory:

Sample Space, Event, Elementary Event, Probability, Random Variable, Expec-
tation, Independent Event.....

Definition 2.1. Let Ω be a set and suppose that for each subset A ⊂ Ω a non-negative number
P (A) is given such that
(1) 0 ≤ P (A) ≤ 1 for any A and P (Ω) = 1.
(2) When A ∩B = ∅, P (A ∪B) = P (A) + P (B).

Then P is called a probability on Ω. Ω is called a sample space. Each element ω ∈ Ω is
called an elementary event. Any subset of Ω is called an event. The sample space Ω itself is
called a total event.
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Example 2.2 (Rolling Dice n times). Let

Ωn = {ω = (x1, . . . , xn) | xi = 1, . . . , 6}.

For A ⊂ Ωn, define

P (A) =
]A

6n
.

Definition 2.3. A probability P on R is called a probaility distribution (probability law)
on R.

Definition 2.4. (1) Let {ai}N
i=1 ⊂ R. Let pi (1 ≤ i ≤ N) be non-negative numbers such that

N∑
i=1

pi = 1.

For A ⊂ R, define
P (A) =

∑
{i|ωi∈A}

pi.

This probability distribution P is called a discrete type probability (distribution).
(2) Let f(x) be a non-negative function on R such that

∫
R f(x)dx = 1. For A ⊂ R, let

P (A) =
∫

A
f(x)dx.

This probability P is called a continuous type probability (distribution) with the (prob-
ability) density function f .

Definition 2.5 (Random variable). Let (Ω, P ) be a probability space. A function X : Ω → R is
called a random variable. Let us define a probability distribution PX on R by

PX(A) = P (X ∈ A).

PX is called the probability distribution (probability law) of X.

We define the expectation of a random variable.

Definition 2.6. For a random variable X, we define the expectation E[X] as follows.

(i) The case where X is a discrete-type random variable and takes values a1, . . . , aN :

E[X] =
N∑

i=1

aiP (X = ai). (2.1)

(ii) The case where X is a continuous-type random variable which has the density function
f :

E[X] =
∫

R
xf(x)dx. (2.2)
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The expectation E[X] depends only on the distribution of PX of X. So we call E[X] the expec-
tation (or mean) of PX .

Proposition 2.7 (Linearity of expectation). Let X,Y be random variables. Then for any
α, β ∈ R,

E[αX + βY ] = αE[X] + βE[Y ].

Definition 2.8. We define the variance of X, say V [X], by

V [X] = E[(X −m)2],

where m = E[X].

Lemma 2.9. In the case of (i) in Definition 2.6,

V [X] =
N∑

i=1

(ai −m)2P (X = ai)

and in the case of (ii) in Definition 2.6,

V [X] =
∫

R
(x−m)2f(x)dx.

In the next section, we give the modern definition of the expectation based on Lebesgue
integration.

We introduce the notion of independence of events and independence of random
variables.

Definition 2.10 (Independence of events). Let A1, . . . , An be events of Ω. We say that A1, . . . , An

are independent if for any 1 ≤ i1 < · · · < ik ≤ n,

P
(
∩k

l=1Ail

)
=

k∏
l=1

P (Ail).

Definition 2.11 (Independence of random variables). Let {Xi}N
i=1 be random variables on a

probability space (Ω, P ). N is a natural number or N = ∞. {Xi}N
i=1 are said to be independent

if for any m ≤ N (when N = ∞, m is any natural number) the following hold: For any intervals
Ik (1 ≤ k ≤ m), the events

{X1 ∈ I1}, . . . , {Xm ∈ Im}

are independent. That is the following hold: , the following hold:

P (X1 ∈ I1, · · · , Xm ∈ Im) =
m∏

i=1

P (Xi ∈ Ii). (2.3)

Theorem 2.12. Let X,Y be independent random variables. Then E[XY ] = E[X]E[Y ].
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Proof. We prove the case where X and Y are discrete type random variables. Let {x1, . . . , xn}
and {y1, . . . , ym} be the values of X and Y respectively. Let Ei = {ω | X(ω) = xi}, Fj =
{ω | X(ω) = yj}. Then

X(ω) =
n∑

i=1

xi1Ei(ω), Y (ω) =
m∑

j=1

yj1Fj (ω),

where 1A is defined such that 1A(ω) = 1 for ω ∈ A and 1A(ω) = 0 for ω ∈ Ac. Therefore

E[XY ] = E

( n∑
i=1

xi1Ei

) m∑
j=1

yj1Fj (ω)


=

∑
1≤i≤n,1≤j≤m

xiyjE[1Ei1Fj ]

=
∑

1≤i≤n,1≤j≤m

xiyjP (Ei ∩ Fj) (2.4)

=
∑

1≤i≤n,1≤j≤m

xiyjP (Ei)P (Fj) (2.5)

=

 ∑
1≤i≤n

xiP (Ei)

 ∑
1≤j≤m

yjP (Fj)

 = E[X]E[Y ]. (2.6)

In (2.4) and (2.5), we have used respectively

E[1Ei1Fj ] = E[1Ei∩Fj ] = P (Ei ∩ Fj),

P (Ei ∩ Fj) = P ({X = xi, Y = yj}) = P (X = xi)P (Y = yj) = P (Ei)P (Fj).

Exercise 1. Let Xi (1 ≤ i ≤ n) be independent random variables such that P (Xi = 1) = p,
P (Xi = 0) = 1 − p, (0 < p < 1). Let Sn =

∑n
i=1Xi.

(1) Prove that P (Sn = k) = nCkp
k(1 − p)n−k (0 ≤ k ≤ n)†.

(2) Calculate E[Xi] and show that E[Sn] = np.
(3) Show that V [Sn] = np(1 − p).

Exercise 2. Let us consider Ω2 in Example 2.2. That is

Ω2 = {ω = (x1, x2) | 1 ≤ x1, x2 ≤ 6}, P (A) =
]A

36
.

Let X1(ω) = x1, X2(ω) = x2 when ω = (x1, x2). Show that X1, X2 are independent. Find the
distributions of max(X1, X2) and min(X1, X2) and their expectations.

Exercise 3. (1) Let P be the probability distribution which has the density function

f(x) =
1√

2πσ2
exp

(
−(x−m)2

2σ2

)
.

†This distribution of Sn is called the Bernoulli distribution B(n, p)
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Show that the mean of P is m and the variance of X is σ2. The distribution P is called the
normal distribution with mean m and variance σ2 and denoted by N(m,σ2). Suppose that the law
of the random variable X is N(0, 1)(=standard normal distribution). Find the density function
of X2.
(2) Let P be the Poisson distribution with parameter λ (> 0), that is, P is a discrete type
probability such that

P ({k}) =
λk

k!
e−λ k = 0, 1, . . . .

Find the expectation and the variance of the Poisson distribution.

3 Probability theory based on measure theory

We already defined a probability space for shaking dice n times. How about the probability
space for shaking the dice infinitely many times ? The sample space should be

Ω∞ = {ω = (x1, . . . , xn, . . .) | 0 ≤ xi ≤ 6}

This set is infinite set and the probability cannot be defined in a similar way to Ωn (n < ∞).
To study this kind of probability, we need measure theory.

First, we introduce the notion of probability space based on measure theory.

Definition 3.1. (1) A triplet (Ω,F , P ) is called a probability space if the following hold. Ω is a
set and F is a family of some subsets of Ω satisfying that

(i) If A1, A2, . . . , Ai, . . . ∈ F , then ∪∞
i=1Ai ∈ F .

(ii) If A ∈ F , then Ac ∈ F .

(iii) Ω, ∅ ∈ F .

F is called a σ-field. For each A ∈ F , a nonnegative number P (A) is asssigned and satisfying
that

(i) 0 ≤ P (A) ≤ 1 for all A ∈ F .

(ii) P (Ω) = 1.

(iii) (σ-additivity) If A1, A2, . . . , Ai, . . . ∈ F and Ai ∩Aj = ∅ (i 6= j), then

P (∪∞
i=1Ai) =

∞∑
i=1

P (Ai).

The nonnegative function P : F → [0, 1] is called a probability measure on Ω. A ∈ F is called
an event and P (A) is called the probability of A.

Exercise 4. Let (Ω,F , P ) be a probability space. Let A,B ∈ F . Under the assumption that
A ⊂ B, prove that P (A) ≤ P (B).
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What is F? Let us consider Ω = [0, 1]. One may think that the length of A ⊂ [0, 1], say |A|,
is natural candidate of the probability P (A) in [0, 1]. However what is the length of the set A?
Of course if A = [a, b] ⊂ [0, 1], |A| = b− a. Also if

A = I1 ∪ · · · ∪ In, Ii = [ai, bi], Ii ∩ Ij = ∅ (i 6= j)

then |A| =
∑n

i=1(bi−ai). Actually, it is not possible to define the length for all subsets. A subset
of [0, 1] for which the length (Lebesgue measure) is defined is called a Lebesgue measurable
subset. We denote all Lebesgue measurable subsets by ML. Then ML satisfies

(i) If A1, A2, . . . , Ai, . . . ∈ ML, then ∪∞
i=1Ai ∈ ML,

(ii) If A ∈ ML, then Ac ∈ ML.

(iii) If A1, . . . , An, . . . ∈ ML and Ai ∩Aj = ∅ (i 6= j), then

| ∪∞
i=1 Ai| =

∞∑
i=1

|Ai|.

So ML is also a σ-field and ([0, 1],ML, | · |) is a probability space.
We give more example of probability spaces.

Example 3.2. (1) We consider the probability space for rolling dice n times. Then the sample
space is Ωn = {ω = (x1, . . . , xn) | 1 ≤ xi ≤ 6}. Also F = all subsets of Ω, and P (A) = ]A

6n .
(2) We consider the probability space for rolling dice infinitely many times. Clearly the sample
space is

Ω∞ = {ω = (x1, . . . , xn, . . .) | 1 ≤ xi ≤ 6}.
Take a sequence (a1, . . . , an) ∈ Ωn. We define

C(a1, . . . , an) = {ω = (x1, . . . , xn, . . .) | x1 = a1, . . . , xn = an} ⊂ Ω∞.

This set is called a cylinder set. It is natural to define the probability of C(a1, . . . , an) by

P (C(a1, . . . , an)) =
1
6n
. (3.1)

Let
F = the smallest σ-field including all cylinder sets.

The we can prove that the probability can be defined for all sets in F extending (3.1). Note that
F ( 2Ω.

Now we give the notion of random variables as measurable functions.

Definition 3.3. Let (Ω,F , P ) be a probability space. Let X : Ω → R be a real-valued function
on Ω. We say that X is a measurable function if for any intervals I ⊂ R,

X−1(I)(:= {ω ∈ Ω | X(ω) ∈ I} ∈ F .

Here we mean by interval the sets:

[a, b], [a, b), (a, b], (a, b), (−∞, b], (−∞, b), (a,∞), [a,∞)

We call a measurable function on Ω a random variable.
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Exercise 5. Let X be a measurable function on (Ω,F , P ). Then

X+(ω) = max(X(ω), 0)(= positive part of X), X−(ω) = max(−X(ω), 0)(= negative part of X),

and |X| (the function of the absolute value of X) are also measurable function. (Actually we
can prove that if X is maesurable then ϕ(X) is also measurable for any continuous
function ϕ on R).

Exercise 6. LetXn (n = 1, 2, . . .) be measurable functions. Assume that limn→∞Xn(ω) con-
verges for all ω ∈ Ω. We denote the limit by Y (ω). Then Y is also a measurable function.

The notion of independence of events and random variables are the same as in
the previous section.

Example 3.4. Let us consider the probability space (Ω∞,F , P ) in Example 3.2. Let

Xk(ω) = xk if ω = (x1, . . . , xk, . . . , ).

Then {Xk}∞k=1 are independent random variables.

Exercise 7. Let Xk be the random variables in Example 3.4. Let

S =
{
ω ∈ Ω∞ | lim

n→∞

X1(ω) + · · · +Xn(ω)
n

= 3.5
}
.

Show that S ∈ F‡.

We define the expectation of X as the integration of X over Ω in the Lebesgue sense.

Definition 3.5 (Lebesgue integral). Let X be a random variable on a probability space (Ω,F , P ).
(1) [The case where X ≥ 0]
(i) The case where X is a discrete type random variable: That is,

{X(ω) | ω ∈ Ω} = {a1, . . . , aN}.

In this case, we define the expectation of X in a similar way as in the previous section.

E[X] :=
N∑

i=1

aiP (X = ai).

(ii) The case where X ≥ 0:
Let

Xn(ω) =


0 if 0 ≤ X(ω) < 1

2n

k
2N if k

2n ≤ X(ω) < k+1
2n , 0 < k ≤ 2nn− 1

n if X(ω) ≥ n

(3.2)

Then Xnis also measurable function and non-negative discrete type random variable. So we have
already defined E[Xn]. We define

E[X] := lim
n→∞

E[Xn].
‡The strong law of large number asserts that P (S) = 1.
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Note that E[X] maybe ∞.
(2) [General case] We consider real valued measurable function X (So X may take positive values
and negative values). Define

X+(ω) = max(X(ω), 0)(= positive part of X), X−(ω) = max(−X(ω), 0)(= negative part of X).

Note that
X(ω) = X+(ω) −X−(ω) for all ω.

When E[X+] <∞, E[X−] <∞, we define the expectation of X by

E[X] = E[X+] − E[X−].

We may denote E[X] by
∫

Ω
X(ω)P (dω). Also we define

L1(Ω,F , P ) = {X : Ω → R | X is a random variable such that E[X+] <∞ and E[X−] <∞}.

Remark 3.6. (1) By Exercise 5, X+, X−, |X| are mesurable functions. The condition E[X+] <
∞ and E[X−] <∞ is equivalent to E[|X|] <∞.
(2) We may denote L1(Ω,F , P ) by L1(Ω, P ) or L1(Ω) simply.

The following is very basic properties of the expectation.

Theorem 3.7. (1)[Linearity of expectation] Let X,Y be random variables. Then for any α, β ∈
R, αX + βY is also a measurable function and

E[αX + βY ] = αE[X] + βE[Y ].

(2) Let us define

Lp(Ω,F , P ) = {X : Ω → R |
∫

Ω
|X(ω)|pP (dω) <∞}.

We use the notation

‖X‖Lp =
(∫

Ω
|X(ω)|pP (dω)

)1/p

.

If X,Y ∈ Lp(Ω,F , P ), then X + Y ∈ Lp(Ω,F , P ) and

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp (Minkowski’s inequality)

(3) [Hölder’s inequality] Let p > 1, q > 1 be positive numbers with
1
p

+
1
q

= 1. For any X ∈

Lp(Ω,F , P ), Y ∈ Lq(Ω,F , P ), we have

‖XY ‖L1 ≤ ‖X‖Lp‖Y ‖Lq .

The following limit theorem in Lebesgue integral is very important.

Theorem 3.8 (Monotone Convergence Theorem). Let Xn be random variables such that

(i) 0 ≤ X1(ω) ≤ X2(ω) ≤ · · ·Xn(ω) ≤ · · · for all ω,
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(ii) limn→∞Xn(ω) = X(ω) for all ω.

Then
lim

n→∞
E[Xn] = E[X].

Theorem 3.9 (Lebesgue’s dominated convergence theorem). Let Xn, Y be random variables
such that

(i) |Xn(ω)| ≤ Y (ω) for all ω and n.

(ii) Y ∈ L1(Ω, P ).

(iii) limn→∞Xn(ω) = Y (ω) for all ω.

Then
lim

n→∞
E[Xn] = E[X].

Remark 3.10. In the case where Ω = [0, 1],F = ML, P = | · |), we have two definitions of
integration of a function X : [0, 1] → R. That is, Riemann integral and Lebesgue integral. We
can prove that if f : [0, 1] → R is a bounded Riemannian integrable function then f is Lebesgue
integrable and the two integrals coincide. That is, the Riemannian integral

lim
|∆|→0

n−1∑
i=0

f(ξi)(xi+1 − xi)

xi ≤ ξi ≤ xi+1, ∆ = {0 = x0 < · · · < xn = 1}, |∆| = max
i

(xi+1 − xi).

is equal to the Lebesgue integral

lim
n→∞

∞∑
k=−∞

k

n

∣∣∣∣{x | k
n
≤ f(x) <

k + 1
n

}∣∣∣∣ .
But the converse is not true. That is, the Lebesgue integrable function may not be Riemannian
integrable.

Now we explain two law of large numbers. One is “weak law of large numbers”(=WLLN)
and the second is “strong law of large numbers”(SLLN). First, we explain WLLN.

Lemma 3.11. Let {Zi}n
i=1 be independent random variables whose means and variances are

finite. Moreover we assume that the means and the variances coincide, E[Zi] = m and V [Zi] =
σ2. Then

P

(∣∣∣∣Z1 + · · ·Zn

n
−m

∣∣∣∣ ≥ δ

)
≤ σ2

nδ2
. (3.3)

Proof. We use the Chebyshev inequality: For any random variable X and r > 0,

P (|X| ≥ r) ≤ E[|X|2]
r2

.

Using E[(Zi −m)(Zj −m)] = 0, and applying the Chebyshev inequlity in the case where

X =
(Z1 −m) + · · · + (Zn −m)

n
, r = δ

we get the theorem.
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This lemma immediately implies the following weak law of large numbers.

Theorem 3.12. Assume that {Zi}∞i=1 are independent random variables and their means and
variances are finite and E[Zi] = m, V [Zi] = σ2. Then

lim
n→∞

P

(∣∣∣∣Z1 + · · ·Zn

n
−m

∣∣∣∣ ≥ δ

)
= 0. (3.4)

Next we state SLLN.

Theorem 3.13 (Kolmogorov). Let {Zi}∞i=1 be i.i.d. (=independent identically distributed) ran-
dom variables. Assume that their mean is finite E[Xi] = m. Then

P

({
ω | lim

n→∞

Z1(ω) + · · ·Zn(ω)
n

= m

})
= 1.

The proof of the above theorem is not easy. But the proof of the following is not so difficult.

Theorem 3.14. Let {Zi}∞i=1 be independent random variables such that there exists 0 < K <∞
such that

E[Zi] = m, E[|Zi|k] ≤ K for all 1 ≤ k ≤ 4, i = 1, 2, . . .

Then

P

({
ω | lim

n→∞

Z1(ω) + · · ·Zn(ω)
n

= m

})
= 1.

Why strong and weak? This is because of the following result.

Proposition 3.15. Assume that

P
({
ω | lim

n→∞
Yn(ω) = m

})
= 1.

Then for any δ > 0,
lim

n→∞
P ({ω | |Yn(ω) −m| ≥ δ}) = 0.

But the converse is not necessarily true.

Exercise 8. Prove Proposition 3.15 applying Theorem 3.9 to functions Xn(ω) = 1An(ω), where
An = {ω | |Yn(ω) −m| ≥ δ}.

4 Entropy

What is entropy? Entropy represents the uncertainty of probabilistic phenomena. The following
definition is due to Shannon.

Definition 4.1 (Shannon). Let us consider a finite set E = {A1, . . . , AN}. A nonnegative
function P on E is called a probability distribution if

∑N
i=1 P ({Ai}) = 1. Each Ai is called an

elementary event. A subset of E is called an event. Then, for this probability distribution P , we
define the entropy by

H(P ) = −
N∑

i=1

P ({Ai}) logP ({Ai}). (4.1)
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We use the convention, 0 log 0 = 0. If we do not mention about the base of the logarithmic
function, we mean by log the natural logarithm, loge.

Example 4.2. (1) Coin tossing:
E = {H,T} and P1({H}) = P1({T}) = 1/2. We have H(P1) = log 2.

(2) Dice: E = {1, 2, 3, 4, 5, 6}. P2({i}) = 1/6 (1 ≤ i ≤ 6). Then we have H(P2) = log 6.
(3) Unfair Dice: E = {1, 2, 3, 4, 5, 6}. P3({1}) = 9/10, P3({i}) = 1/50 (2 ≤ i ≤ 6).

H(P3) = log

[(
10
9

)9/10

(50)1/10

]
≤ log

(
10
9

· 3
2

)
< log 2 = H(P1) (4.2)

Exercise 9. For unfair dice E = {1, 2, 3, 4, 5, 6} with the probability P4({1}) = 8/10, P4({2}) =
1/10, P4({i}) = 1/40 (i = 3, 4, 5, 6), calculate the entropy H(P4). Is H(P4) bigger than H(P1)?

In the above examples (1) and (2), the entropies are nothing but log(# all elementary events),
because all elementary events have equal probabilities. The notion of entropy appeared in sta-
tistical mechanics also. Of course, the discovery is before that in the information theory. The
following is a basic property of the entropy.

Theorem 4.3. Suppose that |E| = N . Then for any probability distribution P , we have

0 ≤ H(P ) ≤ logN. (4.3)

Then the minimum value is attained by probability measures such that P ({Ai}) = 1 for some
i. The maximum is attained by the uniform distribution P , namely, P (Ai) = 1/N for all
1 ≤ i ≤ N .

We refer the proof to the proof of Theorem 5.1 in the next section.
The notion of entropy is used to solve the following problem:

Problem Here are eight gold coins and a balance. One of coins is an imitation and it is slightly
lighter than the others. How many times do you need to use the balance to find the imitation?

Solution: In information theory, the entropy stands for the quantity of the information. In the
above problem, we have eight equal possibilities such that each coin may be imitation. So the
entropy is log 8. We get some information by using the balance. By using the balance one time,
we can get the following three informations: 1.The same weight, 2.The left one is lighter, 3.The
right one is lighter. So it contains information log 3. Thus, by using k-times of the balance, we
get information which is amount of k log 3. So if k log 3 < log 8, we do not get full information.
So we need k ≥ 2 . Also it is not difficult to see that two times is enough. If the number of
coins N satisfies 3n−1 < N ≤ 3n, then n-times is enough.

Exercise 10. In the above problem, how many times do you need to use the balance in the case
where n = 27? Also present a method how to use the balance.
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5 Shannon and McMillan’s theorem

Suppose we are given a set of numbers A = {1, . . . , N} ⊂ N. We call A the alphabet and
the element is called a letter. A finite sequence {ω1, ω2, . . . , ωn} (ωi ∈ A) is called a sentence
with the length n. The set of the sentences whose length are n is the product space An :=
{(ω1, . . . , ωn) | ωi ∈ A}. Let P be a probability distribution on A. We denote P ({i}) = pi. In
this section, we define the entropy of P by using the logarithmic function to the base N :

H(P ) = −
N∑

i=1

P ({i}) logN P ({i}). (5.1)

We can prove that

Theorem 5.1. For every P , 0 ≤ H(P ) ≤ 1 holds. H(P ) = 0 holds if and only if P ({i}) = 1
for some i ∈ A. H(P ) = 1 holds if and only if P is the uniform distribution, that is, pi = 1/N
for all i.

Lemma 5.2. Let g(x) = x log x, or g(x) = − log x. Then for any {mi}N
i=1 with mi ≥ 0 and∑N

i=1mi = 1 and nonnegative sequence {xi}N
i=1, we have

g

(
N∑

i=1

mixi

)
≤

N∑
i=1

mig(xi). (5.2)

Furthermore, when mi > 0 for all i, the equality of (5.2) holds if and only if x1 = · · · = xN .

We define for a nonnegative sequence {pi}N
i=1,

H(p1, . . . , pN ) = −
N∑

i=1

pi log pi. (5.3)

Proof of Theorem 5.1. First, we consider the lower bound. Applying (5.2) to the case where
mi = xi = pi and g(x) = − log x, we have

H(p1, . . . , pN ) ≥ − log

(
N∑

i=1

p2
i

)
≥ − log 1 = 0. (5.4)

Clearly, in (5.4), the equality holds if and only if pi = 1 for some i. Next, we consider the upper
bound. By applying Lemma 5.2 to the case where mi = 1/N, xi = pi and g(x) = x log x, for any
nonnegative probability distribution {pi}, we have

g

(
1
N

N∑
i=1

pi

)
≤ 1
N

N∑
i=1

g(pi). (5.5)

Since
∑N

i=1 pi = 1, this implies

− 1
N

logN ≤ 1
N

N∑
i=1

pi log pi.

Thus, −
∑N

i=1 pi log pi ≤ logN and −
∑N

i=1 pi logN pi ≤ 1. By the last assertion of Lemma 5.2,
the equality holds iff pi = 1/N for all i.
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We consider the following situation. Here is a (memoryless) information source S which
sends out the letter according to the probability distribution P at each time independently.
Namely, mathematically, we consider i.i.d. {Xi}∞i=1 with the distribution P . We consider coding
problem of the sequence of letters.

Theorem 5.3 (Shannon and McMillan). Take a positive number R > H(P ). For any ε > 0,
there exists M ∈ N such that for all n ≥M and k satisfying that k

n ≥ R, there exists ϕ : An → Ak

and ψ : Ak → An such that

P
(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
≤ ε. (5.6)

The map ϕ : An → Ak is called an encoder and the map ψ : Ak → An is called a decoder.
The probability P

(
ψ(ϕ(X1, . . . , Xn)) 6= (X1, . . . , Xn)

)
is called the error probability. k/n is

called the coding rate.

Proof of Theorem 5.3. Take n ∈ N. The probability distribution of the i.i.d. subsequence
{Xi}n

i=1 is the probability distribution Pn defined on An such that for any {ai}n
i=1,

Pn ({ω1 = a1, . . . , ωn = an}) =
n∏

i=1

P ({ai}) . (5.7)

Let us consider random variables on An, Zi(ω) = − logN P ({ωi}) (1 ≤ i ≤ n). Then {Zi}n
i=1

are i.i.d. and the expectation and the variance are finite. In fact, we have

m = E[Zi] = −
n∑

i=1

P ({ωi}) logn P ({ωi}) = H(P )

σ2 = E[(Zi − E[Zi])2] =
n∑

i=1

(logN pi)
2 pi −H(P )2. (5.8)

Take δ > 0 such that R > H(P ) + δ. By Lemma 3.11,

Pn

(
1
n

n∑
i=1

(− logN P ({ωi})) ≥ H(P ) + δ

)
≤ σ2

nδ2
. (5.9)

Hence, for any ε > 0, there exists M ∈ N such that

Pn

(
1
n

n∑
i=1

(− logN P ({ωi})) ≥ H(P ) + δ

)
≤ ε for all n ≥M. (5.10)

Noting {
(ω1, . . . , ωn)

∣∣∣ 1
n

n∑
i=1

(− logN P ({ωi})) < H(P ) + δ

}

=

{
(ω1, . . . , ωn)

∣∣∣ n∏
i=1

P ({ωi}) > N−n(H(P )+δ)

}

⊂

{
(ω1, . . . , ωn)

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

}
=: Cn, (5.11)
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by (5.10), we have, for n ≥M ,

P ((X1, . . . , Xn) ∈ Cn)

= Pn

({
(ω1 . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

})

≥ Pn

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−n(H(P )+δ)

})
≥ 1 − ε (5.12)

On the other hand, we have

|Cn|N−nR ≤ Pn

({
(ω1, . . . , ωn) ∈ An

∣∣∣ n∏
i=1

P ({ωi}) ≥ N−nR

})
≤ 1 (5.13)

Hence we have
|Cn| ≤ NnR. (5.14)

By this estimate, if k ≥ nR, then, there exists an injective map φ : Cn → Ak and a map
ψ : Ak → Cn such that

ψ(φ(ω1, . . . , ωn)) = (ω1, . . . , ωn) for any (ω1, . . . , ωn) ∈ Cn.

By taking a map ϕ : An → Ak which satisfies ϕ|Cn = φ, we have

P (ψ(ϕ(X1, . . . , Xn)) = (X1, . . . , Xn)) ≥ P ((X1, . . . , Xn) ∈ Cn) ≥ 1 − ε. (5.15)

This completes the proof.

References

[1] P. Billingsley, Probability and measure, John Wiley & Sons, New York, 1979

[2] A.I. Khinchin, Mathematical foundations of information theory, Dover books on advanced
mathematics, 1957.

[3] N. Abramson, Informantion theory and coding. McGraw-Hill Book Co., New York-Toronto-
London 1963

[4] J.S. Rosenthal, A first look at rigorous probability theory, World Scientific, 2006.

[5] C.E. Shannon, The mathematical theory of communication, Bell Syst, Techn. Journ. 27,
379–423, 623–656 (1948).

[6] D. Williams, Probability with martingales, Cambridge Mathematical Textbooks, 1991.

15


