A generalization of the Center Theorem of the Thurston-Wolpert-Goldman Lie algebra Aoi Wakuda Graduate School of Mathematical Sciences, The University of Tokyo

Let S be an oriented surface (possibly with boundary and punctures). We assume the Euler characteristic of S is negative so that S admits a hyperbolic metric. We also assume that the interior of S is not homeomorphic to that of a pair of pants. Denote by $\hat{\pi}$ the set of free homotopy classes of

It is a fundamental problem to compute the center of a given Lie algebra. We also call a closed curve *non-essential* if it is homotopic to a point or a boundary curve or to a puncture.

Theorem(Chas-Kabiraj 2020)

directed closed curves on *S*. Unless otherwise specified, we assume *K* to be a commutative ring containing the ring $\mathbb{Z}\begin{bmatrix}\frac{1}{2}\end{bmatrix}$. We denote by $K\hat{\pi}$ the free *K*-module generated by $\hat{\pi}$.

Definition

The Goldman bracket of α , $\beta \in \hat{\pi}$ is defined by the formula

 $[\alpha,\beta]_{\mathcal{G}} \coloneqq \sum_{P \in \alpha \cap \beta} \varepsilon_P(\alpha,\beta) |\alpha_P \beta_P|.$

Here the representatives α and β are chosen so that they intersect transversely in a set of double points $\alpha \cap \beta$, $\varepsilon_P(\alpha, \beta)$ denotes the sign of the intersection between α and β at an intersection point P, and $\alpha_P\beta_P$ denotes The center of the TWG Lie algebra is generated by the class of non-essential curves as a *K*-module.

For any K-submodule A of $K\hat{\pi}$ and K-submodule M of a $K\hat{\pi}$ -module, we denote $\operatorname{Ann}_{M}A \coloneqq \{m \in M | [a, m] = 0 \text{ for all } a \in A\}.$ The theorem above can be rephrased as determing the set $\operatorname{Ann}_{A_0}A_0$. We address the following natural question: how about the set of $\operatorname{Ann}_{A_i}A_j$ in the case (i, j) = (0, 1), (1, 0), (1, 1)? Our main result is to give an answer to this question.

Theorem(W.)

the loop product of α and β at P.

Goldman proved the bracket defined above makes $K\hat{\pi}$ a Lie algebra. There is a Lie algebra involution $\iota: K\hat{\pi} \to K\hat{\pi}$ given by $\alpha \mapsto \alpha^{-1}$, which maps the curve α to the curve α with opposite orientation. The involution ι defines two submodules of the Goldman Lie algebra of S.

Definition

Let A_0 be a submodule of $K\hat{\pi}$ generated by the elements of the form $\alpha + \iota \alpha$ and A_1 a submodule of $K\hat{\pi}$ generated by the elements of the form $\alpha - \iota \alpha$. The annihilator $\operatorname{Ann}_{A_0}A_1$ of A_1 in A_0 is generated by the elements of the form $\alpha + \iota \alpha$ such that α is non-essential. The annihilator $\operatorname{Ann}_{A_1}A_i$ of A_i in A_1 (i = 0, 1) is generated by the elements of the form $\alpha - \iota \alpha$ such that α is non-essential.

The following is a key lemma of the theorm above.

Lemma

Let α and β be elements of π̂. Then the following conditions are equivalent.
(1) α - ια = ±(β - ιβ),
(2) α + ια = β + ιβ.

The Goldman Lie algebra $K\hat{\pi}$ has the decomposition

 $K\hat{\pi}=A_0\oplus A_1.$

Since $\iota[\alpha, \beta]_G = [\iota\alpha, \iota\beta]_G$ for $\alpha, \beta \in K\hat{\pi}$, the submodule A_0 is a Lie subalgebra of $K\hat{\pi}$. The Lie algebra A_0 is called the *Thurston-Wolpert-Goldman Lie algebra* or, briefly, the *TWG Lie algebra*. Sketch of the proof : $(1) \Rightarrow (2)$: Denote by $\varphi : \pi_1(S) \rightarrow PSL(2, \mathbb{R})$ a natural injective group homomorphism induced by a hyperbolic metric $X \in Teich(S)$. By using this map, we can prove $\alpha \neq \iota \alpha$. Therefore, $\alpha = \beta, \iota \beta$. Thus, we obtain $\alpha + \iota \alpha = \beta + \iota \beta$. (2) \Rightarrow (1) : Clearly, $\alpha = \beta, \iota \beta$.

WINGS-FMSP Qualifying Exam