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Model

Single-index model: Suppose that we observe n iid pairs {(Xi, yi)}n
i=1 following

E[yi | Xi = x] = g(x>β),
or equivalently yi = g(X>

i β) + εi,E[εi | Xi] = 0 where

Xi ∼ Np(0, Σ) is a p-dimensional feature vector,

yi ∈ Y ⊂ R is a scalar response,

g : R → R is an unknown link function,

β ∈ Rp is an unknown coefficient vector.

Typical examples of the model encompass

Linear regression: yi | Xi ∼ N (X>
i β, σ2

ε) with σε > 0 by setting g(t) = t.

Poisson regression: yi | Xi ∼ Pois(exp(X>
i β)) by setting g(t) = exp(t).

Binary choice models: yi | Xi ∼ Bern(g(X>
i β)) with g : R → [0, 1]. This includes logistic regression

for g(t) = 1/(1 + exp(−t)) and the probit model for g(t) = Φ(t).
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Figure 1. Examples of the single-index model

We consider a prevalent setting where the sample size n and the dimensionality p are large and com-

patible. To approximate such situations, this study explores proportional asymptotics where

n, p → ∞, p/n =: κ → κ̄ > 0.

Previous Results

Let X = (X1, . . . , Xn)> ∈ Rn×p and y = (y1, . . . , yn)> ∈ Rn. An innovative work by P. Bellec [2]

demonstrates the average asymptotic normality of M-estimators regardless of the link violation. For

instance, when p < n, the least squares estimator β̃ = (X>X)−1X>y obeys
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where Zj
iid∼ N (0, 1), µ̃2 = (‖PXy‖2 − (1 − κ)σ̃2)/n and σ̃2 = κ‖P ⊥

Xy‖2/(n(1 − κ)2). However, the
marginal asymptotic normality and the construction of the link estimation remain unclear.

Our Goals

1. Link Estimation: We propose a uniformly consistent estimator of g(·).
2. Marginal Inference: We establish the marginal asymptotic normality of estimators for β. This

facilitates hypothesis testing of βj = 0 and variable selection.

3. Efficiency Enhancement: Leveraging the information of the estimated link function, we

propose a novel estimator of β with smaller asymptotic variance.

Assumptions

We impose the following assumptions to establish the theory.

A1 (moderately high dimensions) 0 < κ = p/n < ∞.

A2 (Gaussian feature and identification) 0 < C−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C and β>Σβ = 1.
A3 (smooth and monotonic link) g(·) ∈ C1(R) and 0 < inft g′(t).
A4 (moment conditions) E[y1] < ∞. m2(x) = E[y2

1 | X>
1 β = x] is continuous.

Estimation

The estimation procedure comprises three steps. We assume p ≤ n for brevity.

Step1: Pilot estimator. Consider the least squares estimator β̃ = (X>X)−1X>y. Applying [2]’s

result, we have an approximation

Wi := µ̃−1 (X>
i β̃ + η̃(yi − X>

i β̃)
)

≈ X>
i β + N (0, τ̃ 2), (1)

where η̃ = κ/(1 − κ) and τ̃ 2 = σ̃2/µ̃2. Remind that Wi and τ̃ 2 are computable from the dataset.

Step2: Link estimation. The nonparametric regression between X>
i β and yi is infeasible since β is

unknown. Alternatively, we can use Wi in (1) instead of X>
i β. Here, the problem of link estimation is

approximately reduced to the nonparametric regression involving errors-in-variable (EIV) (i.e., noise

appears in input variables).

To address the EIV, the deconvolution technique [4] plays an essential role. Since convolution in the

frequency domain is equivalent to multiplication, and the density of Wi is the convolution of X>
i β’s

and N (0, τ 2)’s densities, we have

fX>
1 β(t) ≈ F−1

[
F [f̂W1]

F [fN (0,τ̃ 2)]

]
(t),

where f∗(·) is a density of ∗, F [·] is the Fourier transform, and f̂W (·) is a kernel density estimator

(KDE) from W = (W1, . . . , Wn). By using the right term as a KDE for X>
1 β, we obtain

ĝ(x) :=
n∑

i=1
yiKn ((x − Wi)/hn)

/
n∑

i=1
Kn ((x − Wi)/hn) , (2)

Kn(x) = (2π)−1
∫ ∞

−∞
exp(−itx) φK(t)

φτ̃(t/hn)
dt,

where φK(·), φτ̃(·) are Fourier transforms of a kernel K : R → R and N (0, τ̃ 2) density, hn > 0 is a

bandwidth, and i =
√

−1.

Step3: Estimation of β. We employ the matching/surrogate loss [1] which is strictly convex for

any strictly monotonically increasing ḡ(·):
n∑

i=1
`(b; Xi, yi, ḡ) :=

n∑
i=1

(
Ḡ(X>

i b) − yiX
>
i b

)
,

where Ḡ(·) is any functions satisfying Ḡ′(t) = ḡ(t) for t ∈ R. Define an M-estimator

β̂(ĝ) = argmin
b∈Rp

n∑
i=1

`(b; Xi, yi, R[ĝ]),

where R[·] is the rearrangement functional [3] which monotonizes the input function,

R[ḡ](x) = inf
{

t ∈ R :
∫

X
1{ḡ(u) ≤ t}du ≥ x

}
.

The estimator is a generalization of MLEs for logistic regression, Poisson regression, etc. Also, it has

a reasonable property that β = argminb∈Rp E[`(b; X1, y1, g)].

Theory

Theorem 1 (Consistency of ĝ(·))

Under the assumptions, for any a < b and hn = c(log n)1/2, as n → ∞,

sup
a≤x≤b

|ĝ(x) − g(x)| = Op

(
1√

log n

)
.

Theorem 2 (Marginal asymptotic normality of β̂(ĝ))

Consider a finite collection of indices S ⊂ [p] such that
√

pλmax(Θ−1
S )1/2(β>

S Θ−1
S βS)1/2 = O(1) where

Θ = Σ−1. Then, under the assumptions,
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where

µ̂2(ĝ) = ‖Xβ̂(ĝ)‖2

n
− κ(1 − κ)σ̂2(ĝ), σ̂2(ĝ) = n−1‖y − ĝ(Xβ̂(ĝ))‖2

(n−1tr(V (ĝ)))2 ,

with V (ĝ) = D(ĝ) − D(ĝ)X(X>D(ĝ)X)−1X>D(ĝ), D(ĝ) = diag(ĝ′(Xβ̂(ĝ))).

Hence, we can define confidence intervals for each βj with a preassigned confidence level (1 − α):
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µ̂(ĝ)
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√
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]
,

for j = 1, . . . , p with z(1−α/2) the (1 − α/2)-quantile of the standard normal distribution. This exactly

regulates the asymptotic coverage proportion at a given confidence level (1 − α).

Numerical Illustrations

The simulations below demonstrate that the proposed estimator exhibits marginal asymptotic nor-

mality and indeed enhances estimation efficiency compared to the least squares pilot estimator.

Figure 2. The first row illustrates histograms of the statistics
√

p(β̂1(ĝ) − µ̂(ĝ)β1)/σ̂(ĝ) for n = 500, p = 200 over 1, 000
replications, which are expected to resemble N (0, 1) density. The second row shows histograms of estimates for the

effective asymptotic variance of β̃ and β̂(ĝ). We use Σ = Ip and the signals β ∼ Unif(Sp−1). The columns correspond

to each model: (i) logistic regression; (ii) Poisson regression; (iii) cubic regression yi = (X>
i β)3/3 + N (0, 1); (iv) piecewise

regression yi = g(X>
i β) + N (0, 1) where g(t) = (0.2t − 2.3)1(−∞,−1] + 2.5t1(−1,1) + (0.2t + 2.3)1[1,∞) for every i ∈ {1, . . . , n}.
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