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1. Holomorphic Siegel cusp forms

Let n ∈ N and suppose n ≥ 2.

J2n :=

(
On In

−In On

)
.

G := Sp2n = {g ∈ GL2n | gJ2ntg = J2n}.

Hn := {Z ∈ Mn(C) | tZ = Z, Im(Z) > 0}.

G := G(R). K is a max. cpt. subgroup pf G (K ≃ Un).

Z ∈ Hn, g = (A B
C D ) ∈ G,

G acts on Hn as g · Z = (AZ +B)(CZ +D)−1. (G/K ≃ Hn)

Set Jk(g, Z) := det(CZ +D)−k.

Γ is an arithmetic congruence subgroup in G(Q).

Fix a G-invariant measure dZ on Hn.
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A holom. fun. f : Hn → C is called a Siegel cusp form of wt. k w.r.t. Γ

if f satisfies

∀γ ∈ Γ, ∀Z ∈ Hn, f(Z) = Jk(γ, Z) f(γ · Z).

sup
Z∈Hn

|det(Im(Z))k/2 f(Z)| < ∞.

Let Sk(Γ) denote the space of Siegel cusp forms of wt k w.r.t. Γ.

Suppose −I2n ∈ Γ for simplicity.

When n is odd, we also suppose k is even. (Sk(Γ) = 0 if k is odd.)

Hecke operator α ∈ G(Q), TΓαΓ : Sk(Γ) → Sk(Γ),

(TΓαΓf)(Z) :=
∑

β∈Γ\ΓαΓ

Jk(β, Z) f(β · Z).

dn := dimR Hn = n2 + n.

d(n, k) := c×
∏n

i=1

∏n
j=i(2k − i− j).

(formal degree, c > 0 is a constant depends only on dZ)

d(n, k) ≍ k
dn
2 (k → ∞).
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d(n, k) ≍ k
dn
2 (k → ∞).

δΓαΓ = 1 when I2n ∈ ΓαΓ, and δΓαΓ = 0 otherwise.

Theorem (Sugiyama-Tsuzuki-W.)

For any small ε > 0 we have (w.r.t. k → ∞)

tr(TΓαΓ|Sk(Γ)) = vol(Γ\Hn) d(n, k) δΓαΓ + Oε(k
dn−n

2 +ε #(Γ\ΓαΓ)).

Remarks.

1. This theorem is proved by a result of Finis-Matz in the study of

Weyl’s law for the split reductive algebraic groups.

2. Dalal’s asymptotic formula does not cover our result.

Holomorphic discrete series of G with minimal K-type τ(k).

His situation: dim τ(k) → ∞ (k → ∞).

Our situation: τ(k) = detk, dim τ(k) = 1 (k → ∞).

In addition, our remainder is better than his.

3. An asymptotic formula for tr(TΓαΓ|Sk(Γ)) w.r.t. the level aspect of

principal congruence subgroups was obtained by Kim-W.-Yamauchi.
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Applications to families of automorphic representations

1. Plancherel density theorem (Delorme, Sauvageot, Shin).

2. Sato-Tate equidistribution theorem (Shin-Templier).

3. Low lying zeros (Katz-Sarnak philosophy, Shin-Templier).

To obtain this, one must prove that the contribution of L-functions

with poles is neglected. Kim-W.-Yamauchi proved this for Siegel

cusp forms w.r.t. the level aspect (square free) using the endoscopic

classification.

A reminder like ours is needed to determine an explicit range of

counting zeros.

4. Central limit theorem of Hecke eigenvalues

Kim-W.-Yamauchi recently obtained this application in general by

using the Sato-Tate equidistribution theorem. This is a

generalization of Nagoshi’s theorem (elliptic cusp forms).

6 / 23



Take a finite set S of primes and an open cpt. subgroup KS of∏
p∈S G(Qp) such that Γ = G(Q) ∩ (KS

∏
p/∈S G(Zp)).

Consider only prime numbers p satisfying p /∈ S.

Fk is the set of Hecke eigenforms outside S, that forms a basis of Sk(Γ).

Lf (s,St) is the standard L-function of f (degree 2n+ 1).

Set Lf (s,St) =
∑∞

n=1 af (n)n
−s.

Theorem (Kim-W.-Yamauchi, the central limit formula)

Let h be a continuous bounded function on R. If log k
log x → ∞ as x → ∞,

then

lim
x→∞

1

dimSk(Γ)

∑
f∈Fk

h

(∑
p≤x af (p)√

π(x)

)
=

1√
2π

∫ ∞

−∞
h(t) e−

t2

2 dt.

This means that Hecke eigenvalues behave like Random variables.
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2. Proof and its generality

Proof

fn,k(g
−1) := d(n, k)× 2nk det(A− iB + iC +D)−k, g = (A B

C D ) ∈ G.

Godement’s formula When k > 2n, we have

tr(TΓαΓ|Sk(Γ)) =

∫
Γ\G

∑
γ∈ΓαΓ

fn,k(g
−1γg) dg

where dg (resp. du) is a Haar measure on G (resp. K) s.t. dg = dZ du

(resp. vol(K) = 1).
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Some basic facts k > n.

fn,k is a matrix coefficient of the holom. disc. ser. of G with the

min. K-type detk. If k > 2n, then fn,k is integrable on G.

fn,k is a cusp form in L2(G), that is,

∫
N

fn,k(x
−1ny) dn = 0 for

any x, y ∈ G and any unip. rad N .

Uniform upper bound (Cogdell-Luo)

∃c > 0 s.t. fn,k(g) ≤ d(n, k)× (1 + c(∥g∥2 − 2n))−
k
2 ,

where ∥g∥ = tr(g tg)
1
2 . If dist is the distance on Hn = G/K, for any

cpt subset C of G we have

dist(g · iIn, iIn)2 ≪C ∥g∥2 − 2n ≪C dist(g · iIn, iIn)2 for ∀g ∈ C.

Semi-norm Suppose k is sufficiently large.

Let U(g) denote the univ. envel. alg. of g := Lie(G).

Fix a basis X of the subspace {X ∈ U(g) | degX ≤ dimG}.
∃m ∈ N s.t.

∑
X∈X

∥X ∗ fn,k∥L1 ≪ km.
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Recall G := Sp2n.

Kf is an open compact subgroup of G(Af ) s.t. Γ = G(Q) ∩Kf .

Take a Haar measure on G(Af ) as vol(Kf ) = 1.

Set

Jnc(fn,k ⊗ h) :=

∫
G(Q)\G(A)

∑
γ∈G(Q)\{±I2n}

(fn,k ⊗ h)(x−1γx) dx

where h ∈ C∞
c (Kf\G(Af )/Kf ).

hα is the characteristic function of Kfα
−1Kf .

Then, Godement’s formula is rewritten as

tr(TΓαΓ|Sk(Γ)) = vol(Γ\Hn) d(n, k) δΓαΓ + Jnc(fn,k ⊗ hα).

Hence, it is sufficient to prove Jnc(fn,k ⊗ h) = Oε(k
dn−n

2 +ε ∥h∥L1).

10 / 23



T is a truncation parameter. F (·, T ) is the characteristic function of the

truncation of G(Q)\G(A) at height T .

JT
1 (f) :=

∫
G(Q)\G(A)

(1− F (x, T ))
∑

γ∈G(Q)\{±I2n}

f(x−1γx) dx,

JT
2 (f) :=

∫
G(Q)\G(A)

F (x, T )
∑

γ∈G(Q)\{±I2n}

f(x−1γx) dx.

Take a function ϕ ∈ C∞
c ([0,∞)), 0 ≤ ϕ ≤ 1, and ϕ|[0,1] = 1.

A spherical function Fϕ,δ on G is defined by

Fϕ,δ(g) := ϕ(δ−1(∥g∥2 − 2n)) for δ > 0.

Jnc(fn,k ⊗ h) = JT
1 (fn,k ⊗ h) x is close to cusps

+ JT
2 (fn,k(1− Fϕ,δ)⊗ h) middle part

+ JT
2 (fn,kF

ϕ,δ ⊗ h) x−1γx is close to iIn.
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Convergence theorem of Finis-Lapid

Since fn,k is a cusp form, JT
1 (fn,k ⊗ h) is rewritten as a modified kernel.

Hence we can apply the conv. thm. of Finis-Lapis, and then ∃r′ ∈ N s.t.

for d(T ) ≫ 1,

JT
1 (fn,k ⊗ h) ≪ (1 + d(T ))r

′
e−d(T )

∑
X∈X

∥X ∗ (fn,k ⊗ h)∥L1 .

We use the property of the semi-norm of fn,k and then

JT
1 (fn,k ⊗ h) ≪ (1 + d(T ))r

′
e−d(T ) km ∥h∥L1 .

Fix a number k0 ≫ 1. Then

JT
2 (fn,k(1− Fϕ,δ)⊗ h) ≤ d(n, k) (1 + c δ)

−k+k0
2 JT

2 (|fn,k0
| ⊗ |h|)

≪ k
d
2 (1 + c δ)−

k
2 (1 + d(T ))r

′
∥h∥L1 .

For the first inequality, we used the uniform bound of fn,k.

For the second inequality, we applied the conv. thm. of Finis-Lapid.
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Upper bound of Finis-Matz

Applying the uniform bound of fn,k,

JT
2 (fn,kF

ϕ,δ ⊗ h) ≪ k
d
2 JT

2 (Fϕ,δ ⊗ |h|).

Then, by the upper bound of Finis-Matz

JT
2 (Fϕ,δ ⊗ |h|) ≪ δ

n
2 (| log δ|n−1 + (1 + d(T ))n) ∥h∥L1 .

Obtaining this bound of JT
2 (Fϕ,δ ⊗ |h|) is technically the most difficult.

Conclusion

Set d(T ) =
(
m− d

2 + n
2

)
log k and cδ = k−1+2ε. Then,

JT
1 (fn,k ⊗ h) ≪ε k

d−n
2 +ε∥h∥L1 ,

JT
2 (fn,kF

ϕ,δ ⊗ h) ≪ε k
d−n

2 +(n+1)ε∥h∥L1 .

Since (1 + k−1+2ε)−
k
2 ≪ε k

−n
2 (Cogdell-Luo),

JT
2 (fn,k(1−Fϕ,δ)⊗h) ≪ε k

d
2+ε (1+k−1+2ε)−

k
2 ∥h∥L1 ≪ε k

d−n
2 +ε∥h∥L1 .
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Generality

G is a conn. s.s. alg. group over Q.

{σ(k)}k≫1 is a sequence of integrable disc. ser. of G := G(R).
τ(k) is the minimal K-type of σ(k). (K is a max. cpt. subgp. of G.)

Vk is a representation space of τ(k).

d(k) is the formal degree of σ(k).

fk(g) :=
d(k)

dimVk
tr(projτ(k) ◦ σ(k)(g) ◦ projτ(k))

Kf is an open compact subgroup of G(Af ).

Sk(Kf ) is a vector space of Vk-valued cusp forms associated to σ(k).

For h ∈ C∞
c (G(Af )), a Hecke op. Th : Sk(Kf ) → Sk(Kf ) is defined.

Godement’s formula

tr(Th|Sk(Kf )) =

∫
G(Q)\G(A)

∑
γ∈G(Q)

(fk ⊗ h)(x−1γx) dx.
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(i) The convergence theorem of Finis-Lapid holds for any G.

(ii) Upper bound of Finis-Matz

This is available for split reductive groups over Q.

Eikemeier generalized their result to the Q-quasi-split case.

(iii) Uniform upper bound of fk and its derivative

A general upper bound of matrix coefficients was obtained by Miličić.

However, the implicit constant of his inequality is effected by

K-types.

To apply this method to other groups, we must solve the problems

related to (ii) and (iii).
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List of simple Lie groups having holom. disc. ser.

G has a holom. disc. ser. if and only if K has a non-finite center.

G = Sp2n, K = Un, tube domain, split.

G = SUn,n, K = S(Un ×Un), tube domain, quasi-split.

G = SO∗
4n, K = U2n, tube domain.

G = SO2,n, K = S(O2 ×On), tube domain.

G = E7 (−25), K = U1 ×E6, tube domain.

G = SUp,q, K = S(Up ×Uq(q)), p < q.

G = E6 (−14), K = (U1 ×Spin10)/µ4.

Problem (iii) can be solved by using Jordan algebra for the tube domains.
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3. Quaternionic cusp forms on G2

G is the split adjoint algebraic group of type G2 over Q.

Kf is an open compact subgroup of G(Af ).

K ≃ SU2 × SU2 /{±1} is a maximal compact subgroup of G = G(R).
σ(k) is the quaternionic discrete series of G with the minimal K-type

τ(k) = Sym2k.

L2
cusp(G(Q)\G(A)) ≃

∑
π∈Ĝ(A) mπ · π. π ≃ π∞ ⊗ πf .

Lπ(Kf ) := ⟨ϕ = ϕ∞⊗ϕf ∈ mπ ·π | ϕ∞ ∈ mπ ·τ(k), πf (π,Kf )ϕf = ϕf ⟩,

Lk(Kf ) := ⊕π∞≃σ(k)Lπ(Kf ) ⊂ L2
cusp(G(Q)\G(A)/Kf ).

V ∨
k is the representation space of the contragredient rep. of τ(k).

Sk(Kf ) := (Lk(Kf )⊗ V ∨
k )K .

Cusp forms in Sk(Kf ) are V ∨
k -valued functions on G(Q)\G(A)/Kf .
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h ∈ C∞
c (G(Af )), Hecke operator Th : Sk(Kf ) → Sk(Kf ) is defined by

(Thϕ)(g) :=

∫
G(Af )

ϕ(gxf )h(xf ) dxf , (vol(Kf ) = 1).

d(k) is the formula degree of σ(k).

d(k) ≍ k
d
2 , d = dimG/K + 1.

Theorem (Sugiyama-Tsuzuki-W.)

For any small ε > 0 and any h ∈ C∞
c (Kf\G(Af )/Kf ), we have (w.r.t.

k → ∞)

tr(Th|Sk(Kf )) = vol(G(Q)\G(A)) d(k)h(1) + Oε(k
d
2−1+ε ∥h∥L1).
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Proof

It is enough to prove a uniform bound of fk and its derivative.

P = LU is a maximal parabolic subgroup of G s.t. L ≃ GL2(R) and
dimU = 5.

For the Iwasawa decomposition g = luy ∈ G = LUK (l ∈ L, u ∈ U ,

y ∈ K), we set

HP (luy) := log |det(l)| ∈ R, κ(g) = y ∈ SO3 ≃ SU2 /{±1} = K/ SU2 .

pk is the k-th Legendre polynomial.

(x|y) := xty (x, y ∈ R3). e1 = (1, 0, 0).

(Wallach) σ(k) is a subrepresentation of IndGPλk, where

λk = sgnk |det |−k−1. Using the compact picture of IndGPλk, we obtain

fk(g) = d(k)

∫
y∈K

e−kHp(yg) pk((e1κ(yg)|e1κ(y))) dy.

By this integral rep. of fk and |pk((e1h1|e1h2))| ≤ 1 (h1, h2 ∈ SO3), we

can get desired bounds.
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List of simple Lie groups having quater. disc. ser.

(Gross-Wallach)

G has a quater. disc. ser. if and only if K has a normal subgroup ≃ SU2.

G = Sp1,n, K = SU2 × Spn.

G = SU2,n, K = S(U2 ×Un).

G = SO4,n, K = S(O4 ×On), split n = 3, 4, 5.

G = G2 (2), K = (SU2 ×SU2)/{±1}, split.

G = F4 (4), K = (SU2 ×Sp3)/{±1}, split.

G = E6 (2), K = (SU2 ×SU6)/{±1}, quasi-split.

G = E7 (−5), K = (SU2 ×Spin12)/{±1}.

G = E8 (−24), K = (SU2 ×E7)/{±1}.

(Wallach) In general (except Sp1,n), quater. dis. ser. is a subrep. of an

induced rep. of λk. As for Sp1,n, fk is explicitly constructed by Arakawa.

Hence, Problem (iii) can be solved.
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4. Optimal upper bound of the reminder

Let G = Sp2n. For any small ε > 0 and any h ∈ C∞
c (Kf\G(Af )/Kf )

we have (w.r.t. k → ∞)

tr(Th|Sk(Kf )) = vol(Γ\Hn) d(n, k)h(1) + Oε(k
dn−n

2 +ε ∥h∥L1).

∥h∥L1 is optimal at the present, but k
dn−n

2 is not.

Γ(N) is the principal congruence subgroup of level N > 2.

Then, (W.)

dimSk(Γ(N)) = vol(Γ\Hn) d(n, k) +O(k
dn
2 −cn),

cn :=

n n is even,

2n− 1 n is odd.

This means the exponent of k should be improved.
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The center of G is trivial. G is simple. G is not compact.

disc. ser. σ(k) is holom. or quater. with min. K-type detk or

Sym2k respectively.

A is a maximal Q-split torus in G and M is the centralizer of A in

G. Suppose M(R)/A(R) is compact.

Gγ the centralizer of γ in G.

UG is the set of unipotent elements in G.

dss := min
γ∈K\{1}

dimGγ\G/K, dunip := min
u∈UG\{1}

dimGu\G

d(k) ≍ k
d
2 , d :=

dimG/K σ(k) is hol.,

dimG/K + 1 σ(k) is quater.

Theorem (Sugiyama-W.-Tsuzuki, Proof is being checked.)

Fix a function h ∈ C∞
c (Kf\G(Af )/Kf ). Then we have (w.r.t. k → ∞)

tr(Th|Sk(Kf )) = vol(G(Q)\G(A)) d(k)h(1) + O
(
k

1
2 (d−min(dss,dunip))

)
.
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Ex. G = Sp2n(R), dss = 2n− 2 < dunip = 2n.

G = G2(R), dss = 8 > dunip = 6.

Idea of Proof

Instead of the upper bound of Finis-Matz, we use the following bound.

Theorem (Brumely-Marshall)

For γ ∈ K, if δ ≪ 4|D(γ)|2, then∫
Gγ\G

Fϕ,δ(g−1γg) dg ≪ δ
dss(γ)

2 |D(γ)|−dss(γ).

Here, D(γ) is the Weyl denominator of γ in G and

dss(γ) := dimGγ\G/K.

This bound provides an optimal estimate of the contribution of

semisimple elements.

Ramacher and I obtained a similar bound by Herb’s Fourier inversion, but

the exponent of δ does not reach theirs.
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