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Model

Single-index model: Suppose that we observe n iid pairs {(X;, y;) }I-, following

Ely; | Xi =] =g(z'B),
or equivalently y; = (X, B) + ¢, Ele; | X;] = 0 where

= X, ~ N,(0,X) is a p-dimensional feature vector,
= qy; € Y C Ris a scalar response,

= g : R — R is an unknown link function,

= B € R? is an unknown coefficient vector.

Typical examples of the model encompass

= Linear regression: y; | X; ~ N(X,' B8, 02) with o. > 0 by setting g(t) = t.
= Poisson regression: y; | X; ~ Pois(exp(X,' B)) by setting g(t) = exp(t).

= Binary choice models: y; | X; ~ Bern(g(X,' 8)) with g : R — [0, 1]. This includes logistic regression
for g(t) = 1/(1 + exp(—t)) and the probit model for g(t) = ®(t).
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Figure 1. Examples of the single-index model

We consider a prevalent setting where the sample size n and the dimensionality p are large and com-

Step3: Estimation of 8. We employ the matching/surrogate loss [1] which is strictly convex for

patible. To approximate such situations, this study explores proportional asymptotics where

n,p — o0, p/n=rk—K>0.

Previous Results

let X = (X4,...,X,) e R"?andy = (y1,...,y,) € R™ An innovative work by P. Bellec [2]
demonstrates the average asymptotic normality of M-estimators regardless of the link violation. For
instance, when p < n, the least squares estimator 8 = (X ' X)~'X "y obeys
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where Z; K N(0,1), i2 = (|Pxyl|® — (1 — k)62)/n and 6% = &||Piy|%/(n(1 — k)?). However, the
marginal asymptotic normahty and the construction of the link estimation remain unclear.
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Our Goals

any strictly monotonically increasing g(-):

1=1

where G(-) is any functions satisfying G'(t) = g(t ) for t € R. Define an M-estimator

n

g)=> (G(X/'b) —y,X,'b)

1=1

B(9) = a];grﬂgmzﬁ (b; X, i, R[4)),
cRp

where R[] is the rearrangement functional [3] which monotonizes the input function,

RIgl(z) = inf {t ER /){1{9(@ < thdu > x} |

The estimator is a generalization of MLEs for logistic regression, Poisson regression, etc. Also, it has
a reasonable property that 8 = argming ., E[¢(b; X1, y1, 9)].

Theory

Theorem 1 (Consistency of §(-))
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Under the assumptions, for any a < b and h,, = c¢(logn)"/*, as n — oo,

sup |g(x)

o) =t =0 ()

Theorem 2 (Marginal asymptotic normality of B (9))

Consider a finite collection of indices S C [p] such that |/DPAmax(
© = X! Then, under the assumptions,

O HY2(BLIOBs)? = O(1) where
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forj=1,...,pwith z4_,/9 the (1 — «/2)-quantile of the standard normal d|5tr|buﬁon. This exactly
regulates the asymptotic coverage proportion at a given confidence level (1 — «).
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Numerical lllustrations

—

. Link Estimation: We propose a uniformly consistent estimator of g(-).

2. Marginal Inference: \We establish the marginal asymptotic normality of estimators for 8. This
facilitates hypothesis testing of 8; = 0 and variable selection.

3. Efficiency Enhancement: Leveraging the information of the estimated link function, we

propose a novel estimator of 8 with smaller asymptotic variance.

Assumptions

We impose the following assumptions to establish the theory.

1 (moderately high dimensions) 0 < k = p/n < .

2 (Gaussian feature and identification) 0 < C7! < A\pin(2) < M(E) < Cand B'¥8 = 1.
3 (smooth and monotonic link) g(-) € C*(R) and 0 < inf; ¢'(¢).

( [91 | X1T5

4 (moment conditions) E[y] < oo. ma(x) = x| is continuous.

Estimation

The estimation procedure comprises three steps. We assume p < n for brevity.

Step1: Pilot estimator. Consider the least squares estimator 8 = (XTX) ' X Ty. Applying [2]'s

result, we have an approximation
W, =i (X' B+1y — X;'B)) = X;' B+ N(0,7), (1)
where i = k/(1 — k) and 7> = %/p*. Remind that W; and 7% are computable from the dataset.

Step2: Link estimation. The nonparametric regression between X.' 8 and y; is infeasible since 8 is

unknown. Alternatively, we can use W; in (1) instead of X' 8. Here, the problem of link estimation is
approximately reduced to the nonparametric regression involving errors-in-variable (EIV) (i.e., noise
appears in input variables).

To address the EIV, the deconvolution technique [4] plays an essential role. Since convolution in the
frequency domain is equivalent to multiplication, and the density of W} is the convolution of X' B's
and N (0, 7%)’s densities, we have

- Flfwl
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where f.(-) is a density of %, F[-] is the Fourier transform, and fy/(+) is a kernel density estimator
(KDE) from W = (W7, ..., W,). By using the right term as a KDE for X' 8, we obtain

fx7p(t) ~ F

(1),

=D _ il (2~ ZK W)/ ha) | )
K,(z) = (2m)" /OO exp(—itx)gbj—b( /<h) )dt

where ¢ (+), ¢=(-) are Fourier transforms of a kernel K : R — R and N(0,7%) density, h,, > 0is a
bandwidth, and i = v/—1.

The simulations below demonstrate that the proposed estimator exhibits marginal asymptotic nor-
mality and indeed enhances estimation efficiency compared to the least squares pilot estimator.
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Figure 2. The first row illustrates histograms of the statistics \/ﬁ(ﬁl(g) [(g)51)/6(g) for n. = 500, p = 200 over 1,000
replications, which are expected to resemble N (0, 1) density. The second row shows histograms of estimates for the
effective asymptotic variance of 8 and B(j). We use ¥ = I, and the signals 8 ~ Unif(S”~"). The columns correspond
to each model: (i) logistic regression; (i) Poisson regression; (i) cubic regression y; = (X,' 8)?/3 + N(0, 1); (iv) piecewise
regression y; = g(X,;' B) + N(0,1) where g(t) = (0.2t — 2.3)1(_oo 1]+ 2.5t1 (1 1)+ (0.2t +2.3) 11, o) forevery i € {1,...,n}.
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